Difference between revisions of "EM Course Notes"

From PhysWiki
Jump to: navigation, search
(Created page with "Here is a conglomerate of notes gathered for the graduate EM classes 210A and 210B. Compare with the Formula Sheet for the comprehensive exams. <div class="fb-share-butt...")
 
(Exercises)
 
(45 intermediate revisions by one user not shown)
Line 1: Line 1:
Here is a conglomerate of notes gathered for the graduate EM classes 210A and 210B. Compare with the [[Formula Sheet]] for the comprehensive exams.  
+
Here is a conglomerate of notes gathered for the graduate EM classes 210A and 210B.
  
 
<div class="fb-share-button" data-href="http://developers.facebook.com/docs/plugins/" data-type="button_count"></div>
 
<div class="fb-share-button" data-href="http://developers.facebook.com/docs/plugins/" data-type="button_count"></div>
  
  
==221A Notes==
+
==210A Notes==
''' Fundamentals'''
+
<!-- 
+
<div class="mw-collapsible mw-collapsed" style="width:750px">
+
  
 +
'''Electrostatics'''
  
    
+
Image charge coordinates<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
   \[
 +
q' = - \frac{a}{y}q \text{    ,      }  y' = \frac{a^2}{y}
 +
  \]
 
  </div>
 
  </div>
  
 +
Current in conductor<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
  \[
 +
I = nAve = \frac{\partial Q}{\partial t}
 +
  \]
 +
</div>
 +
 +
Electric and magnetic fields from potentials<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
  \[
 +
\vec{E} = -\vec{\nabla} \phi - \frac{\partial \vec{A}}{\partial t}  \]\[
 +
\vec{B} = \vec{\nabla} \times \vec{A}
 +
\]
 +
</div>
 +
 +
'''Waves'''
 +
<!-- 
 +
This is a comment showing Maxwell's Eqn in Table Format:
 +
 +
:{| class="wikitable"
 +
|-
 +
| <math>\nabla \cdot \mathbf{E} = \frac {\rho} {\epsilon_0}</math>
 +
| <math>\nabla \cdot \mathbf{B} = 0</math>
 +
|-
 +
| <math>\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}</math>   
 +
|  <math>\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ </math>
 +
|}
 
-->
 
-->
  
 +
Maxwell's equations in vacuum:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
  \[
 +
\nabla \cdot \mathbf{E} = \frac{\rho}{\mathcal{E_0}} , \nabla \cdot \mathbf{B} = 0 \\
  
===''<small>Exercises</small>''===
 
  
 +
\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}} {\partial t}\ , \nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\
 +
 +
  \]
 +
</div>
 +
===''<small>Exercises</small>''===
 +
[http://physwiki.com/w/images/a/a3/210A_Comp_Q1_%26_Sol.pdf  Disc 1]
 +
[http://physwiki.com/w/images/e/e8/F11Q10.pdf Disc 2]
  
 
==210B Notes==
 
==210B Notes==
Line 27: Line 62:
 
  </div>
 
  </div>
 
-->
 
-->
   
+
'''Radiation'''
 +
 
 +
Boundary Conditions:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
  :{| class="wikitable"
 +
|-
 +
| <math>E_{\parallel, 1} =E_{\parallel, 2} </math>
 +
| <math>D_{\perp, 1} - D_{\perp, 2} = \sigma_{f}</math>
 +
|-
 +
| <math>H_{\parallel, 1} -H_{\parallel, 2} =\mathbf{k_f} \times \mathbf{n}</math>   
 +
|  <math>B_{\perp, 1} =B_{\perp, 2} </math>
 +
|}
 +
 
 +
</div>
 +
 
 +
Find the transmission and reflection coefficients of light impinging normally on a boundary (repeat at an angle):<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
\[
 +
E_I(x, t) = A e^{-i\omega t + i\mathbf{k_1}.\mathbf{x} }\\
 +
E_T(x, t) = C e^{-i\omega t + i\mathbf{k_2}.\mathbf{x} }\\
 +
E_R(x, t) = D e^{-i\omega t - i\mathbf{k_1}.\mathbf{x} }\\
 +
 
