Difference between revisions of "CM Course Notes"

From PhysWiki
Jump to: navigation, search
(Gallery)
(220 Notes)
Line 28: Line 28:
  
 
</div>
 
</div>
 +
 +
Origin of Canonical Momentum:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
\[p = \left( p - \frac{e}{c} A \right), \text{ where p inside the brackets is the quantum mechanical momentum } p = -i \hbar \nabla \text{ and A is the gauge invariant vector potential.}\]
 +
Canonical momentum is not the momentum fired out of a cannon, but rather the momentum that satisfies $p = \frac{\partial \mathcal{L}}{ \partial \dot{q}}$, where $\mathcal{L}$ is the Lagrangian of the system.
 +
:<math>H=\frac{1}{2m} \left(p-\frac{qA}{c}\right)^2 +q\phi</math>
 +
</div>
  
 
'''Hamiltonian Mechanics'''
 
'''Hamiltonian Mechanics'''

Revision as of 22:14, 24 May 2014

Here is a conglomerate of notes gathered for the graduate CM class.


Contents

220 Notes

Lagrangian Mechanics

Method for finding normal modes of system

Since we expect oscillatory motion of a normal mode (where ω is the same for both masses), we try: \[ x_1(t) = A_1 e^{i \omega t} \\ x_2(t) = A_2 e^{i \omega t} \]

Euler-Lagrange Equation of system without constraints:

\[\frac{\mathrm{d}}{\mathrm{d}t} \left ( \frac {\partial L}{\partial \dot{q}_j} \right ) = \frac {\partial L}{\partial q_j} \]

Origin of Canonical Momentum:

\[p = \left( p - \frac{e}{c} A \right), \text{ where p inside the brackets is the quantum mechanical momentum } p = -i \hbar \nabla \text{ and A is the gauge invariant vector potential.}\] Canonical momentum is not the momentum fired out of a cannon, but rather the momentum that satisfies $p = \frac{\partial \mathcal{L}}{ \partial \dot{q}}$, where $\mathcal{L}$ is the Lagrangian of the system. \[H=\frac{1}{2m} \left(p-\frac{qA}{c}\right)^2 +q\phi\]

Hamiltonian Mechanics

Hamiltonian i.t.o. Lagrangian:

\[H = \dot{\mathbf{q}} \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} - \mathcal{L} \]

Transform from rotating to fixed frame:

\[ \vec{v}' = \vec{v} - \vec{\omega} \times \vec{r} \]

Relativity

Write the product $\gamma\beta$ in terms of only $\gamma$:

\[\gamma \beta = \sqrt{\frac{\beta^2}{1- \beta^2}}= \sqrt{\frac{A}{1-\beta^2} + B} \\ \text{In the words of the notorious J.D. Jackson, ''we see'' that }A = 1 \text{ and }B = -1 \text{ , such that } \\ \gamma \beta = \sqrt{\frac{1}{1-\beta^2} - 1}=\sqrt{\gamma^2 - 1} \] E.g.: Lim#3021

Exercises

General Identities


Gallery

Lecture Notes

Classical Mechanics by Prof. Eric D'Hoker[1].


References

  1. http://www.pa.ucla.edu/content/eric-dhoker-lecture-notes, retrieved 17th April 2014.
Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox