Difference between revisions of "Fall 2012"

From PhysWiki
Jump to: navigation, search
(Question 12)
(Question 12)
 
(6 intermediate revisions by one user not shown)
Line 1: Line 1:
Official Questions and Solutions for [Fall 2012].
+
Official Questions and Solutions for [http://www.physwiki.com/w/images/9/90/F%2712.pdf Fall 2012].
 
<div class="fb-share-button" data-href="http://developers.facebook.com/docs/plugins/" data-type="button_count"></div>
 
<div class="fb-share-button" data-href="http://developers.facebook.com/docs/plugins/" data-type="button_count"></div>
  
 
== Crowdsourced Answers ==
 
== Crowdsourced Answers ==
 
=== Question 12 ===
 
=== Question 12 ===
A pulsar emits bursts of radio waves at two frequencies $\omega_1$, $\omega_2$. The pulses arrive at different times $t_1$, $t_2$ due to interaction with the interstellar medium, which is a dilute Hydrogen plasma. Find the distance $s$ from pulsar to earth, given $\tau= t_2 - t_2$.<div class="mw-collapsible mw-collapsed" style="width:750px">
+
A pulsar emits bursts of radio waves at two frequencies $\omega_1$, $\omega_2$. The pulses arrive at different times $t_1$, $t_2$ due to interaction with the interstellar medium- a dilute Hydrogen plasma. Find the distance $s$ from pulsar to earth, given $\tau= t_2 - t_2$.<div class="mw-collapsible mw-collapsed" style="width:750px">
 
''Method'':
 
''Method'':
  
Line 13: Line 13:
 
$\rightarrow$ Need $\epsilon_r$.  
 
$\rightarrow$ Need $\epsilon_r$.  
  
Have $\epsilon_r =1+\chi_e = 1 + \frac{P}{\epsilon_0 E}=  1 + \frac{n_e p_e}{\epsilon_0 E} =1+\frac{n_e ex}{\epsilon_0 E}$, where $E= E_0 e^{-i\omega t}$ and $n_e =$ electron number density.  
+
\[\epsilon_r =1+\chi_e = 1 + \frac{P}{\epsilon_0 E}=  1 + \frac{n_e p_e}{\epsilon_0 E} =1+\frac{n_e ex}{\epsilon_0 E}\]
 +
, where $E= E_0 e^{-i\omega t}$, $P= n_e p_e =$ Polarization vector, $n_e =$ electron number density and $p_e =$ electron dipole moment.
  
 
$\rightarrow$ Need $x$.
 
$\rightarrow$ Need $x$.
Line 19: Line 20:
 
Have $F= eE= m_e \ddot{x}$, so  
 
Have $F= eE= m_e \ddot{x}$, so  
 
\[\ddot{x} = \frac{e}{m_e} E_0 e^{-i\omega t}\]
 
\[\ddot{x} = \frac{e}{m_e} E_0 e^{-i\omega t}\]
Have $\ddot{x} = -\omega x$, so
+
Therefore we must have $\ddot{x} = -\omega^2 x$, so
\[x = x_0 e^{-i\omega t}= -\frac{e}{m_e \omega^2} E_0e^{-i\omega t}\]
+
\[x = -\frac{\ddot{x}}{\omega^2}= -\frac{e}{m_e \omega^2} E_0e^{-i\omega t} = -\frac{e E}{m_e \omega^2}\]
\[\epsilon_r = 1 - \frac{n_e e^2}{\epsilon_0 m_e \omega^2} =1 - \frac{\omega_p^2}{\omega^2}\], where $\omega_p^2 = \frac{n_e e^2}{\epsilon_0 m_e}$.  
+
\[\epsilon_r = 1 - \frac{n_e e^2 E}{\epsilon_0 m_e \omega^2 E}= 1 - \frac{n_e e^2}{\epsilon_0 m_e \omega^2} =1 - \frac{\omega_p^2}{\omega^2}\], where $\omega_p^2 = \frac{n_e e^2}{\epsilon_0 m_e}$.  
  