 +
B_I(x, t) = \frac{1}{v_1} A e^{-i\omega t + i\mathbf{k_1}.\mathbf{x} }\\
 +
B_T(x, t) =  \frac{1}{v_2} C e^{-i\omega t + i\mathbf{k_2}.\mathbf{x} }\\
 +
B_R(x, t) = - \frac{1}{v_1} D  e^{-i\omega t - i\mathbf{k_1}.\mathbf{x} }\]
 +
Where we have used<ref>Griffiths, ''9.3.2 Reflection and Transmission at Normal Incidence'', p.384. </ref> \[ i \omega B = ik E\].
 +
Solving for the boundary conditions,
 +
\[
 +
C = \frac{2A}{1+\alpha}, D = \frac{1-\alpha}{1+\alpha}
 +
\]
 +
Where we have used<ref>EM Lim #4041</ref>  $\alpha = \frac{v_1}{v_2}$. Therefore,
 +
\[
 +
R=\frac{|E_R H_R^*|}{E_IH_I^*} =\left(\frac{D}{A}\right)^2 = \left(\frac{1-\alpha}{1+\alpha}\right)^2 \\
 +
T=\frac{|E_T H_T^*|}{E_IH_I^*} = \left(\frac{C}{A}\right)^2 \alpha = \frac{4\alpha}{(1+\alpha)^2}
 +
\]
 +
 
 +
</div>
 +
 
 +
Poynting's theorem:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
\[
 +
\frac{\partial u}{\partial t} + \nabla\cdot\mathbf{S} = - \mathbf{J}\cdot\mathbf{E}
 +
\]
 +
, where '''J''' is the ''total'' current density and the energy density ''u'' is
 +
\[
 +
u = \frac{1}{2}\left(\varepsilon_0 \mathbf{E}^2 + \frac{1}{\mu_0}\mathbf{B}^2\right)
 +
\]
 +
</div>
 +
 
 +
Cutoff frequency for a rectangular waveguide: <div class="mw-collapsible mw-collapsed" style="width:750px">
 +
:<math>
 +
  \omega_{c} = c \sqrt{\left(\frac{n \pi}{a}\right)^2 + \left(\frac{m \pi}{b}\right) ^2},
 +
</math>
 +
where <math>n,m \ge 0</math> are the mode numbers and ''a'' and ''b'' the lengths of the sides of the rectangle. For TE modes <math> n,m \ge 0</math> and <math> n \ne m </math>, while for TM modes <math> n, m \ge 1 </math>.
 +
</div>
 +
 
 +
Maxwell's Stress Tensor:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
\[
 +
\overset{\leftrightarrow  }{ \mathbf{T}}_{ij} \equiv \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2\right) + \frac{1}{\mu_0}  \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2\right)\ 
 +
\]
 +
</div>
 +
 
