8. (Electromagnetism)

The purpose of this problem is to determine the current density and the magnetic field created by two spheres immersed in a medium with homogeneous and isotropic conductivity σ. Consider two spheres of equal radii a whose centers are separated by a distance $2 d \gg a$, which are held at constant potentials $+V$ and $-V$ respectively with $V>0$. In the midplane between the two spheres, consider points at an equal distance $R \gg d$ from the two centers.
(a) Compute the current density vector \boldsymbol{J} in terms of σ, V, a, d, R.
(b) Compute the magnetic field vector \boldsymbol{B} in terms of σ, V, a, d, R.

Hint: place the center of the spheres at $(0,0, \pm d)$ so the midplane is the $x y$-plane.

Solution:

Solution by Jonah Hyman (jthyman@g.ucla.edu)
Here is a diagram of the setup. The electric field lines are marked in red:

(a) For a medium with homegeneous and isotropic conductivity σ, Ohm's law applies:

$$
\begin{equation*}
\mathbf{J}=\sigma \mathbf{E} \tag{290}
\end{equation*}
$$

Therefore, in order to find the current density \mathbf{J}, we should first find the electric field \mathbf{E}. Since the spheres (which we can assume to be conducting) are separated by a large distance $2 d \gg a$, we can assume the charge density on each sphere is spherically symmetric. We can also assume that near each sphere, the electric potential due to the other sphere is negligible.

Let $\pm Q$ be the total charge on the sphere held at potential $\pm V$. If we have spherical symmetry, the electric field and electric potential outside a sphere of total charge q are the same as the electric field of a point charge q :

$$
\begin{equation*}
\mathbf{E}(\mathbf{r})=\frac{q}{4 \pi \epsilon_{0} r^{2}} \hat{\boldsymbol{r}}=\frac{q}{4 \pi \epsilon_{0} r^{3}} \boldsymbol{r} \quad \text { and } \quad V(\mathbf{r})=\frac{q}{4 \pi \epsilon_{0} r} \tag{291}
\end{equation*}
$$

Here, \boldsymbol{r} points from the center of the sphere to the observation point. In this problem, we have two spheres, so we have two values of \boldsymbol{r}. Without loss of generality, we can rotate our coordinate axes so that the observation point is in the $x z$-plane. With this in mind, we can write

$$
\begin{align*}
\mathbf{r} & =\sqrt{R^{2}-d^{2}} \hat{\mathbf{x}} \quad(\text { observation point }) \\
\mathbf{r}_{+}^{\prime} & =-d \hat{\mathbf{z}} \quad(\text { center of positively charged sphere }) \\
\mathbf{r}_{-}^{\prime} & =+d \hat{\mathbf{z}} \quad(\text { center of negatively charged sphere }) \\
\boldsymbol{n}_{+} & \equiv \mathbf{r}-\mathbf{r}_{+}^{\prime}=\sqrt{R^{2}-d^{2}} \hat{\mathbf{x}}+d \hat{\mathbf{z}} \tag{292}\\
\boldsymbol{n}_{-} & \equiv \mathbf{r}-\mathbf{r}_{-}^{\prime}=\sqrt{R^{2}-d^{2}} \hat{\mathbf{x}}-d \hat{\mathbf{z}} \tag{293}\\
\boldsymbol{r}_{+}=\boldsymbol{r}_{-} & =R \tag{294}
\end{align*}
$$

The electric field at the observation point is the sum of the electric fields due to each of the spheres:

$$
\begin{align*}
\mathbf{E} & =\mathbf{E}_{+}+\mathbf{E}_{-} \\
& =\frac{Q}{4 \pi \epsilon_{0} \boldsymbol{r}_{+}^{3}} \boldsymbol{r}_{+}+\frac{-Q}{4 \pi \epsilon_{0} \boldsymbol{r}_{-}^{3}} \boldsymbol{r}_{-} \\
& =\frac{Q}{4 \pi \epsilon_{0} R^{3}}\left(\sqrt{R^{2}-d^{2}} \hat{\mathbf{x}}+d \hat{\mathbf{z}}\right)+\frac{-Q}{4 \pi \epsilon_{0} R^{3}}\left(\sqrt{R^{2}-d^{2}} \hat{\mathbf{x}}-d \hat{\mathbf{z}}\right) \\
& =\frac{2 Q d}{4 \pi \epsilon_{0} R^{3}} \hat{\mathbf{z}} \tag{295}
\end{align*}
$$

The problem asks us to write the answer in terms of V and a, not $Q . V$ is defined as the electric potential on the sphere. Assuming the spheres are conducting, the electric potential is the same $(\pm V)$ everywhere on the sphere. From (291), we know that since th radius of each sphere is a, the electric potential on the edge of the positively charged sphere is

$$
\begin{equation*}
V=\frac{Q}{4 \pi \epsilon_{0} a} \tag{296}
\end{equation*}
$$

