
UCLA Physics Fall 2014 Comprehensive Exam

1. (Classical Mechanics)

A planet of mass m is moving in a gravitational central potential around a Sun of mass M . Assume
M � m.

(a) Write down the Lagrangian and the Euler-Lagrange equations for the polar variables r, θ in the
plane of motion.

(b) Use the substitution u = 1
r to write down a differential equation for the trajectory u(θ).

(c) What is the equilibrium solution of this equation? What does it represent?

(d) If the planet is not initially on the equilibrium orbit, there will be small oscillations around the
equilibrium point. What is the period of these oscillations?

(e) Assume there is a perturbing potential V = −B/r2, calculate the effect of this perturbation on the
orbit.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

This is the Kepler problem. Since M � m, we can assume that the sun is fixed in place (if this were
not true, we would just replace the mass of the planet m by the reduced mass µ ≡Mm/(M +m)).
We will also assume that the planet is nonrelativistic.

(a) The kinetic energy of the planet is

T =
1

2
m |ṙ|2 (1)

In polar coordinates (r, θ), the position vector of the planet is given by

r = r r̂ = r cos θ x̂ + r sin θ ŷ (2)

Using the chain rule, we can find the time derivative of the position vector

ṙ =
(
ṙ cos θ − rθ̇ sin θ

)
x̂ +

(
ṙ sin θ + rθ̇ cos θ

)
ŷ

= ṙ (cos θ x̂ + sin θ ŷ) + rθ̇ (− sin θ x̂ + cos θ ŷ)

ṙ = ṙ r̂ + rθ̇ θ̂ (3)

Plugging into (1), we get

T =
1

2
m |ṙ|2

=
1

2
m
(
ṙ r̂ + rθ̇ θ̂

)2
=

1

2
m
(
ṙ2 + r2θ̇2

)
T =

1

2
mṙ2 +

1

2
mr2θ̇2 (4)

The potential energy of the planet is the gravitational potential energy

V = −GMm

r
(5)

where G is the gravitational constant. For a setup with a nonrelativistic particle and a scalar
potential, the Lagrangian is given by

L = T − V (6)

In this case, the Lagrangian in terms of the polar variables (r, θ) is

L =
1

2
mṙ2 +

1

2
mr2θ̇2 +

GMm

r
(7)

The formula for the Euler-Lagrange equations for a system with generalized coordinates (r, θ)
is

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 and

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (8)

For the coordinate r, we have

∂L

∂ṙ
= mṙ and

∂L

∂r
= mrθ̇2 − GMm

r2
(9)

Taking the total time derivative of ∂L
∂ṙ , we get

d

dt

(
∂L

∂ṙ

)
= mr̈ (10)
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Therefore, the Euler-Lagrange equation for r is

0 =
d

dt

(
∂L

∂ṙ

)
− ∂L

∂r

0 = mr̈ −
(
mrθ̇2 − GMm

r2

)
0 = r̈ − rθ̇2 +

GM

r2
dividing through by m (11)

For the coordinate θ, we have

∂L

∂θ̇
= mr2θ̇ and

∂L

∂θ
= 0 (12)

Since ∂L
∂θ = 0, the Euler-Lagrange equation for θ boils down to

0 =
d

dt

(
∂L

∂θ̇

)
0 =

d

dt

(
mr2θ̇

)
(13)

Taking the total time derivative using the product and chain rules, we have

0 = 2mrṙθ̇ +mr2θ̈

0 = 2ṙθ̇ + rθ̈ dividing through by m, r (14)

Gathering our results, we have that the Euler-Lagrange equations for the variables (r, θ) are

0 = r̈ − rθ̇2 +
GM

r2
and 0 = 2ṙθ̇ + rθ̈ (15)

(b) The problem asks for a single differential equation for u(θ), where u ≡ 1/r. Here, we have two
coupled differential equations for r and θ. To reduce these two equations to one, we will make
use of a conservation law for the system:

If the Lagrangian does not depend on a generalized coordinate q, then the canonical mo-
mentum associated with that coordinate pq ≡ ∂L

∂q̇ is conserved.

In this case, the Lagrangian (7) does not depend on θ, only its time derivative θ̇. Therefore,
the canonical momentum associated with the coordinate θ is conserved. Since this canonical
momentum is the angular momentum of the system, we will call it L. We already showed in
(12) and (13) that

L ≡ ∂L

∂θ̇
= mr2θ̇ and

dL

dt
= 0 (16)

Note that the second equation from our part (a) answer (15) is just a restatement of angular
momentum conservation. We can use this definition of angular momentum to replace the
variable θ̇ in the first equation of (15) with the constant L:

0 = r̈ − rθ̇2 +
GM

r2

= r̈ − r
(

L

mr2

)2

+
GM

r2
since L ≡ mr2θ̇

0 = r̈ − L2

m2r3
+
GM

r2
(17)
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Now we have a single ordinary differential equation for the variable r. The next step is to make
the substitution u ≡ 1/r. To do this, note that by the product rule and the chain rule, we can
write the second time derivative of r in terms of u and its derivatives:

r =
1

u
dr

dt
= − 1

u2
du

dt
d2r

dt2
=

d

dt

(
dr

dt

)
=

d

dt

(
− 1

u2
du

dt

)
=

(
2

u3
du

dt

)
du

dt
− 1

u2
d2u

dt2

d2r

dt2
=

2

u3

(
du

dt

)2

− 1

u2
d2u

dt2
(18)

Plugging in these values for r̈ and r in terms of u in (17), we get

0 =
2

u3

(
du

dt

)2

− 1

u2
d2u

dt2
− L2

m2
u3 +GMu2 (19)

This is a differential equation for u in terms of t, not u in terms of θ. To solve this problem,
we can use the chain rule again to swap out time derivatives for derivatives in terms of θ:

du

dt
=
du

dθ

dθ

dt

=
du

dθ
·
(

L

mr2

)
since L = mr2θ̇

du

dt
=
L

m
u2

du

dθ
since u =

1

r
(20)

Taking another time derivative and swapping it for a derivative in terms of θ, we get

d2u

dt2
=

d

dt

(
du

dt

)
=

d

dθ

(
du

dt

)
· dθ
dt

=
d

dθ

(
L

m
u2

du

dθ

)
· dθ
dt

by (20)

=
L

m

[(
2u
du

dθ

)
du

dθ
+ u2

d2u

dθ2

]
· dθ
dt

using the product rule and chain rule

=
L

m

[(
2u
du

dθ

)
du

dθ
+ u2

d2u

dθ2

]
·
(

L

mr2

)
since L = mr2θ̇

=
L

m

[(
2u
du

dθ

)
du

dθ
+ u2

d2u

dθ2

]
·
(
L

m
u2
)

since u =
1

r

d2u

dt2
=
L2

m2

[
2u3

(
du

dθ

)2

+ u4
d2u

dθ2

]
(21)
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Plugging in (20) and (21) into (19) and simplifying, we get

0 =
2

u3

(
L

m
u2
du

dθ

)2

− 1

u2

(
L2

m2

[
2u3

(
du

dθ

)2

+ u4
d2u

dθ2

])
− L2

m2
u3 +GMu2

0 =
2L2

m2
u

(
du

dθ

)2

− 2L2

m2
u

(
du

dθ

)2

− L2

m2
u2
d2u

dθ2
− L2

m2
u3 +GMu2

0 = − L
2

m2
u2
d2u

dθ2
− L2

m2
u3 +GMu2 canceling the first two terms

0 =
d2u

dθ2
+ u− GMm2

L2
multiplying through by −m

2

L2

1

u2

(In the last step, we are assuming that the planet has nonzero angular momentum, which is
true for any orbit.) Therefore, the differential equation for the trajectory u(θ) is

0 =
d2u

dθ2
+ u− GMm2

L2
(22)

(c) There is a general procedure for finding equilibrium points in classical mechanics:

To find the equilibrium points for a system that depends on a generalized coordinate q, set
q̇ = q̈ = 0 and solve for q. In other words, look for points q for which, if q̇ = 0, then q̈ =
0. These correspond to points where, if an object is held in place and then released, the
object’s q-coordinate is constant over time.

In this case, our differential equation (22) expresses the generalized coordinate u in terms of

the polar angle θ instead of the time t, but the logic is the same. Setting du
dθ = d2u

dθ2 = 0 and
solving for the equilibrium u-value, which we will call u0, we get

0 = u0 −
GMm2

L2

Therefore, the equilibrium solution of this differential equation is

u0 =
GMm2

L2
(23)

The equilibrium value of u is the value of u that remains constant across different polar angles
θ in the orbit. Since u ≡ 1/r, a constant value of u corresponds to a constant value of r across
different polar angles θ. Therefore, the equilibrium solution of equation (22) corresponds to
a circular orbit. It is in fact the circular orbit you would get if you set the mass times the
centripetal acceleration of the planet equal to the gravitational force on the planet.

(d) There is a general procedure for finding small oscillations about equilibrium in classical me-
chanics:

Suppose you have found equilibrium points q0 for a system that depends on a generalized
coordinate q. To determine whether each equilibrium is stable, and (if applicable) the de-
tails of small oscillations about each equilibrium, set q = q0 + ε, where ε is a small parame-
ter. Then expand the equations of motion to lowest nontrivial order in ε.
If you have calculated the equilibrium correctly, the first-order contribution in ε should van-
ish, and you will be left with a second-order differential equation for ε. If this differential
equation is the equation for simple harmonic motion, then the equilibrium is stable, and
you can extract the angular frequency from the general form q̈ + ω2q = 0.
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In this case, we can write

u = u0 + ε =
GMm2

L2
+ ε (24)

for small ε. Expanding the differential equation (22) in ε, we get

0 =
d2u

dθ2
+ u− GMm2

L2

0 =
d2ε

dθ2
+

(
GMm2

L2
+ ε

)
− GMm2

L2

0 =
d2ε

dθ2
+ ε (25)