 +
Derivation of Maxwell's Stress Tensor:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
Derivation from [http://en.wikipedia.org/wiki/Maxwell_stress_tensor Wikipedia]
 +
<ol>
 +
<li>Starting with the Lorentz force law
 +
:<math>\mathbf{F} = q(\mathbf{E} + \mathbf{v}\times\mathbf{B})</math>
 +
the force per unit volume for an unknown charge distribution is
 +
:<math>
 +
\mathbf{f} = \rho\mathbf{E} + \mathbf{J}\times\mathbf{B}
 +
</math></li>
 +
<li>Next, ρ and '''J''' can be replaced by the fields '''E''' and '''B''', using Gauss's law and Ampère's circuital law:
 +
:<math>
 +
\mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B}\,
 +
</math></li>
 +
<li>The time derivative can be rewritten to something that can be interpreted physically, namely the Poynting vector. Using the product rule and Faraday's law of induction gives
 +
:<math>\frac{\partial}{\partial t} (\mathbf{E}\times\mathbf{B}) = \frac{\partial\mathbf{E}}{\partial t}\times \mathbf{B} + \mathbf{E} \times \frac{\partial\mathbf{B}}{\partial t} = \frac{\partial\mathbf{E}}{\partial t}\times \mathbf{B} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E})\,</math>
 +
and we can now rewrite '''f''' as
 +
:<math>\mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right) - \epsilon_0 \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E})\,</math>,
 +
then collecting terms with '''E''' and '''B''' gives
 +
:<math>\mathbf{f} = \epsilon_0\left[  (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E}) \right] + \frac{1}{\mu_0} \left[ -  \mathbf{B}\times\left(\boldsymbol{\nabla}\times \mathbf{B} \right)  \right]
 +
- \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,</math>.</li>
 +
<li>A term seems to be "missing" from the symmetry in '''E''' and '''B''', which can be achieved by inserting (∇ • '''B''')'''B''' because of Gauss' law for magnetism:
 +
:<math>\mathbf{f} = \epsilon_0\left[  (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E}) \right] + \frac{1}{\mu_0} \left[(\boldsymbol{\nabla}\cdot \mathbf{B} )\mathbf{B} -  \mathbf{B}\times\left(\boldsymbol{\nabla}\times \mathbf{B} \right)  \right]
 +
- \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,</math>.
 +
Eliminating the curls (which are fairly complicated to calculate), using the vector calculus identity
 +
:<math>\tfrac{1}{2} \boldsymbol{\nabla} (\mathbf{A}\cdot\mathbf{A}) = \mathbf{A} \times (\boldsymbol{\nabla} \times \mathbf{A}) + (\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{A} </math>,
 +
leads to:
 +
:<math>\mathbf{f} = \epsilon_0\left[  (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} + (\mathbf{E}\cdot\boldsymbol{\nabla}) \mathbf{E} \right] + \frac{1}{\mu_0} \left[(\boldsymbol{\nabla}\cdot \mathbf{B} )\mathbf{B} + (\mathbf{B}\cdot\boldsymbol{\nabla}) \mathbf{B} \right] - \frac{1}{2} \boldsymbol{\nabla}\left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)
 +
- \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,</math>.</li>
 +
 
 +
<li>This expression contains every aspect of electromagnetism and momentum and is relatively easy to compute. It can be written more compactly by introducing the '''Maxwell stress tensor''',
 +
:<math>\overset{\leftrightarrow  }{ \mathbf{T}}_{ij} \equiv \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2\right) + \frac{1}{\mu_0}  \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2\right)\,</math>,
 +
</li>
 +
</ol>
 +
</div>
 +
 
 +
'''Multipole'''
 +
Electric Dipole Radiation:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
:<math>\mathbf{B} = \frac{\omega^2}{4\pi\varepsilon_0 c^3} (\hat{\mathbf{r}} \times \mathbf{p}) \frac{e^{i\omega r/c}}{r}\\
 +
\mathbf{E} = c \mathbf{B} \times \hat{\mathbf{r}}</math>
 +
 
 +
which produces a total time-average radiated power ''P'' given by
 +
 
 +
:<math>P = \frac{\omega^4}{12\pi\varepsilon_0 c^3} |\mathbf{p}|^2.</math>
 +
</div>
 +
 
 +
Torque on magnetic and electric dipoles:<div class="mw-collapsible mw-collapsed" style="width:750px">
 +
:<math> \boldsymbol{\tau} = \mathbf{p} \times \mathbf{E}</math>
 +
for an [[electrical dipole moment|electric dipole moment]] '''p''' (in coulomb-meters), or
 +
 
 +
:<math> \boldsymbol{\tau} = \mathbf{m} \times \mathbf{B}</math>
 +
for a [[magnetic dipole moment]] '''m''' (in ampere-square meters).
 +
 
 +
The resulting torque will tend to align the dipole with the applied field, which in the case of an electric dipole, yields a potential energy of
 +
 
 +
:<math> U = -\mathbf{p} \cdot \mathbf{E}</math>.
 +
 
 +
The energy of a magnetic dipole is similarly
 +
 
 +
:<math> U = -\mathbf{m} \cdot \mathbf{B}</math>.
 +
</div>
 +
 
 +
 
 +
 
 +
===''<small>Exercises</small>''===
 +
'''Q1:''' A pulsar emits bursts of radio waves at two frequencies $\omega_1$, $\omega_2$. The pulses arrive at different times $t_1$, $t_2$ due to interaction with the interstellar medium- a dilute Hydrogen plasma. Find the distance $s$ from pulsar to earth, given $\tau= t_2 - t_2$. See [[Fall_2012#Question_12| F'12Q12]] for solutions.
 +
 
