Difference between revisions of "EM Course Notes"

From PhysWiki
Jump to: navigation, search
Line 5: Line 5:
  
 
==221A Notes==
 
==221A Notes==
 +
 +
 +
 +
'''Electrostatics'''
 +
 +
Image charge coordinates<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
  \[
 +
q' = - \frac{a}{y}q \text{    ,      }  y' = \frac{a^2}{y}
 +
  \]
 +
</div>
 +
 +
Current in conductor<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
  \[
 +
I = nAve = \frac{\partial Q}{\partial t}
 +
  \]
 +
</div>
 +
 +
Electric and magnetic fields from potentials<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
  \[
 +
\vec{E} = -\vec{\nabla} \phi - \frac{\partial \vec{A}}{\partial t}  \]\[
 +
\vec{B} = \vec{\nabla} \times \vec{A}
 +
\]
 +
</div>
 +
 +
'''Waves'''
 +
<!-- 
 +
This is a comment showing Maxwell's Eqn in Table Format:
 +
 +
:{| class="wikitable"
 +
|-
 +
| <math>\nabla \cdot \mathbf{E} = \frac {\rho} {\epsilon_0}</math>
 +
| <math>\nabla \cdot \mathbf{B} = 0</math>
 +
|-
 +
| <math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math>   
 +
|  <math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math>
 +
|}
 +
-->
 +
 +
Maxwell's equations in vacuum:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
  \[
 +
\nabla \cdot \mathbf{E} = \frac{\rho}{\mathcal{E_0}} , \nabla \cdot \mathbf{B} = 0 \\
 +
 +
 +
\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}} {\partial t}\ , \nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\
 +
 +
  \]
 +
</div>
 +
 
<!--   
 
<!--   
 
  <div class="mw-collapsible mw-collapsed" style="width:750px">
 
  <div class="mw-collapsible mw-collapsed" style="width:750px">
Line 25: Line 73:
 
  </div>
 
  </div>
 
-->
 
-->
   
+
  Poynting's theorem:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
  \[
 +
\frac{\partial u}{\partial t} + \nabla\cdot\mathbf{S} = - \mathbf{J}\cdot\mathbf{E},
 +
where '''J''' is the ''total'' current density and the energy density ''u'' is
 +
u = \frac{1}{2}\left(\varepsilon_0 \mathbf{E}^2 + \frac{1}{\mu_0}\mathbf{B}^2\right)
 +
 
 +
  \]
 +
</div>
 +
 
 +
Cutoff frequency for a rectangular waveguide: <div class="mw-collapsible mw-collapsed" style="width:750px">
 +
:<math>
 +
  \omega_{c} = c \sqrt{\left(\frac{n \pi}{a}\right)^2 + \left(\frac{m \pi}{b}\right) ^2},
 +
</math>
 +
where <math>n,m \ge 0</math> are the mode numbers and ''a'' and ''b'' the lengths of the sides of the rectangle. For TE modes <math> n,m \ge 0</math> and <math> n \ne m </math>, while for TM modes <math> n, m \ge 1 </math>.
 +
</div>
 +
 
 +
Maxwell's Stress Tensor:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
\[
 +
\overset{\leftrightarrow  }{ \mathbf{T}}_{ij} \equiv \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2\right) + \frac{1}{\mu_0}  \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2\right)\ 
 +
\]
 +
</div>
 +
 