This is a differential equation for simple harmonic motion (where the time t is swapped out
for the polar angle θ). The angular frequency of the simple harmonic motion is given by the
square root of the coefficient of ε, namely

ω = 1 (26)

The period of the oscillations is defined by

T =
2π

ω

so the period of these oscillations is

T = 2π radians (27)

A word on the units is in order. Ordinarily, ω would be in radians per second, but here we
are measuring ε as a function of the polar angle θ, not the time t. Therefore, T is measured
in radians, not seconds, and ω is in the slightly weird unit of “radians per radian.” Here, we
measure two quantities in radians:

• The planet’s progress through its small oscillations. For example, we could set 0 radians
as the point where the planet’s radius is at a minimum. Then, at π radians, the planet’s
radius is at a maximum. At 2π radians, the planet’s radius at a minimum, and so on.

• The planet’s polar angle in space. After 2π radians of polar angle, the planet is on the
same radial line from the sun as it was at 0 radians of polar angle.

ω measures the first kind of radians divided by the second kind. In other words, ω measures
how fast the planet progresses through its small oscillations, as compared to how fast the planet
progresses through its orbit. In this case, the ratio of the two quantities is one, meaning that
the planet’s oscillation frequency is the same as its orbital frequency.

The fact that the period of the orbit is 2π radians means that the planet completes one oscilla-
tion in the same time as it takes to complete one orbit. This corresponds to an elliptical orbit,
as shown on the next page:
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(e) To understand the effect of the perturbation V = −B/r2 on the orbit, we need to run through
the previous calculations again with the new perturbation added. The calculations that we
have already done will be referenced by equation number throughout:

Part (a): Lagrangian

L = T − V

L =
1

2
mṙ2 +

1

2
mr2θ̇2 +

GMm

r︸ ︷︷ ︸
from (7)

+
B

r2
(28)

Part (a): Euler-Lagrange equation for r

0 =
d

dt

(
∂L

∂ṙ

)
− ∂L

∂r

0 =
d

dt
(mṙ)−

(
mrθ̇2 − GMm

r2
− 2B

r3

)
0 = mr̈ −mrθ̇2 +

GMm

r2
+

2B

r3

0 = r̈ − rθ̇2 +
GM

r2︸ ︷︷ ︸
from (15)

+
2B

mr3
dividing through by m (29)

Part (b): Replacing θ̇ with L

0 = r̈ − L2

m2r3
+
GM

r2︸ ︷︷ ︸
from (17)

+
2B

mr3
(30)

Part (b): Substituting u ≡ 1/r

0 =
2

u3

(
du

dt

)2

− 1

u2
d2u

dt2
− L2

m2
u3 +GMu2︸ ︷︷ ︸

from (19)

+
2B

m
u3 (31)
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Part (b): Substituting time derivatives with derivatives in θ

0 = − L
2

m2
u2
d2u

dθ2
− L2

m2
u3 +GMu2 +

2B

m
u3

0 =
d2u

dθ2
+ u− GMm2

L2︸ ︷︷ ︸
from (22)

−2Bm

L2
u multiplying through by −m

2

L2

1

u2
(32)

Part (c): Solving for the equilibrium value of u

0 = u0 −
GMm2

L2
− 2Bm

L2
u0

u0 =
GMm2

L2

1− 2Bm
L2

(reduces to (23) when B → 0) (33)

Part (d): Finding the period of small oscillations

u = u0 + ε =
GMm2

L2

1− 2Bm
L2

+ ε (34)

0 =
d2ε

dθ2
+

(
GMm2

L2

1− 2Bm
L2

+ ε

)
− GMm2

L2
− 2Bm

L2

(
GMm2

L2

1− 2Bm
L2

+ ε

)
plugging into (32)

0 =
d2ε

dθ2
+

(
1− 2Bm

L2

)( GMm2

L2

1− 2Bm
L2

+ ε

)
− GMm2

L2

0 =
d2ε

dθ2
+

(
1− 2Bm

L2

)
ε (35)

Simple harmonic oscillation with ω =

(
1− 2Bm

L2

)1/2

(36)

T =
2π

ω
=

2π(
1− 2Bm

L2

)1/2 (37)

From this information, we can spot two differences to the orbit: First, the equilibrium value of
u (33) is greater than it was in part (c). Since r = 1/u, this implies that the radius of circular
orbits is less than it was in part (c).

Second, the period of the oscillations (37) is now greater than 2π. This means that a full
oscillation of the orbital radius about its equilibrium (i.e. the full tracing out of each ellipse)
takes longer than a full orbit. This causes a precession of the elliptical orbit in space, as shown
in the diagram on the next page:
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