
UCLA Physics Winter 2022 Comprehensive Exam

3. (Statistical Mechanics)

Physicists at a top-secret government laboratory discovered a Super-Gas that has the following number
of microstates:

Ω =
κ10N

N !

π10NV 10NU10N

h20Nc10N

as a function of internal energy U , volume V , and the number of particles N . The constant π, h, and c
are pi, Planck’s constant, and the speed of light. The constant κ makes the units come out correctly.

The Super-Gas is placed on the left-hand side of the container below and helium gas is placed on
the right-hand side. Both have the same number of particles N and occupy the same volume V/2. (For
simplicity, neglect the heat capacity of the container and assume the container is isolated from the rest
of the world. Use a simple model for the helium gas.)

(a) The wall between the gas and the Super-Gas conducts heat but cannot move. At thermal equilibrium
what is the ratio of the internal energy of the Super-Gas to that of the helium gas?

(b) Now both sides are at temperature T . The wall is allowed to slide so that the volumes can change
slowly. What is the ratio of the final volume of Super-Gas to that of helium?
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

(a) Since both gases are at thermal equilibrium, the temperatures of both gases are equal. What
we need to do is find the internal energy U of each gas in terms of the temperature T of each gas.

Let’s start with the Super-Gas. All we are given is the number of microstates

ΩSG =
1

N !

(
κπVSGUSG

h2c

)10N

(22)

where N , VSG, and USG are the number of particles, the volume, and the internal energy of the
Super-Gas, respectively. The only thermodynamic quantity that directly relates to the number
of microstates is the entropy, which is defined by

S = k lnΩ where k is the Boltzmann constant (23)

Taking the logarithm of (22) and using the log rules ln(ab) = ln a+ ln b and ln(xa) = a ln a, we
get

SSG = k ln

[
1

N !

(
κπVSGUSG

h2c

)10N
]

= k

[
10N ln

(
κπVSGUSG

h2c

)
− lnN !

]
= k

[
10N lnUSG + 10N ln

(
κπVSG
h2c

)
− lnN !

]
SSG = 10Nk lnUSG + 10Nk lnVSG + 10Nk ln

( κπ
h2c

)
− k lnN ! (24)

The temperature is defined in terms of the entropy using the relation

1

T
≡ ∂S

∂U

∣∣∣∣
V,N

(25)

This definition can be memorized on its own, or it can be derived from the first law of thermo-
dynamics:

dU = T dS − p dV =⇒ dS =
1

T
dU +

p

T
dV

=⇒ ∂S

∂U

∣∣∣∣
V,N

=
1

T
(26)

Applying (25) to (24), we get

1

TSG
=
∂SSG

∂USG

∣∣∣∣
V,N

=
∂

∂USG
(10Nk lnUSG) since the other terms in SSG are constant in USG

1

TSG
=

10Nk

USG
(27)

Therefore, the internal energy of the Super-Gas is equal to

USG = 10NkTSG (28)
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where N is the number of particles in the Super-Gas, and TSG is the temperature of the Super-
Gas.

We now move on to the helium gas. Since helium is a noble gas, the simplest model for
the helium gas is an ideal monatomic gas. You might already know the formula of the internal
energy of an ideal monatomic gas. As applied to the helium gas, it is

UHe =
3

2
NkTHe

If you don’t know this formula, you can derive it by finding the partition function for a sin-
gle particle. Using the phase-space formalism for classical noninteracting point particles, the
partition function for a single particle in a monatomic ideal gas is

Z1 =

∫
d3p d3x

h3
e−βE where β ≡ 1

kT
(29)

The energy of a single particle is its nonrelativistic kinetic energy:

E =
p2

2m
(30)

Plugging this in and carrying out the spatial integral for the partition function, we get

Z1 =

∫
d3p d3x

h3
e
−β

(
p2

2m

)

=

∫
d3p d3x

h3
e−βp

2/(2m)

=
V

h3

∫
d3p e−βp

2/(2m) since

∫
d3x = V

=
V

h3

∫ ∞

−∞
dpx

∫ ∞

−∞
dpy

∫ ∞

−∞
dpz e

−β(p2x+p
2
y+p

2
z)/(2m)]

=
V

h3

[∫ ∞

−∞
dpx e

−βp2x/(2m)