 +
<div class="mw-collapsible mw-collapsed" style="width:700px">
 +
Derivation from [http://en.wikipedia.org/wiki/Maxwell_stress_tensor Wikipedia]
 +
<ol>
 +
<li>Starting with the Lorentz force law
 +
:<math>\mathbf{F} = q(\mathbf{E} + \mathbf{v}\times\mathbf{B})</math>
 +
the force per unit volume for an unknown charge distribution is
 +
:<math>
 +
\mathbf{f} = \rho\mathbf{E} + \mathbf{J}\times\mathbf{B}
 +
</math></li>
 +
<li>Next, ρ and '''J''' can be replaced by the fields '''E''' and '''B''', using Gauss's law and Ampère's circuital law:
 +
:<math>
 +
\mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B}\,
 +
</math></li>
 +
<li>The time derivative can be rewritten to something that can be interpreted physically, namely the Poynting vector. Using the product rule and Faraday's law of induction gives
 +
:<math>\frac{\partial}{\partial t} (\mathbf{E}\times\mathbf{B}) = \frac{\partial\mathbf{E}}{\partial t}\times \mathbf{B} + \mathbf{E} \times \frac{\partial\mathbf{B}}{\partial t} = \frac{\partial\mathbf{E}}{\partial t}\times \mathbf{B} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E})\,</math>
 +
and we can now rewrite '''f''' as
 +
:<math>\mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right) - \epsilon_0 \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E})\,</math>,
 +
then collecting terms with '''E''' and '''B''' gives
 +
:<math>\mathbf{f} = \epsilon_0\left[  (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E}) \right] + \frac{1}{\mu_0} \left[ -  \mathbf{B}\times\left(\boldsymbol{\nabla}\times \mathbf{B} \right)  \right]
 +
- \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,</math>.</li>
 +
<li>A term seems to be "missing" from the symmetry in '''E''' and '''B''', which can be achieved by inserting (∇ • '''B''')'''B''' because of Gauss' law for magnetism:
 +
:<math>\mathbf{f} = \epsilon_0\left[  (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E}) \right] + \frac{1}{\mu_0} \left[(\boldsymbol{\nabla}\cdot \mathbf{B} )\mathbf{B} -  \mathbf{B}\times\left(\boldsymbol{\nabla}\times \mathbf{B} \right)  \right]
 +
- \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,</math>.
 +
Eliminating the curls (which are fairly complicated to calculate), using the vector calculus identity
 +
:<math>\tfrac{1}{2} \boldsymbol{\nabla} (\mathbf{A}\cdot\mathbf{A}) = \mathbf{A} \times (\boldsymbol{\nabla} \times \mathbf{A}) + (\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{A} </math>,
 +
leads to:
 +
:<math>\mathbf{f} = \epsilon_0\left[  (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} + (\mathbf{E}\cdot\boldsymbol{\nabla}) \mathbf{E} \right] + \frac{1}{\mu_0} \left[(\boldsymbol{\nabla}\cdot \mathbf{B} )\mathbf{B} + (\mathbf{B}\cdot\boldsymbol{\nabla}) \mathbf{B} \right] - \frac{1}{2} \boldsymbol{\nabla}\left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)
 +
- \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,</math>.</li>
 +
 
 +
<li>This expression contains every aspect of electromagnetism and momentum and is relatively easy to compute. It can be written more compactly by introducing the '''Maxwell stress tensor''',
 +
:<math>\overset{\leftrightarrow  }{ \mathbf{T}}_{ij} \equiv \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2\right) + \frac{1}{\mu_0}  \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2\right)\,</math>,
 +
</li>
 +
</ol>
 +
</div>
 +
 
 +
'''Radiation'''
 +
Electric Dipole Radiation:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
:<math>\mathbf{B} = \frac{\omega^2}{4\pi\varepsilon_0 c^3} (\hat{\mathbf{r}} \times \mathbf{p}) \frac{e^{i\omega r/c}}{r}</math>
 +
:<math>\mathbf{E} = c \mathbf{B} \times \hat{\mathbf{r}}</math>
 +
 
 +
which produces a total time-average radiated power ''P'' given by
 +
 
 +
:<math>P = \frac{\omega^4}{12\pi\varepsilon_0 c^3} |\mathbf{p}|^2.</math>
 +
</div>
 +
 
 +
'''Multipole'''
 +
Torque on magnetic and electric dipoles:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
 
 +
:<math> \boldsymbol{\tau} = \mathbf{p} \times \mathbf{E}</math>
 +
for an [[electrical dipole moment|electric dipole moment]] '''p''' (in coulomb-meters), or
 +
 
 +
:<math> \boldsymbol{\tau} = \mathbf{m} \times \mathbf{B}</math>
 +
for a [[magnetic dipole moment]] '''m''' (in ampere-square meters).
 +
 
 +
The resulting torque will tend to align the dipole with the applied field, which in the case of an electric dipole, yields a potential energy of
 +
 
 +
:<math> U = -\mathbf{p} \cdot \mathbf{E}</math>.
 +
 
 +
The energy of a magnetic dipole is similarly
 +
 
 +
:<math> U = -\mathbf{m} \cdot \mathbf{B}</math>.
 +
</div>
 +
<br/>
  
  

Revision as of 23:20, 14 April 2014

Here is a conglomerate of notes gathered for the graduate EM classes 210A and 210B.


Contents

221A Notes

Electrostatics

Image charge coordinates
 \[
 q' = - \frac{a}{y}q \text{     ,      }  y' = \frac{a^2}{y}
  \]
Current in conductor
 \[
I = nAve = \frac{\partial Q}{\partial t} 
  \]
Electric and magnetic fields from potentials
 \[
\vec{E} = -\vec{\nabla} \phi - \frac{\partial \vec{A}}{\partial t}   \]\[
\vec{B} = \vec{\nabla} \times \vec{A}
\]

Waves

Maxwell's equations in vacuum:
 \[
\nabla \cdot \mathbf{E} = \frac{\rho}{\mathcal{E_0}} , \nabla \cdot \mathbf{B} = 0 \\


\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}} {\partial t}\ , \nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\

  \]


Exercises

210B Notes

Poynting's theorem:
 \[
\frac{\partial u}{\partial t} + \nabla\cdot\mathbf{S} = - \mathbf{J}\cdot\mathbf{E},
where '''J''' is the ''total'' current density and the energy density ''u'' is
u = \frac{1}{2}\left(\varepsilon_0 \mathbf{E}^2 + \frac{1}{\mu_0}\mathbf{B}^2\right)

  \]
Cutoff frequency for a rectangular waveguide:

\[ \omega_{c} = c \sqrt{\left(\frac{n \pi}{a}\right)^2 + \left(\frac{m \pi}{b}\right) ^2}, \] where \(n,m \ge 0\) are the mode numbers and a and b the lengths of the sides of the rectangle. For TE modes \( n,m \ge 0\) and \( n \ne m \), while for TM modes \( n, m \ge 1 \).

