
UCLA Physics OPEN-BOOK, OPEN-NOTE Fall 2020 Comprehensive Exam

3. (Quantum Mechanics)

Consider a system of two spin-1 particles: |m1i, |m2i, with m1, m2 2 {�1, 0, 1 }. The system is governed
by the Hamiltonian:

H = �↵S1 · S2 + �(S1z + S2z)
2

where S1 and S2 are the spin operators of the two particles and ↵, � are positive constants with � > 2↵.

By using the ladder operator S� |j,mi =
p

(j +m)(j �m+ 1)~ |j,m� 1i or otherwise, find the energies
and wavefunctions of the lowest two energy eigenstates. Express these energy eigenstates in the product
basis of the two spin-1 particles.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

Most times a quantum mechanics problem talks about two particles with spin, the problem is about
addition of angular momentum. Here is some key information about addition of angular momentum:

Addition of angular momentum

Suppose we are adding a spin-j1 particle to a spin-j2 particle (this also works for adding orbital
and spin angular momentum of a single particle). Let Ji be the ith angular momentum operator
(where i = 1, 2 throughout), and define J ⌘ J1 + J2. We can express the state of the system in
two di↵erent bases:

Original basis: |m1i |m2i

This basis simultaneously diagonalizes J2
1, J

2
2, J1z, J2z (71)

Possible quantum numbers: mi = �ji,�ji + 1, . . . , ji � 1, ji (72)

J2
i
eigenvalues: J2

i
|m1i |m2i = ~2ji(ji + 1) |m1i |m2i (73)

Ji,z eigenvalues: Ji,z |m1i |m2i = ~mi |m1i |m2i (74)

Dimension of space: (2j1 + 1)(2j2 + 1) di↵erent basis states (75)

Combined basis: |j,mi

This basis simultaneously diagonalizes J2
1, J

2
2, J

2
, Jz (76)

Possible quantum numbers: j = j1 + j2, j1 + j2 � 1, . . . , |j1 � j2| (77)

m = �j,�j + 1, . . . , j � 1, j (78)

J2
i
eigenvalues: J2

i
|j,mi = ~2ji(ji + 1) |j,mi (79)

J2 eigenvalues: J2
|j,mi = ~2j(j + 1) |j,mi (80)

Jz eigenvalues: Jz |j,mi = ~m |j,mi (81)

Dimension of space:
j1+j2X

j=|j1�j2|

(2j + 1) = (2j1 + 1)(2j2 + 1) di↵erent basis states (82)

Relation between bases: m1 +m2 = m (83)

We also need one weird trick for this problem (and many problems like it), which is so important
that it deserves its own box:

Dot product trick:

For addition of angular momentum problems, dot products in the Hamiltonian must be simpli-
fied as follows:

S1 · S2 =
1

2

�
S2

� S2
1 � S2

2

�
where S ⌘ S1 + S2 (84)
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To start this problem, apply the dot product trick to the given Hamiltonian:

H = �↵S1 · S2 + �(S1z + S2z)
2

= �
↵

2

�
S2

� S2
1 � S2

2

�
+ �(S1z + S2z)

2

H = �
↵

2
S2 + �S

2
z
+

↵

2
(S2

1 + S2
2) where S ⌘ S1 + S2 (85)

This Hamiltonian is now expressed in terms of S2
1, S

2
2, S

2, and Sz. (76) tell us that the combined
basis |j,mi diagonalizes these four operators, so it also diagonalizes the Hamiltonian H. We will
therefore work in this basis and search for the lowest two energy eigenstates.

Applying (79), (80), and (81), and bearing in mind that j1 = j2 = 1 since these are spin-1 particles,
we get that

H |j,mi = �
↵

2

⇥
S2

|j,mi
⇤
+ �

⇥
S
2
z
|j,mi

⇤
+

↵

2

⇥
S2
1 |j,mi+ S2

2 |j,mi
⇤

= �
↵

2

⇥
~2j(j + 1) |j,mi

⇤
+ �

⇥
(~m)2 |j,mi

⇤
+

↵

2

⇥
~2(1)(1 + 1) |j,mi+ ~2(1)(1 + 1) |j,mi

⇤

= ~2
h
�
↵

2
j(j + 1) + �m

2 + 2↵
i
|j,mi (86)

Thus, the energy of the state |j,mi is

Ej,m = ~2
h
�
↵

2
j(j + 1) + �m

2 + 2↵
i

(87)

Using (77), we can establish that since j1 = j2 = 1, the possible values of j are j = 2, 1, 0. Using
(78) to get the possible values of m for each value of j, we can generate a “wedding cake” diagram
for the possible eigenstates |j,mi:

|2, 2i
|2, 1i |1, 1i
|2, 0i |1, 0i |0, 0i
|2,�1i |1,�1i
|2,�2i

(88)

Notice that there are nine states in the diagram, which is equal to (2j1+1)(2j2+1) for j1 = j2 = 1,
as it should be.