 +
'''Q2:''' Obtain the non-relativistic Larmor radiation equation from the relativistic one. (S'08Q10) <div class="mw-collapsible mw-collapsed" style="width:750px">
 +
From [http://en.wikipedia.org/wiki/Larmor_formula Wikipedia]:
 +
:<math>
 +
P = \frac{2}{3}\frac{q^2}{c^3m^2}\left(\frac{d\vec{p}}{dt}\cdot\frac{d\vec{p}}{dt}\right).
 +
</math>
  
 +
Assume the generalisation;
  
 +
:<math>
 +
P = -\frac{2}{3}\frac{q^2}{m^2c^3}\frac{dP^{\mu}}{d\tau}\frac{dP_{\mu}}{d\tau}.
 +
</math>
  
 +
When we expand and rearrange the energy-momentum four vector product we get:
  
'''''Exercises'''''
+
:<math>
 +
\frac{dP^{\mu}}{d\tau}\frac{dP_{\mu}}{d\tau} = \frac{v^2}{c^2}\left(\frac{dp}{d\tau}\right)^2 - \left(\frac{d\vec{p}}{d\tau}\right)^2
 +
</math>
 +
where I have used the fact that
 +
:<math> \frac{dE}{d\tau} = \frac{pc^2}{E}\frac{dp}{d\tau} = v\frac{dp}{d\tau} </math>
 +
When you let <math>\beta</math> tend to zero, <math>\gamma</math> tends to one, so that <math>d\tau</math> tends to dt. Thus we recover the non relativistic case.
  
 +
See [[Spring_2008#Question_10| S'08Q10]].
 +
</div>
 +
<br/>
  
 
==General Identities==
 
==General Identities==

Latest revision as of 03:53, 25 January 2015

Here is a conglomerate of notes gathered for the graduate EM classes 210A and 210B.


Contents

[edit] 210A Notes

Electrostatics

Image charge coordinates
 \[
 q' = - \frac{a}{y}q \text{     ,      }  y' = \frac{a^2}{y}
  \]
Current in conductor
 \[
I = nAve = \frac{\partial Q}{\partial t} 
  \]
Electric and magnetic fields from potentials
 \[
\vec{E} = -\vec{\nabla} \phi - \frac{\partial \vec{A}}{\partial t}   \]\[
\vec{B} = \vec{\nabla} \times \vec{A}
\]

Waves

Maxwell's equations in vacuum:
 \[
\nabla \cdot \mathbf{E} = \frac{\rho}{\mathcal{E_0}} , \nabla \cdot \mathbf{B} = 0 \\


\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}} {\partial t}\ , \nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\

  \]

[edit] Exercises

Disc 1 Disc 2

[edit] 210B Notes

Radiation

Boundary Conditions:
\(E_{\parallel, 1} =E_{\parallel, 2} \) \(D_{\perp, 1} - D_{\perp, 2} = \sigma_{f}\)
\(H_{\parallel, 1} -H_{\parallel, 2} =\mathbf{k_f} \times \mathbf{n}\) \(B_{\perp, 1} =B_{\perp, 2} \)
Find the transmission and reflection coefficients of light impinging normally on a boundary (repeat at an angle):
\[
E_I(x, t) = A e^{-i\omega t + i\mathbf{k_1}.\mathbf{x} }\\
E_T(x, t) = C e^{-i\omega t + i\mathbf{k_2}.\mathbf{x} }\\
E_R(x, t) = D e^{-i\omega t - i\mathbf{k_1}.\mathbf{x} }\\

B_I(x, t) = \frac{1}{v_1} A e^{-i\omega t + i\mathbf{k_1}.\mathbf{x} }\\
B_T(x, t) =  \frac{1}{v_2} C e^{-i\omega t + i\mathbf{k_2}.\mathbf{x} }\\
B_R(x, t) = - \frac{1}{v_1} D  e^{-i\omega t - i\mathbf{k_1}.\mathbf{x} }\]

Where we have used[1] \[ i \omega B = ik E\]. Solving for the boundary conditions, \[ C = \frac{2A}{1+\alpha}, D = \frac{1-\alpha}{1+\alpha} \] Where we have used[2] $\alpha = \frac{v_1}{v_2}$. Therefore, \[ R=\frac{|E_R H_R^*|}{E_IH_I^*} =\left(\frac{D}{A}\right)^2 = \left(\frac{1-\alpha}{1+\alpha}\right)^2 \\ T=\frac{|E_T H_T^*|}{E_IH_I^*} = \left(\frac{C}{A}\right)^2 \alpha = \frac{4\alpha}{(1+\alpha)^2} \]

Poynting's theorem:
\[
\frac{\partial u}{\partial t} + \nabla\cdot\mathbf{S} = - \mathbf{J}\cdot\mathbf{E}
\]

, where J is the total current density and the energy density u is \[ u = \frac{1}{2}\left(\varepsilon_0 \mathbf{E}^2 + \frac{1}{\mu_0}\mathbf{B}^2\right) \]

Cutoff frequency for a rectangular waveguide:
\[
  \omega_{c} = c \sqrt{\left(\frac{n \pi}{a}\right)^2 + \left(\frac{m \pi}{b}\right) ^2}, 
\]

where \(n,m \ge 0\) are the mode numbers and a and b the lengths of the sides of the rectangle. For TE modes \( n,m \ge 0\) and \( n \ne m \), while for TM modes \( n, m \ge 1 \).

Maxwell's Stress Tensor:
\[
\overset{\leftrightarrow  }{ \mathbf{T}}_{ij} \equiv \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2\right) + \frac{1}{\mu_0}  \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2\right)\  
\]
Derivation of Maxwell's Stress Tensor:

Derivation from Wikipedia

  1. Starting with the Lorentz force law \[\mathbf{F} = q(\mathbf{E} + \mathbf{v}\times\mathbf{B})\] the force per unit volume for an unknown charge distribution is \[ \mathbf{f} = \rho\mathbf{E} + \mathbf{J}\times\mathbf{B} \]
  2. Next, ρ and J can be replaced by the fields E and B, using Gauss's law and Ampère's circuital law: \[ \mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B}\, \]
  3. The time derivative can be rewritten to something that can be interpreted physically, namely the Poynting vector. Using the product rule and Faraday's law of induction gives \[\frac{\partial}{\partial t} (\mathbf{E}\times\mathbf{B}) = \frac{\partial\mathbf{E}}{\partial t}\times \mathbf{B} + \mathbf{E} \times \frac{\partial\mathbf{B}}{\partial t} = \frac{\partial\mathbf{E}}{\partial t}\times \mathbf{B} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E})\,\] and we can now rewrite f as \[\mathbf{f} = \epsilon_0 \left(\boldsymbol{\nabla}\cdot \mathbf{E} \right)\mathbf{E} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla}\times \mathbf{B} \right) \times \mathbf{B} - \epsilon_0 \frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right) - \epsilon_0 \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E})\,\], then collecting terms with E and B gives \[\mathbf{f} = \epsilon_0\left[ (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E}) \right] + \frac{1}{\mu_0} \left[ - \mathbf{B}\times\left(\boldsymbol{\nabla}\times \mathbf{B} \right) \right] - \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,\].
  4. A term seems to be "missing" from the symmetry in E and B, which can be achieved by inserting (∇ • B)B because of Gauss' law for magnetism: \[\mathbf{f} = \epsilon_0\left[ (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} - \mathbf{E} \times (\boldsymbol{\nabla}\times \mathbf{E}) \right] + \frac{1}{\mu_0} \left[(\boldsymbol{\nabla}\cdot \mathbf{B} )\mathbf{B} - \mathbf{B}\times\left(\boldsymbol{\nabla}\times \mathbf{B} \right) \right] - \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,\]. Eliminating the curls (which are fairly complicated to calculate), using the vector calculus identity \[\tfrac{1}{2} \boldsymbol{\nabla} (\mathbf{A}\cdot\mathbf{A}) = \mathbf{A} \times (\boldsymbol{\nabla} \times \mathbf{A}) + (\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{A} \], leads to: \[\mathbf{f} = \epsilon_0\left[ (\boldsymbol{\nabla}\cdot \mathbf{E} )\mathbf{E} + (\mathbf{E}\cdot\boldsymbol{\nabla}) \mathbf{E} \right] + \frac{1}{\mu_0} \left[(\boldsymbol{\nabla}\cdot \mathbf{B} )\mathbf{B} + (\mathbf{B}\cdot\boldsymbol{\nabla}) \mathbf{B} \right] - \frac{1}{2} \boldsymbol{\nabla}\left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) - \epsilon_0\frac{\partial}{\partial t}\left( \mathbf{E}\times \mathbf{B}\right)\,\].
  5. This expression contains every aspect of electromagnetism and momentum and is relatively easy to compute. It can be written more compactly by introducing the Maxwell stress tensor, \[\overset{\leftrightarrow }{ \mathbf{T}}_{ij} \equiv \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} E^2\right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{1}{2} \delta_{ij} B^2\right)\,\],