] [∫ ∞

−∞
dpy e

−βp2y/(2m)

] [∫ ∞

−∞
dpz e

−βp2z/(2m)

]
(31)

Each of these three integrals is the same Gaussian integral, which can be calculated by a change

of coordinates u ≡ (β/(2m))
1/2

p = (2mkT )
−1/2

p:∫ ∞

−∞
dp e−βp

2/(2m) = (2mkT )1/2
∫ ∞

−∞
du e−u

2

= (2πmkT )1/2 using the result

∫ ∞

−∞
du e−u

2

= π1/2 (32)

Plugging this back into (31), we get

Z1 =
V

h3
(2mkT )

3/2

= V

(
2πmkT

h2

)3/2

Z1 =
V

λ3
for λ ≡

(
h2

2πmkT

)1/2

(33)

The quantity λ is called the thermal wavelength. In terms of β ≡ 1/(kT ), the partition function
for a single particle in the helium gas is

ZHe,1 = VHe

(
2πm

βHeh2

)3/2

(34)
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The internal energy of a single particle of the helium gas is given by the formula

UHe,1 =
∂ ln (ZHe,1)

∂βHe
=

1

ZHe,1

∂ZHe,1

∂βHe
(35)

Taking the derivative of (34), we get

UHe,1 =
1

VHe

(
2πm
βHeh2

)3/2

∂

∂βHe

[
VHe

(
2πm

βHeh2

)3/2
]

=
1

VHe

(
2πm
βHeh2

)3/2

[
3

2
VHe

(
2πm

h2

)3/2
1

β
5/2
He

]

=
3

2

1

βHe

UHe,1 =
3

2
kTHe (36)

This is the internal energy of a single particle of the helium gas. To get the internal energy of
the entire gas, multiply by the number of particles of the helium gas N :

UHe =
3

2
NkTHe (37)

We now have the internal energies of both the Super-Gas (28) and the helium gas (37). Dividing
(28) by (37), we get that

USG

UHe
=

10NkTSG
3
2NkTHe

(38)

We are given the the number of particles in the Super-Gas are equal to the number of particles
in the helium gas. At thermal equilibrium, the temperature of both gases is the same: T ≡
TSG = THe. Therefore,

USG

UHe
=

10NkT
3
2NkT

or
USG

UHe
=

20

3
(39)

(b) Once the wall is allowed to slide, the system reaches mechanical equilibrium. (It is already in
thermal equilibrium, since the temperature of both gases is the same.) In mechanical equilib-
rium, the wall is at rest, so the force exerted on either side of the wall is equal. The pressure
of each gas is the force that gas exerts on the wall per unit area of the wall. Therefore, in
mechanical equilibrium, the pressure of each gas is the same. We need to find an expression for
the pressure p of each gas.

Let’s start with the Super-Gas. From the first law of thermodynamics, we can write an expres-
sion for the pressure p in terms of a partial derivative of the entropy SSG that we found in part
(a).

dU = T dS − p dV =⇒ dS =
1

T
dU +

p

T
dV

=⇒ ∂S

∂V

∣∣∣∣
U,N

=
p

T
(40)
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The pressure of the Super-Gas is therefore given by

pSG = TSG
∂SSG

∂VSG

∣∣∣∣
USG,N

(41)

The volume-dependent part of the entropy of the Super-Gas SSG (24) is equal to 10Nk lnVSG.
Taking the derivative of this part, we get

pSG = TSG
∂

∂VSG
(10Nk lnVSG)

= TSG
10Nk

VSG

pSG =
10NkTSG
VSG

(42)

The helium gas is an ideal gas, so its pressure is given by the ideal gas law:

pHeVHe = NkTHe

=⇒ pHe =
NkTHe

VHe
(43)

Setting pSG (42) equal to pHe (43), we get

10NkTSG
VSG

=
NkTHe

VHe
(44)

We are given the the number of particles in the Super-Gas are equal to the number of particles
in the helium gas. We are also given that the temperature of the two gases is the same. With
this information, we can solve for the ratio of the final volume of the Super-Gas to that the
helium gas:

10NkT

VSG
=
NkT

VHe

10

VSG
=

1

VHe

or
VSG
VHe

= 10 (45)
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