Inspecting (87), bearing in mind the possible values of j and m, and remembering that ↵ and
� are positive, we can see that the lowest possible energy is

E2,0 = ~2
h
�
↵

2
(2)(2 + 1) + �(0)2 + 2↵

i
= �↵~2 (89)

What is the second-lowest energy? The energy Ej,m increases if we decrease j or increase the
absolute value of m, so there are three possible candidates for the second-lowest energy:

E1,0 = ~2
h
�
↵

2
(1)(1 + 1) + �(0)2 + 2↵

i
= ↵~2 (90)

E2,1 = ~2
h
�
↵

2
(2)(2 + 1) + �(1)2 + 2↵

i
= (�↵+ �) ~2 (91)

E2,�1 = ~2
h
�
↵

2
(2)(2 + 1) + �(�1)2 + 2↵

i
= (�↵+ �) ~2 (92)

To determine which of these energies is lower, use the given fact that � > 2↵:

E1,0 = ↵~2 = (�↵+ 2↵)~2 < (�↵+ �)~2 = E2,1 = E2,�1 (93)
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Thus, the second-lowest energy is E1,0. We can write the lowest two energies:

Lowest energy: E2,0 = �↵~2; Second-lowest energy: E1,0 = ↵~2 (94)

Now, we need to find the “wavefunctions” (really, the kets) of the two lowest-energy eigenstates. We
know that these are the kets |2, 0i and |1, 0i. But the problem asks us to write it in the “product
basis of the two spin-1 particles,” meaning the original basis |m1i |m2i. The key to doing this is
computing the Clebsch-Gordan coe�cients using the following method:

Wedding cake method of computing Clebsch-Gordon coe�cients:

x
x

x
x

|2, 2i

|2, 1i

|2, 0i

|2,�1i

|2,�2i

�!

x
x

|1, 1i

|1, 0i

|1,�1i

�! |0, 0i (95)

Start at the |j,mi state with largest m (top of the diagram). For each curvy arrow, use the low-
ering operators

J� |j,mi = ~
p
(j +m)(j �m+ 1) |j,m� 1i (96)

J1� |m1i |m2i = ~
p
(j1 +m1)(j1 �m1 + 1) |m1 � 1i |m2i (97)

J2� |m1i |m2i = ~
p
(j2 +m2)(j2 �m2 + 1) |m1i |m2 � 1i (98)

with J� = J1� + J2�.
For each straight arrow, use the orthogonality of di↵erent eigenstates.

We’ll now explain how to apply this method in the context of this problem.

To avoid getting stuck in a quagmire of algebra, and to keep the focus on the problem-solving method,
we will pre-calculate some values of the proportionality constant f(j,m) ⌘

p
(j +m)(j �m+ 1)

that appears in the formulas for the lowering operator:

(j,m) f(j,m) ⌘
p
(j +m)(j �m+ 1)

(2, 2) 2
(2, 1)

p
6

(1, 1)
p
2

(1, 0)
p
2

(99)

Then, in the context of this problem, since we have two spin-1 particles, equations (96)-(98) become

S� |j,mi = ~f(j,m) |j,m� 1i (100)

S1� |m1i |m2i = ~ f(1,m1) |m1 � 1i |m2i (101)

S2� |m1i |m2i = ~ f(1,m2) |m1i |m2 � 1i (102)

We are now ready to start working our way through the wedding cake diagram. Our goal is to find
expressions for the lowest two energy eigenstates, |2, 0i and |1, 0i (marked in blue on the diagrams
to follow).
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Starting point: |2, 2i
Recall that m1 + m2 = m (by (83)). In this case, m = 2. Since we have two spin-1 particles, m1

and m2 can be at most 1 (by (72)). Thus, the only possible original eigenket that can contribute to
the combined eigenket |2, 2i is |1i |1i. We can set the normalization of |2, 2i so that the prefactor is
zero, getting

|2, 2i = |1i |1i (103)

Lowering operator: |2, 2i y |2, 1i

x
x

x
x

|2, 2i

|2, 1i

|2, 0i

|2,�1i

|2,�2i

�!

x
x

|1, 1i

|1, 0i

|1,�1i

�! |0, 0i

Lowering |2, 2i with the S� lowering operator for total angular momentum and applying table (99),
we get

S� |2, 2i = ~f(2, 2) |2, 2� 1i = 2~ |2, 1i (104)

But S� = S1� + S2�, so we can also use this to lower in the original basis:

S� |2, 2i = (S1� + S2�) |2, 2i

= (S1� + S2�) |1i |1i by our earlier calculation of |2, 2i in the original basis (103)

= S1� |1i |1i+ S2� |1i |1i

= ~f(1, 1) |0i |1i+ ~f(1, 1) |1i |0i by (97) and (98)

= ~
p
2 |0i |1i+ ~

p
2 |1i |0i by table (99) (105)

Setting (104) and (105) equal to one another, we get

2~ |2, 1i = S� |2, 2i = ~
p
2 |0i |1i+ ~

p
2 |1i |0i

Simplifying, we get an expression for |2, 1i in the original basis:

|2, 1i =
1
p
2
|0i |1i+

1
p
2
|1i |0i (106)

Note that this expression is correctly normalized, which is a useful check that our work is correct.
(We could have skipped calculating the overall constant in (104) and used the normalization to
calculate it. Calculating the overall constant is a useful algebra check, though, so we have opted to
include it.)

Lowering operator: |2, 1i y |2, 0i

x
x

x
x

|2, 2i

|2, 1i

|2, 0i

|2,�1i

|2,�2i

�!

x
x

|1, 1i

|1, 0i

|1,�1i

�! |0, 0i
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This is exactly the same process. Lowering |2, 1i with the S� lowering operator for total angular
momentum and using table (99), we get

S� |2, 1i = ~f(2, 1) |2, 1� 1i =
p
6~ |2, 0i (107)

But S� = S1� + S2�, so we can also lower in the original basis:

S� |2, 1i = (S1� + S2�) |2, 1i

= (S1� + S2�)

✓
1
p
2
|1i |0i+

1
p
2
|0i |1i

◆
by (106)

=
1
p
2
(S1� |1i |0i+ S2� |1i |0i+ S1� |0i |1i+ S2� |0i |1i)

=
~
p
2
(f(1, 1) |0i |0i+ f(1, 0) |1i |�1i+ f(1, 0) |�1i |1i+ f(1, 1) |0i |0i)

=
~
p
2

⇣p
2 |0i |0i+

p
2 |1i |�1i+

p
2 |�1i |1i+

p
2 |0i |0i

⌘
by table (99)

= ~ (|1i |�1i+ 2 |0i |0i+ |�1i |1i) (108)

Setting (107) and (108) equal to one another, we get

p
6~ |2, 0i = S� |2, 1i = ~ (|1i |�1i+ 2 |0i |0i+ |�1i |1i)

Simplifying, we get an expression of |2, 0i in the original basis:

|2, 0i =
1
p
6
|1i |�1i+

2
p
6
|0i |0i+

1
p
6
|�1i |1i (109)

As before, this state is correctly normalized.

Orthogonality: |2, 1i y |1, 1i

x
x

x
x

|2, 2i

|2, 1i

|2, 0i

|2,�1i

|2,�2i

�!

x
x

|1, 1i

|1, 0i

|1,�1i

�! |0, 0i

Since m1 + m2 = m and mi = �1, 0, 1, we know that |1, 1i must be the sum of |1i |0i and |0i |1i.
But since |j,mi is an orthonormal basis, |1, 1i must be orthogonal to |2, 1i. Recall our expression
for |2, 1i in the original basis (106)

|2, 1i =
1
p
2
|0i |1i+

1
p
2
|1i |0i

There is only one vector that is orthogonal to this one, and (up to an overall phase) we can set it
equal to |1, 1i:

|1, 1i =
1
p
2
|0i |1i �

1
p
2
|1i |0i (110)
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Lowering operator: |1, 1i y |1, 0i

x
x

x
x

|2, 2i

|2, 1i

|2, 0i

|2,�1i

|2,�2i

�!

x
x

|1, 1i

|1, 0i

|1,�1i

�! |0, 0i

Lowering |1, 1i with the S� lowering operator for total angular momentum and using table (99), we
get

S� |1, 1i = ~f(1, 1) |2, 1� 1i =
p
2~ |1, 0i (111)

But S� = S1� + S2�, so we can also lower in the original basis:

S� |1, 1i = (S1� + S2�) |1, 1i

= (S1� + S2�)

✓
1
p
2
|1i |0i �

1
p
2
|0i |1i

◆
by (106)

=
1
p
2
(S1� |1i |0i+ S2� |1i |0i � S1� |0i |1i � S2� |0i |1i)

=
~
p
2
(f(1, 1) |0i |0i+ f(1, 0) |1i |�1i � f(1, 0) |�1i |1i � f(1, 1) |0i |0i)

=
~
p
2

⇣p
2 |0i |0i+

p
2 |1i |�1i �

p
2 |�1i |1i �

p
2 |0i |0i

⌘
by table (99)

= ~ (|1i |�1i � |�1i |1i) (112)

Setting (111) and (112) equal to one another, we get

p
2~ |1, 0i = S� |1, 1i = ~ (|1i |�1i � |�1i |1i)

Simplifying, we get an expression of |1, 0i in the original basis:

|1, 0i =
1
p
2
|1i |�1i �

1
p
2
|�1i |1i (113)

As before, this state is correctly normalized.

Putting everything together, we have

Lowest-energy state: |2, 0i =
1
p
6
|1i |�1i+

2
p
6
|0i |0i+

1
p
6
|�1i |1i and E2,0 = �↵~2

Second-lowest-energy state: |1, 0i =
1
p
2
|1i |�1i �

1
p
2
|�1i |1i and E1,0 = ↵~2

Sometimes, in order to emphasize that both particles are spin-1, the state |m1i |m2i is written
|1,m1i |1,m2i.

Angular momentum problems are very frequent on the comp. For more practice, try 2021 Q1,
2017 Q3, and 2015 Q4. For a special challenge, try 2015 Q6 and 2011 Q4.
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