This allows us to solve for substitute Q for V and a in (295), which gives us

$$
\begin{equation*}
\mathbf{E}=\frac{2 V a d}{R^{3}} \hat{\mathbf{z}} \tag{297}
\end{equation*}
$$

Using Ohm's law $\mathbf{J}=\sigma \mathbf{E}$, we find the volume current density at the observation point

$$
\begin{equation*}
\mathbf{J}=\frac{2 \sigma V a d}{R^{3}} \hat{\mathbf{z}} \tag{298}
\end{equation*}
$$

where $\hat{\mathbf{z}}$ points from the positively charged sphere to the negatively charged sphere.
(b) The source of the magnetic field is the current density calculated in part (a). This is a magnetostatic situation, so \mathbf{E} and \mathbf{B} are constant in time. Therefore, we can use Ampere's law to calculate the magnetic field.

$$
\begin{equation*}
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J} \tag{299}
\end{equation*}
$$

This problem is azimuthally symmetric, so the magnetic field depends only on the distance from the z-axis. Therefore, we should choose an Amperian loop of radius $s \equiv \sqrt{R^{2}-d^{2}}$ in the $x y$-plane, centered at $z=0$:

Because of the azimuthal symmetry, the circulation of the magnetic field around the Amperian loop is $\int \mathbf{B} \cdot d \boldsymbol{\ell}=2 \pi s|\mathbf{B}|$. Using the integral version of Ampere's law, we get

$$
\begin{align*}
2 \pi s|\mathbf{B}| & =\int_{\text {loop }} \mathbf{B} \cdot d \boldsymbol{\ell} \\
& =\int_{\text {loop interior }} \mu_{0} \mathbf{J} \cdot d \mathbf{a} \\
& =2 \pi \mu_{0} \int_{s^{\prime}=0}^{s^{\prime}=s} J\left(s^{\prime}\right) s^{\prime} d s^{\prime} \quad \text { since } \mathbf{J} \text { is azimuthally symmetric } \tag{300}
\end{align*}
$$

From part (a), since $R^{\prime}=\sqrt{\left(s^{\prime}\right)^{2}+d^{2}}$, the current density a distance s^{\prime} from the z-axis and R^{\prime} from the center of each sphere is

$$
\begin{equation*}
\mathbf{J}\left(s^{\prime}\right)=\frac{2 \sigma V a d}{R^{\prime 3}} \hat{\mathbf{z}}=\frac{2 \sigma V a d}{\left(\left(s^{\prime}\right)^{2}+d^{2}\right)^{3 / 2}} \tag{301}
\end{equation*}
$$

Plugging this into the integral, we have

$$
\begin{align*}
2 \pi s|\mathbf{B}| & =2 \pi \mu_{0} \int_{s^{\prime}=0}^{s^{\prime}=s} \frac{2 \sigma V a d}{\left(\left(s^{\prime}\right)^{2}+d^{2}\right)^{3 / 2}} s^{\prime} d s^{\prime} \\
& =4 \pi \mu_{0} \sigma V a d \int_{s^{\prime}=0}^{s^{\prime}=s} d s^{\prime} \frac{s^{\prime}}{\left(\left(s^{\prime}\right)^{2}+d^{2}\right)^{3 / 2}} \\
& =4 \pi \mu_{0} \sigma V a d\left[-\frac{1}{\left(\left(s^{\prime}\right)^{2}+d^{2}\right)^{1 / 2}}\right]_{s^{\prime}=0}^{s^{\prime}=s} \\
& =4 \pi \mu_{0} \sigma V a d\left[\frac{1}{d}-\frac{1}{\left(s^{2}+d^{2}\right)^{1 / 2}}\right] \\
& =4 \pi \mu_{0} \sigma V a d\left[\frac{1}{d}-\frac{1}{R}\right] \quad \text { since } R=\sqrt{s^{2}+d^{2}} \tag{302}
\end{align*}
$$

Therefore, solving for $|\mathbf{B}|$, we get

$$
\begin{equation*}
|\mathbf{B}|=\frac{2 \mu_{0} \sigma V a d}{s}\left[\frac{1}{d}-\frac{1}{R}\right]=\frac{2 \mu_{0} \sigma V a d}{\sqrt{R^{2}-d^{2}}}\left[\frac{1}{d}-\frac{1}{R}\right] \tag{303}
\end{equation*}
$$

Since $R \gg d$, this answer can be simplified to

$$
\begin{equation*}
|\mathbf{B}| \approx \frac{2 \mu_{0} \sigma V a}{R} \tag{304}
\end{equation*}
$$

Adding in the direction of the magnetic field, chosen according to the right-hand rule, we get

$$
\begin{equation*}
\mathbf{B} \approx \frac{2 \mu_{0} \sigma V a}{R} \hat{\varphi} \tag{305}
\end{equation*}
$$

where $\hat{\varphi}$ points counterclockwise with respect to $\hat{\mathbf{z}}$.