From $v_p$ above we get:
+
From $v_p=\frac{\omega}{k}\approx \frac{c}{\sqrt{\epsilon_r}}$ we get:
 
\[k = \frac{\omega \sqrt{\epsilon_r}}{c} = \frac{1}{c} \sqrt{ \omega^2- \omega_p^2}\]
 
\[k = \frac{\omega \sqrt{\epsilon_r}}{c} = \frac{1}{c} \sqrt{ \omega^2- \omega_p^2}\]
 
\[\frac{1}{v_g} = \frac{\partial k}{\partial \omega} = \frac{\omega}{c \sqrt{\omega^2- \omega_p^2}} =\frac{1}{c \sqrt{1- \frac{\omega_p^2}{\omega^2}}} \approx \frac{1}{c} \left[1+\frac{\omega_p^2}{2\omega^2} \right]\]
 
\[\frac{1}{v_g} = \frac{\partial k}{\partial \omega} = \frac{\omega}{c \sqrt{\omega^2- \omega_p^2}} =\frac{1}{c \sqrt{1- \frac{\omega_p^2}{\omega^2}}} \approx \frac{1}{c} \left[1+\frac{\omega_p^2}{2\omega^2} \right]\]
 
\[\tau= s \left[\frac{1}{v_{g,2}} - \frac{1}{v_{g,1}}\right] \approx \frac{s \omega_p^2}{2c} \left[\frac{1}{\omega_2^2} - \frac{1}{\omega_1^2}\right]\]
 
\[\tau= s \left[\frac{1}{v_{g,2}} - \frac{1}{v_{g,1}}\right] \approx \frac{s \omega_p^2}{2c} \left[\frac{1}{\omega_2^2} - \frac{1}{\omega_1^2}\right]\]
\[s = \frac{2c\tau}{\omega_p^2}\left[\frac{\omega_1^2\omega_2^2}{\omega_1^2-\omega_2^2}\right]\]
+
\[s \approx \frac{2c\tau}{\omega_p^2}\left[\frac{\omega_1^2\omega_2^2}{\omega_1^2-\omega_2^2}\right]\]
 
</div>
 
</div>
 
<br/>
 
<br/>

Latest revision as of 01:14, 13 May 2014

Official Questions and Solutions for Fall 2012.

[edit] Crowdsourced Answers

[edit] Question 12

A pulsar emits bursts of radio waves at two frequencies $\omega_1$, $\omega_2$. The pulses arrive at different times $t_1$, $t_2$ due to interaction with the interstellar medium- a dilute Hydrogen plasma. Find the distance $s$ from pulsar to earth, given $\tau= t_2 - t_2$.

Method:

Need $v_g = \frac{\partial \omega}{\partial k}$, so we have to find $\omega(k)$.

Have $v_p = \frac{\omega}{k} = \frac{c}{n(\omega)} \approx \frac{c}{\sqrt{\epsilon_r}}$

$\rightarrow$ Need $\epsilon_r$.

\[\epsilon_r =1+\chi_e = 1 + \frac{P}{\epsilon_0 E}= 1 + \frac{n_e p_e}{\epsilon_0 E} =1+\frac{n_e ex}{\epsilon_0 E}\] , where $E= E_0 e^{-i\omega t}$, $P= n_e p_e =$ Polarization vector, $n_e =$ electron number density and $p_e =$ electron dipole moment.

$\rightarrow$ Need $x$.

Have $F= eE= m_e \ddot{x}$, so \[\ddot{x} = \frac{e}{m_e} E_0 e^{-i\omega t}\] Therefore we must have $\ddot{x} = -\omega^2 x$, so \[x = -\frac{\ddot{x}}{\omega^2}= -\frac{e}{m_e \omega^2} E_0e^{-i\omega t} = -\frac{e E}{m_e \omega^2}\] \[\epsilon_r = 1 - \frac{n_e e^2 E}{\epsilon_0 m_e \omega^2 E}= 1 - \frac{n_e e^2}{\epsilon_0 m_e \omega^2} =1 - \frac{\omega_p^2}{\omega^2}\], where $\omega_p^2 = \frac{n_e e^2}{\epsilon_0 m_e}$.

From $v_p=\frac{\omega}{k}\approx \frac{c}{\sqrt{\epsilon_r}}$ we get: \[k = \frac{\omega \sqrt{\epsilon_r}}{c} = \frac{1}{c} \sqrt{ \omega^2- \omega_p^2}\] \[\frac{1}{v_g} = \frac{\partial k}{\partial \omega} = \frac{\omega}{c \sqrt{\omega^2- \omega_p^2}} =\frac{1}{c \sqrt{1- \frac{\omega_p^2}{\omega^2}}} \approx \frac{1}{c} \left[1+\frac{\omega_p^2}{2\omega^2} \right]\] \[\tau= s \left[\frac{1}{v_{g,2}} - \frac{1}{v_{g,1}}\right] \approx \frac{s \omega_p^2}{2c} \left[\frac{1}{\omega_2^2} - \frac{1}{\omega_1^2}\right]\] \[s \approx \frac{2c\tau}{\omega_p^2}\left[\frac{\omega_1^2\omega_2^2}{\omega_1^2-\omega_2^2}\right]\]


Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox