(a) What decay routes are possible? Specify them by listing the sequence of states InImli in each possible
(b) If you had a large number of atoms in this state $|300\rangle$, what fraction of them would decay via each route? Give an explicit justification for your answer from the expression for the matrix element of the
relevant operator.
Hint: You may want to use some of the following:
$Y_{0}^{0}=\frac{1}{\sqrt{4 \pi}} \quad Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta \quad Y_{1}^{ \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}$
Solution:
Part a: Electric dipole transitions are governed by the l-selection rule: $\Delta l= \pm 1$. This is hecavere emitted photons carry-away $\pm \hbar$ in angular momentum.
The m-selection tole is $\Delta m=0, \pm 1$, depending on the polarization of the incident lint.
$n=3$

The allowed paths: (1) $|300\rangle \rightarrow|210\rangle \rightarrow|100\rangle$.
(2) $|300\rangle \rightarrow|2| 1\rangle \rightarrow|100\rangle$
(3) $|300\rangle \rightarrow|2|-| \rangle \rightarrow|100\rangle$.

Part b: Here we core asked to compute the probabilities of each path starting with an initial $|300\rangle$ population, going to $|100\rangle$, treating the intermediate trons. as independent events. c.f. Sakurai eq. 5.7.7 and 5.6 .40

For harmonic perturbations,

$$
C_{n}^{(1)}=\frac{-i}{\hbar} \int_{0}^{t} d t^{\prime}\left(v_{n i} e^{i \omega t^{\prime}}+v_{n i}^{+} e^{-i \omega t^{\prime}}\right) e^{i \omega_{m i} t^{\prime}}
$$

$$
\text { then } P(|i\rangle \rightarrow|n\rangle) \sim\left|C_{n}^{(1)}\right|^{2} \text {. }
$$

Where the matrix elements, $V_{n i}$ are of primary concern.
They are computed, for a harmonic EM field,

The electric
Therefore,

$$
e^{i\left(\omega_{c}\right)(\hat{\psi} \cdot \vec{x})} \sim 1+i \frac{\omega}{c} \hat{\psi} \cdot \vec{x} .
$$

and keep only the 1 .

$$
V_{n i}^{+} \propto\langle n| \hat{\varepsilon} \cdot \vec{p}|i\rangle=\hat{\varepsilon} \cdot\langle n| \vec{p}|i\rangle
$$

Now use Sakurcil eq. 2.2.26 to write, $[\vec{x}, H]=\frac{i \hbar}{m} \vec{p} \rightarrow \vec{p}=\frac{m}{i \hbar}[\vec{x}, H]$.

$$
V_{n i}^{+} \approx \frac{m}{i \hbar \hbar} \hat{\varepsilon} \cdot\langle n|[\vec{x}, H]|i\rangle
$$

$$
=m / i \hbar \hat{\varepsilon} \cdot(\langle n| \vec{x} H|i\rangle-\langle n| H \vec{x}|i\rangle)
$$

$$
=m_{/ i \hbar} \hbar \hat{\varepsilon} \cdot\left(E_{i}\langle n| \vec{x}|i\rangle-E_{n}\langle n| \vec{x}|i\rangle\right)
$$

$$
V_{n i}^{+}=i m \omega_{n i} \hat{\varepsilon} \cdot \underline{\langle n| \vec{x}|i\rangle} .
$$

Wigner-Eckhort tells us that if $\hat{\varepsilon}$ is along the x-axis or y-axis then $\Delta m= \pm 1$. But if $\hat{\varepsilon}$ is along \hat{z}, then $\Delta m=\theta$.
? We are not told which axis to select, in general all axes should he considered st. all possible transitions are allowed from part (a).
(1) $|300\rangle \rightarrow|210\rangle$: since $\Delta m=0$ we reed only compute: $\langle 210| z|300\rangle \hat{z}$
$(2,3)|300\rangle \rightarrow|2| \pm 1\rangle$: with $\Delta m= \pm 1$ we compute: $\langle 21 \pm 1| \times|300\rangle \hat{x}+\langle 2| \pm 1|y| 300\rangle \hat{y}$.

$$
\begin{aligned}
& V_{n i}^{+} \propto\langle n| e^{i(\omega / c)(\hat{n} \cdot \vec{x})} \hat{\varepsilon} \cdot \cdot \vec{p}|i\rangle \text { with } \widehat{k} \text { : propagation direction. } \\
& \hat{\varepsilon} \text { : polarization dir }
\end{aligned}
$$

Now, Griffith QM eq. 9,70 tells us how to relate the x and y matrix elements. Specifically,

$$
\left(m^{\prime}-m\right)\left\langle n^{\prime} l^{\prime} m^{\prime}\right| x|n l m\rangle=i\left\langle n^{\prime} l^{\prime} m^{\prime}\right| y|n l m\rangle .
$$

so for $m= \pm 1, m^{1}=0$ we find,

$$
F\langle 2| \pm 1|\times| 300\rangle=i\langle 2| \pm 1|y| 300\rangle
$$

And so,
(1): $\langle 210| z|300\rangle \hat{z}$
$(2,3):\langle 2| \pm 1|\times| 300\rangle \hat{x}+\mp \frac{1}{i}\langle 2| \pm||\times| 300\rangle \hat{y}=\langle 2| \pm||x| 300\rangle(\hat{x} \pm i \hat{y})$.
We have reduced the problem to any 2 matrix elements we need to compute.

$$
\begin{aligned}
& { }^{1}\langle 210| z|300\rangle=\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} r^{2} \sin \theta d r d \theta d \phi\left[R_{21}(r) Y_{1}^{0}(\theta, \phi)\right]^{+} r \cos \theta\left[R_{30}(r) Y_{0}^{0}(\theta, \phi)\right] \\
& =I \int_{0}^{\pi} \int_{0}^{2 \pi} \sin \theta \cos \theta Y_{1}^{0}(\theta, \phi)^{*} Y_{0}^{0}(\theta, \phi) d \phi d \theta \\
& =I \sqrt{\frac{1}{2}} \sqrt{3} \cdot 2 \pi \int^{\pi} \sin \cos ^{2} \theta d \theta \text { since we are not given the normalized } \\
& \begin{array}{ll}
=I \sqrt{4 \pi} \sqrt{4 \pi} \cdot 2 \pi I_{0} \sin \theta \cos ^{2} \theta d \theta & \text { radial wavefunctions } I^{\prime} l l \\
=1 / 2 s t & \text { assume the } \\
=I / 3]=I / \sqrt{3} & \text { doit matter in the end and absorb }
\end{array} \\
& \text { them into a constant " } I^{n} \text {. } \\
& \begin{array}{l}
\text { and, } \\
\text { 2: }\langle 2| \pm||\times| 300\rangle=\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} r^{2} \sin \theta d r d \theta d \phi\left[R_{21}(r) Y_{1}^{ \pm 1}(\theta, \phi)\right]^{\dagger} r \cos \phi \sin \theta\left[R_{30}(r) Y_{0}^{0}(\theta, \phi)\right]
\end{array} \\
& =I \int_{0}^{\pi} \int_{0}^{2 \pi} \cos \phi \sin ^{2} \theta Y_{1}^{ \pm}(\theta, \phi)^{*} Y_{0}^{0}(\theta, \phi) d \phi d \theta \\
& =I\left(\mp \sqrt{\frac{3}{8 \pi}}\right)\left(\frac{1}{\sqrt{\pi \pi}}\right) \int_{0}^{\pi} \int_{0}^{2 \pi} \sin ^{3} \theta \cos \phi e^{\mp i \phi} d \phi d \theta \\
& =I(\mp \sqrt{3})\left(\frac{1}{\sqrt{3 \pi}}\right) \cdot\left(\frac{4}{3}\right) \int_{0}^{2 \pi} d \phi \cdot \cos \phi e^{\mp i \phi} \\
& =F I \sqrt{\frac{3}{2}} \frac{1}{4 \pi}\left(\frac{4}{3}\right) \cdot \pi=F I \sqrt{\frac{3}{2}} \cdot \frac{1}{3}=\mp I \frac{1}{\sqrt{b}} \text {. }
\end{aligned}
$$

Now, each path will have probability proportional to the modulus-squared of each matrix element.
Thus,

$$
\text { (1): } P(|300\rangle \rightarrow|210\rangle) \propto|\langle 210| z| 300\rangle\left.\right|^{2}=I^{2} / 3
$$

and

$$
\text { (2) } \begin{aligned}
P(|300\rangle \rightarrow|2| \pm 1\rangle) \propto & |\langle 2| \pm||x| 300\rangle(\hat{x} \pm i \hat{y})|^{2} \\
& =I^{2} b(\hat{x} \pm i \hat{y})(\hat{x} \mp i \hat{y}) \\
& =I^{2} / b(2) \\
& =I^{2} / 3 .
\end{aligned}
$$

\rightarrow All 3 paths out of $|300\rangle$ have equal wertating.... So we expect all equal populations.