Maxwell's Stress Tensor:
\[
\overset{\leftrightarrow  }{ \mathbf{T}}_{ij} \equiv \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2\right) + \frac{1}{\mu_0}  \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2\right)\  
\]

Derivation from Wikipedia

  1. Starting with the Lorentz force law \[\mathbf{F} = q(\mathbf{E} + \mathbf{v}\times\mathbf{B})\] the force per unit volume for an unknown charge distribution is \[ \mathbf{f} = \rho\mathbf{E} + \mathbf{J}\times\mathbf{B} \]
  2. Next, ρ and J can be replaced by the fields E and B, using Gauss's law and Ampère's circuital law: \[ \mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B}\, \]
  3. The time derivative can be rewritten to something that can be interpreted physically, namely the Poynting vector. Using the product rule and Faraday's law of induction gives \[\frac{\partial}{\partial t} (\mathbf{E}\times\mathbf{B}) = \frac{\partial\mathbf{E}}{\partial t}\times \mathbf{B} + \mathbf{E} \times \frac{\partial\mathbf{B}}{\partial t} = \frac{\partial\mathbf{E}}{\partial t}\times \mathbf{B} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E})\,\] and we can now rewrite f as \[\mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right) - \epsilon_0 \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E})\,\], then collecting terms with E and B gives \[\mathbf{f} = \epsilon_0\left[ (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E}) \right] + \frac{1}{\mu_0} \left[ - \mathbf{B}\times\left(\boldsymbol{\nabla}\times \mathbf{B} \right) \right] - \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,\].
  4. A term seems to be "missing" from the symmetry in E and B, which can be achieved by inserting (∇ • B)B because of Gauss' law for magnetism: \[\mathbf{f} = \epsilon_0\left[ (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E}) \right] + \frac{1}{\mu_0} \left[(\boldsymbol{\nabla}\cdot \mathbf{B} )\mathbf{B} - \mathbf{B}\times\left(\boldsymbol{\nabla}\times \mathbf{B} \right) \right] - \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,\]. Eliminating the curls (which are fairly complicated to calculate), using the vector calculus identity \[\tfrac{1}{2} \boldsymbol{\nabla} (\mathbf{A}\cdot\mathbf{A}) = \mathbf{A} \times (\boldsymbol{\nabla} \times \mathbf{A}) + (\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{A} \], leads to: \[\mathbf{f} = \epsilon_0\left[ (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} + (\mathbf{E}\cdot\boldsymbol{\nabla}) \mathbf{E} \right] + \frac{1}{\mu_0} \left[(\boldsymbol{\nabla}\cdot \mathbf{B} )\mathbf{B} + (\mathbf{B}\cdot\boldsymbol{\nabla}) \mathbf{B} \right] - \frac{1}{2} \boldsymbol{\nabla}\left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) - \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,\].
  5. This expression contains every aspect of electromagnetism and momentum and is relatively easy to compute. It can be written more compactly by introducing the Maxwell stress tensor, \[\overset{\leftrightarrow }{ \mathbf{T}}_{ij} \equiv \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2\right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2\right)\,\],

Radiation

Electric Dipole Radiation:

\[\mathbf{B} = \frac{\omega^2}{4\pi\varepsilon_0 c^3} (\hat{\mathbf{r}} \times \mathbf{p}) \frac{e^{i\omega r/c}}{r}\] \[\mathbf{E} = c \mathbf{B} \times \hat{\mathbf{r}}\]

which produces a total time-average radiated power P given by

\[P = \frac{\omega^4}{12\pi\varepsilon_0 c^3} |\mathbf{p}|^2.\]

Multipole

Torque on magnetic and electric dipoles:

\[ \boldsymbol{\tau} = \mathbf{p} \times \mathbf{E}\] for an electric dipole moment p (in coulomb-meters), or

\[ \boldsymbol{\tau} = \mathbf{m} \times \mathbf{B}\] for a magnetic dipole moment m (in ampere-square meters).

The resulting torque will tend to align the dipole with the applied field, which in the case of an electric dipole, yields a potential energy of

\[ U = -\mathbf{p} \cdot \mathbf{E}\].

The energy of a magnetic dipole is similarly

\[ U = -\mathbf{m} \cdot \mathbf{B}\].




Exercises

General Identities


Gallery

References

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox