
UCLA Physics Fall 2010 Comprehensive Exam

9. (Statistical Mechanics)

A parallel plate capacitor consists of two square plates, each of area a2, separated by the distance d.
The first plate, which is located at z = 0, is made of conducting metal and is grounded. The second
plate, which is located at z = d, is made of dielectric and is maintained at a positive potential V with
respect to the metal plate. The whole system is at some very high temperature T so that the electrons
emitted from the hot metal of the first plate form a dilute gas which is in equilibrium and which fills
this capacitor. There is no conductivity of electrons between the gas and the dielectric plate. Assume
that the capacitor is so large (a� d) that the edge effects can be disregarded.

(a) Write out the system of equations and boundary conditions that determines the potential ϕ(z), and
the density of electrons n(z), inside the capacitor as functions of z (d > z > 0). Note: since in
equilibrium there is no net flux of electrons across z = 0, you may assume that n(z) has vanishing
gradient there.

(b) Assuming a weak potential, |eV |kT � 1, find ϕ(z) and n(z) inside the capacitor to first order in eV
kT .
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

This problem is an unusual mix of electromagnetism and statistical mechanics. In part (a), we will
focus on the electromagnetism side of the problem. In part (b), we will move on to the statistical
mechanics.

Throughout, we will assume the setup is translationally invariant in x and y, since the problem
instructs us to ignore any edge effects. We will take the charge of each electron to be −|e|.
(a) The relation between the electric potential ϕ(r) and the charge density ρ(r) is given by the

definition of the electric potential and Gauss’ law:

E = −∇ϕ(r) and ∇ ·E =
ρ(r)

ε0
(1)

Using this information, we can write

−∇2ϕ(r) = ∇ · (−∇ϕ(r))

= ∇ ·E

−∇2ϕ(r) =
ρ(r)

ε0
(2)

Since the setup is translationally invariant in x and y, ϕ(r) depends only on z, so

−∇2ϕ(r) = −d
2ϕ

dz2
(3)

If the number density of electrons is n(z), then the charge density inside the capacitor depends
only on z and is equal to

ρ(r) = ρ(z) = −|e|n(z) (4)

Putting all this together, we get a differential equation relating ϕ(z) to n(z):

−d
2ϕ

dz2
= −|e|n(z)

ε0
d2ϕ

dz2
=
|e|
ε0
n(z) (5)

The problem gives us two boundary conditions for the electric potential:

ϕ(0) = 0 since the first plate is grounded (6)

ϕ(d) = V (7)

It also gives us a third boundary condition for n(z), the fact that n(z) has vanishing gradient
at z = 0:

dn

dz

∣∣∣∣
z=0

= 0 (8)

Summarizing our results, we get the following:

Differential equation:
d2ϕ

dz2
=
|e|
ε0
n(z) (9)

Boundary conditions: ϕ(0) = 0, ϕ(d) = V,
dn

dz

∣∣∣∣
z=0

= 0 (10)

For a second-order ordinary differential equation like (9), you are probably used to having two
boundary conditions. In this problem, we have three boundary conditions; we’ll explain more
in part (b).
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(b) So far, so good, but we haven’t done any statistical mechanics yet. Stat mech doesn’t directly
tell us that much about the electric potential ϕ(z), but it does have a lot to say about the
number density of particles at equilibrium n(z). Since this problem asks us to compare the
number density of the particles at equilibrium, the appropriate strategy to use is “chemical
potential matching”:

Chemical potential matching:
When a statistical mechanics problem asks you to compare the number of noninteracting
classical particles of two different types, you should set the chemical potentials of each type
of particle equal to one another.
The chemical potential is the free energy needed to add a particle of a certain type, i.e, the
partial derivative of F with respect to N : µ = ∂F

∂N

∣∣
T,V

. For that reason, the following state-

ments are all equivalent for a system of noninteracting particles of types 1 and 2, where a
particle of one type can become a particle of the other type:
A. The system is in thermodynamic equilibrium.
B. The free energy of the system is minimized.
C. The change in free energy when a particle of type 1 becomes a particle of type 2 is zero.
D. The free energy needed to subtract a particle of type 1, plus the free energy needed to
add a particle of type 2, is zero.
E. The chemical potential of type 1 particles is equal to the chemical potential of type 2
particles: −µ1 + µ2 = 0, or µ1 = µ2.
To find the chemical potential of a system of noninteracting classical particles of a certain
type:
1. Calculate the partition function for that type of particle. For noninteracting, indistin-
guishable classical particles, the partition function for all the particles Z can be written in
terms of the partition function for one particle Z1 using Z = ZN1 /N !.
2. Calculate the free energy for that type of particle using F = −kT lnZ.
3. The chemical potential is the free energy needed to add a particle of a certain type, i.e,
the partial derivative of F with respect to N : µ = ∂F

∂N

∣∣
T,V

.

If there is a constant energy shift between the types of particles (i.e. each particle of type 1
has an energy ε greater than a particle of type 2), then the chemical potentials of the types
of particles should have the same energy shift (the chemical potential for particles of type 1
is ε greater than the chemical potential for particles of type 2).
In chemical reactions, there are cases in which one particle of type 1 becomes multiple par-
ticles of type 2. In that case, the chemical potential of each type of particle must be multi-
plied by the multiplicity of the particle.

In this problem, we don’t explicitly have two different types of particles, types 1 and 2. What
we do have is a collection of “type z” particles, where 0 < z < d: a “type z” particle is a
particle at a distance z from the grounded plate of the capacitor. At equilibrium, the chemical
potential of each type of particles must be constant, meaning that µ must be constant in z.

Before following steps 1-3 in the box above to find µ, we should address the fact that these steps
are best suited to “noninteracting, classical particles.” Electrons are neither of these, but we
will assume they are for the purposes of this part. All the electrostatic interactions between the
electrons will be captured by the electric potential ϕ(z). Since we are in the high-temperature
limit, kT � |e|V , the effects of the quantum statistics of the electrons are negligible, and we
can therefore approximate the electrons by classical particles. (We will account for the spin
degeneracy of the spin-1/2 particles, but it turns out it won’t matter for the final answer.) We
will also assume the electrons are nonrelativistic.

With all this in mind, let’s calculate the partition function for a single “type z” particle Z1. To
account for the height of the particle, we’ll calculate the partition function for a single particle
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in a slab-like volume of cross-sectional area a2 and height dz, as shown in the diagram below:

Using the phase-space formalism for classical noninteracting point particles, and remembering
the spin degeneracy of 2, the partition function is

Z1 = 2

∫
d3p d3x

h3
e−βE where β ≡ 1

kT
(11)

The energy of a single particle is its nonrelativistic kinetic energy, plus the electric potential
energy −|e|ϕ(z)

E =
p2

2m
− |e|ϕ(z) (12)

Plugging this in and carrying out the spatial integral for the partition function, we get

Z1 = 2

∫
d3p d3x

h3
e
−β

(
p2

2m−|e|ϕ(z)
)

= 2

∫
d3p d3x

h3
e−p

2/(2mkT )e|e|ϕ(z)/(kT )

The integrand is independent of x and y, so the integrals over dx and dy simplify to the
cross-sectional area a2. Since the slab we are considering is of infinitesimal height dz, we can
approximate the integral over dz by multiplying the integrand by dz (even though the integral
does depend on z through ϕ(z)). This gives us

Z1 = 2
a2 dz

h3
e|e|ϕ(z)/(kT )

∫
d3p e−p

2/(2mkT )

We can now simplify the integrals over the momentum p:

Z1 = 2
a2 dz

h3
e|e|ϕ(z)/(kT )

∫ ∞
−∞

dpx

∫ ∞
−∞

dpy

∫ ∞
−∞

dpz e
−(p2x+p

2
y+p

2
z)/(2mkT )]

= 2
a2 dz

h3
e|e|ϕ(z)/(kT )

[∫ ∞
−∞

dpx e
−p2x/(2mkT )

] [∫ ∞
−∞

dpy e
−p2y/(2mkT )

] [∫ ∞
−∞

dpz e
−p2z/(2mkT )

]
(13)

Each of these three integrals is the same Gaussian integral, which can be calculated by a change

of coordinates u ≡ (2mkT )
−1/2

p:∫ ∞
−∞

dp e−p
2/(2mkT ) = (2mkT )1/2

∫ ∞
−∞

du e−u
2

= (2πmkT )1/2 using the result

∫ ∞
−∞

du e−u
2

= π1/2 (14)
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Plugging this back into (13), we get

Z1 = 2
a2 dz

h3
e|e|ϕ(z)/(kT ) (2mkT )

3/2

= 2a2 dze|e|ϕ(z)/(kT )

(
2πmkT

h2

)3/2

Z1 =
2a2 dz

λ3
e|e|ϕ(z)/(kT ) for λ ≡

(
h2

2πmkT

)1/2

(15)

The quantity λ is called the thermal wavelength.

Now, we should calculate the partition function for all “type z” particles, i.e., the partition
function for all particles in the slab of height dz. Let N be the number of particles in this slab.
Then, since we are approximating the electrons as noninteracting, indistinguishable classical
particles, we can write this partition function Z in terms of Z1:

Z =
ZN1
N !

Z =
1

N !

(
2a2 dz

λ3

)N
exp

(
N |e|ϕ(z)

kT

)
(16)

The free energy can be derived from the partition function using the formula F = −kT lnZ
and the logarithm rules ln(ab) = ln a+ ln b and lnxa = a lnx:

F = −kT ln

[
1

N !

(
2a2 dz

λ3

)N
exp

(
N |e|ϕ(z)

kT

)]

= −kT

[
ln exp

(
N |e|ϕ(z)

kT

)
+ ln

(
2a2 dz

λ3

)N
− lnN !

]

= −kT
[
N |e|ϕ(z)

kT
+N ln

(
2a2 dz

λ3

)
− lnN !

]
= −N |e|ϕ(z)−NkT ln

(
2a2 dz

λ3

)
+ kT lnN !

≈ −N |e|ϕ(z)−NkT ln

(
2a2 dz

λ3

)
+ kT (N lnN −N) by Stirling’s formula

F = −N |e|ϕ(z)−NkT ln

(
2a2 dz

λ3

)
+NkT lnN −NkT (17)

To find the chemical potential, take the derivative of F with respect to N :

µ =
∂F

∂N

∣∣∣∣
T,V

= −|e|ϕ(z)− kT ln

(
2a2 dz

λ3

)
+ kT lnN +NkT

(
1

N

)
− kT

= −|e|ϕ(z)− kT ln

(
2a2 dz

λ3

)
+ kT lnN

µ = −|e|ϕ(z) + kT ln

(
N

dz

λ3

2a2

)
(18)

The number density of electrons at a height z is approximately equal to the number of electrons
N in a slab of infinitesimal height, divided by the volume of the slab: n(z) = N/(a2dz).
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Plugging in this result, we get

µ = −|e|ϕ(z) + kT ln

(
n(z)

λ3

2

)
(19)

Note that the chemical potential reflects the energy shift −|e|ϕ(z) between particles of “type
z” for different z: The chemical potential, which is the free energy to add a particle of a certain
type, must reflect the electric potential energy of that particle.

At equilibrium, the chemical potential is constant in z. We can use this information to solve
for n(z) in terms of ϕ(z):

ln

(
n(z)

λ3

2

)
=

µ

kT
+
|e|ϕ(z)

kT

n(z)
λ3

2
= exp

(
µ

kT
+
|e|ϕ(z)

kT

)
n(z) =

2

λ3
eµ/(kT ) exp

(
|e|ϕ(z)

kT

)
(20)

n(z) =
2

λ3
eµ/(kT ) exp

(
|e|ϕ(z)

kT

)
(21)

This is another equation that relates n(z) and ϕ(z), and it should be considered alongside the
differential equation we got from electromagnetism in part (a):

d2ϕ

dz2
=
|e|
ε0
n(z)

Substituting for n(z) in (21), we get an second-order ordinary differential equation for ϕ:

d2ϕ

dz2
=

2|e|
ε0λ3

eµ/(kT ) exp

(
|e|ϕ(z)

kT

)
(22)

This differential equation is too hard to solve by hand, but we can simplify it considerably by

using the weak potential assumption, |e|VkT � 1. Since ϕ(z) < V , this allows us to expand the
exponential to first order in |e|ϕ/(kT ):

d2ϕ

dz2
≈ 2|e|
ε0λ3

eµ/(kT )

(
1 +
|e|ϕ(z)

kT

)
(23)

This differential equation is solvable by hand. To start, use the trick of defining

u(z) ≡ 1 +
|e|ϕ(z)

kT
(24)

Then, u′′(z) = |e|
kT ϕ

′′(z), so (23) becomes

d2u

dz2
≈ 2|e|2

ε0kTλ3
eµ/(kT )u(z) (25)

So far, we do not have enough information to determine what the constant value of the chemical
potential µ is. Since a, |e|, and λ are positive and µ is real, it will be useful to fold the constants
in the prefactor of (25) into a single nonnegative constant, which we will call γ2:

d2u

dz2
≈ γ2u for γ2 ≡ 2|e|2

ε0kTλ3
eµ/(kT ) (26)
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As of now, we don’t know the value of γ. But we do know that γ2 is positive, so we can write
the general solution to this differential equation for u, which is a sum of exponentials:

u(z) = A′eγz +B′e−γz for constants A′ and B′ (27)

Plugging in the definition of u(z) (24), we get

ϕ(z) =
kT

|e|
(u(z)− 1)

=
kT

|e|
(
A′eγz +B′e−γz − 1

)
Redefining the constants A ≡ kT

|e|A
′ and B ≡ kT

|e|B
′, this boils down to

ϕ(z) = Aeγz +Be−γz − kT

|e|
(28)

Now, it is time to impose the three boundary conditions from part (a):

ϕ(0) = 0, ϕ(d) = V,
dn

dz

∣∣∣∣
z=0

= 0

The last boundary condition, which is a condition on n(z), can be made into a condition on
ϕ(z) by using (21), which relates n(z) to ϕ(z):

0 =
dn

dz

∣∣∣∣
z=0

=
d

dz

[
2a2

λ3
eµ/(kT ) exp

(
|e|ϕ(z)

kT

)]
z=0

=
|e|
kT

2a2

λ3
eµ/(kT ) dϕ

dz
exp

(
|e|ϕ(z)

kT

) ∣∣∣∣
z=0

0 =
|e|
kT

2a2

λ3
eµ/(kT ) dϕ

dz

∣∣∣∣
z=0

since ϕ(0) = 0

=⇒ 0 =
dϕ

dz

∣∣∣∣
z=0

(29)

Therefore, the three boundary conditions on ϕ(z) are

ϕ(0) = 0, ϕ(d) = V,
dϕ

dz

∣∣∣∣
z=0

= 0 (30)

We can now explain why we need three boundary conditions: Two of the boundary conditions
are needed to fix A and B in (28), and the other one is needed to fix the constant γ (which is
related to the constant, but currently unknown, chemical potential µ).

Applying these boundary conditions to (28), we get three conditions on A, B, and γ:

ϕ(0) = 0 =⇒ 0 = Aeγ(0) +Be−γ(0) − kT

|e|
by (28)

0 = A+B − kT

|e|

A+B =
kT

|e|
(31)
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ϕ(d) = V =⇒ V = Aeγd +Be−γd − kT

|e|
by (28)

Aeγd +Be−γd = V +
kT

|e|
(32)

dϕ

dz

∣∣∣∣
z=0

= 0 =⇒ 0 = γAeγ(0) − γBe−γ(0) by (28)

A−B = 0 (33)

By (33), A = B; applying this fact to (31), we get

A = B =
kT

2|e|
(34)

Plugging this into (32), we can find γ:

kT

2|e|
eγd +

kT

2|e|
e−γd = V +

kT

|e|
kT

|e|

(
eγd + e−γd

2

)
= V +

kT

|e|
kT

|e|
cosh(γd) = V +

kT

|e|
by the definition coshx ≡ ex + e−x

2

cosh(γd) =
|e|V
kT

+ 1 (35)

γd = cosh−1
(
|e|V
kT

+ 1

)
(36)

We can simplify this further by noting that if |e|VkT is zero, then γd = 0 (since cosh−1 1 = 0).

Therefore, since |e|VkT is small, γd is very close to zero. This means that in (35), we can
expand cosh(γd) to lowest order in γd. Using the definition of the hyperbolic cosine in terms
of exponentials, we can expand coshx in a Taylor series:

coshx =
ex + e−x

2

=
(1 + x+ x2

2 + . . .) + (1− x+ x2

2 + . . .)

2

=
2 + x2 + . . .

2

coshx = 1 +
x2

2
+ . . . (37)

Therefore, to lowest nontrivial order in γd, we can rewrite (35) using this Taylor expansion and

solve for γ to lowest order in |e|VkT :

1 +
(γd)2

2
≈ |e|V

kT
+ 1

(γd)2 ≈ 2|e|V
kT

γ ≈ 1

d

√
2|e|V
kT

(38)
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Now, we can put everything together. Using (34) for the values of A and B and (38) for the
value of γ, we can plug into (28) to get

ϕ(z) =
kT

2|e|
eγz +

kT

2|e|
e−γz − kT

|e|

=
kT

|e|

[(
eγz + e−γz

2

)
− 1

]
=
kT

|e|
[cosh(γz)− 1]

ϕ(z) =
kT

|e|

[
cosh

(√
2|e|V
kT

z

d

)
− 1

]
to lowest order in

|e|V
kT

(39)

To find n(z), use the electromagnetic relation between ϕ(z) and n(z) from part (a):

d2ϕ

dz2
=
|e|
ε0
n(z) =⇒ n(z) =

ε0
|e|
d2ϕ

dz2

Taking two derivatives of (39), and using the facts that (sinhx)′ = coshx and (coshx)′ = sinhx,
we get

n(z) =
ε0
|e|

d2

dz2

[
kT

|e|

[
cosh

(√
2|e|V
kT

z

d

)
− 1

]]

=
ε0
|e|
kT

|e|

(
2|e|V
kT

1

d2

)
cosh

(√
2|e|V
kT

z

d

)

n(z) =
2ε0V

|e| d2
cosh

(√
2|e|V
kT

z

d

)
(40)

Using the definition of γ in (26), it is possible to check directly that this satisfies the stat mech

relation between n(z) and ϕ(z) (21) to lowest order in |e|VkT . It is also possible to check directly
(using the Taylor series expansion of coshx when necessary) that all the boundary conditions
on ϕ(z) and n(z) are satisfied.

To summarize, we have to lowest order in |e|VkT

ϕ(z) =
kT

|e|

[
cosh

(√
2|e|V
kT

z

d

)
− 1

]
and n(z) =

2ε0V

|e| d2
cosh

(√
2|e|V
kT

z

d

)
(41)

The stat mech parts of this problem bear some relation to the “isothermal atmosphere” problem.
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