Multipole

Electric Dipole Radiation:
\[\mathbf{B} = \frac{\omega^2}{4\pi\varepsilon_0 c^3} (\hat{\mathbf{r}} \times \mathbf{p}) \frac{e^{i\omega r/c}}{r}\\
\mathbf{E} = c \mathbf{B} \times \hat{\mathbf{r}}\]

which produces a total time-average radiated power P given by

\[P = \frac{\omega^4}{12\pi\varepsilon_0 c^3} |\mathbf{p}|^2.\]

Torque on magnetic and electric dipoles:

\[ \boldsymbol{\tau} = \mathbf{p} \times \mathbf{E}\] for an electric dipole moment p (in coulomb-meters), or

\[ \boldsymbol{\tau} = \mathbf{m} \times \mathbf{B}\] for a magnetic dipole moment m (in ampere-square meters).

The resulting torque will tend to align the dipole with the applied field, which in the case of an electric dipole, yields a potential energy of

\[ U = -\mathbf{p} \cdot \mathbf{E}\].

The energy of a magnetic dipole is similarly

\[ U = -\mathbf{m} \cdot \mathbf{B}\].


[edit] Exercises

Q1: A pulsar emits bursts of radio waves at two frequencies $\omega_1$, $\omega_2$. The pulses arrive at different times $t_1$, $t_2$ due to interaction with the interstellar medium- a dilute Hydrogen plasma. Find the distance $s$ from pulsar to earth, given $\tau= t_2 - t_2$. See F'12Q12 for solutions.

Q2: Obtain the non-relativistic Larmor radiation equation from the relativistic one. (S'08Q10)

From Wikipedia: \[ P = \frac{2}{3}\frac{q^2}{c^3m^2}\left(\frac{d\vec{p}}{dt}\cdot\frac{d\vec{p}}{dt}\right). \]

Assume the generalisation;

\[ P = -\frac{2}{3}\frac{q^2}{m^2c^3}\frac{dP^{\mu}}{d\tau}\frac{dP_{\mu}}{d\tau}. \]

When we expand and rearrange the energy-momentum four vector product we get:

\[ \frac{dP^{\mu}}{d\tau}\frac{dP_{\mu}}{d\tau} = \frac{v^2}{c^2}\left(\frac{dp}{d\tau}\right)^2 - \left(\frac{d\vec{p}}{d\tau}\right)^2 \] where I have used the fact that \[ \frac{dE}{d\tau} = \frac{pc^2}{E}\frac{dp}{d\tau} = v\frac{dp}{d\tau} \] When you let \(\beta\) tend to zero, \(\gamma\) tends to one, so that \(d\tau\) tends to dt. Thus we recover the non relativistic case.

See S'08Q10.


[edit] General Identities


[edit] Gallery

[edit] References

  1. Griffiths, 9.3.2 Reflection and Transmission at Normal Incidence, p.384.
  2. EM Lim #4041
Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox