
Richard Myers 2018 Comp. Exam Solutions August 2019

1 Using this Document and Disclaimer

This document is intended to record the solutions to the 2018 comprehensive exam as I
understand them. No guarantees are made about the correctness of these solutions1, though
I have tried to careful to do things correctly. Throughout this document, I have also made
an effort to point out how the reader might remember the details common formulae. It is
important to note that these explanations are not intended to be rigorous justifications, but
rather are intended as a collection of mnemonics from which one might hope to interpolate
the correct formula from an imperfect memory.

With this said, I do hope this document will prove as useful to others as I hope it will
be for myself in creating it. Feedback is appreciated, and should be directed to the author’s
email: myersr(at the system)physics.ucla.edu.
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2 Problem 1: Quantum Mechanics

2.1 Problem Statement (Constant Background Magnetic Field)

A particle of charge q is subjected to a magnetic field B = Bẑ.

(a) Consider the symmetric gauge for the vector potential

A =
1

2
B (−yx̂ + xŷ) (2.1.1)

and show that it correctly gives the magnetic field. Write down the Hamiltonian in
the symmetric gauge and define

Q =
1

qB
(cpx + qyB/2), P = (py − qBx/2c). (2.1.2)

Show that the commutator [Q,P ] = i~. Take c to be the speed of light.

(b) Show that H in terms of P and Q becomes a one-dimensional harmonic oscillator
problem, where ω = qB/mc. Find the energy eigenvalues.

(c) Write down the annihilation operator, a, for this harmonic oscillator in terms of the
complex coordinates z = x + iy and z̄ = x − iy. Show that the ground state wave
function takes the form ψ0(z, z̄) = u(z, z̄) exp[−qBzz̄/2~c], where u is an arbitrary
analytic function ∂̄u(z, z̄) = 0.

Hint: The Cauchy-Riemann conditions for the analyticity of a function f = U(x, y) +
iV (x, y), U, V ∈ R are

∂U

∂x
=
∂V

∂y
,

∂V

∂x
= −∂U

∂y
. (2.1.3)

2.2 Part (a)

We first check that the given vector potential produces the desired magnetic field. Recall
that B ≡ ∇×A. Then we compute

B = (∂xAy − ∂yAx)ẑ + (∂yAz − ∂zAy)x̂ + (∂zAx − ∂xAz)ŷ = Bẑ, (2.2.1)

as desired. We can remember the Cartesian curl as cyclic permutations of (x, y, z). There
is also the determinant formula:

∇×A =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z
Ax Ay Az

∣∣∣∣∣∣ . (2.2.2)
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In any case, we have shown that the given vector potential is correct. Next, we write
down the Hamiltonian2

H =
1

2m

(
p− q

c
A
)2

=
1

2m

[(
px +

qB

2c
y

)2

+

(
py −

qB

2c
x

)2

+ p2
z

]
. (2.2.3)

We will discuss this Hamiltonian in more detail in problem 6 of this comprehensive exam.
So, we now just need to show that [Q,P ] = i~. Using the linearity of the commutator, we
have

[Q,P ] =

[
1

qB
(cpx + qyB/2), (py − qBx/2c)

]
=

c

qB
[px, py]−

1

2
[px, x] +

1

2
[y, py]−

1

2c
[y, x] =

1

2
([x, px] + [y, py]) = i~,

(2.2.4)

as desired.

2.3 Part (b)

Now, if we look at the Hamiltonian (2.2.3), we notice that the first two terms are exactly Q2

and P 2 up to some overall constants. So,

H =
1

2m

[
q2B2

c2
Q2 + P 2 + p2

z

]
=

1

2m
P 2 +

1

2
mω2Q2 +

1

2m
p2
z, (2.3.1)

where we have used the definition ω = qB/mc given in the problem statement. If we
recall that the Hamiltonian may be written in terms of the number operator3, n = a†a, as
H = ~ω(n+1/2), then the energy eigenvalues of the harmonic part of the Hamiltonian must
be En = ~ω(n+ 1/2). However, we cannot forget about the z-momenta. Its presence means
that n alone is not sufficient to index the energy states. So, we we may index the z-momenta
by the wave number k so the energies are

En,k = ~ω
(
n+

1

2

)
+

k2

2m
. (2.3.2)

For the remainder of the problem, however, the z-momenta are irrelevant.

2Unfortunately, the author of this problem decided to use Gaussian units instead of SI without saying so.
This can cause some issues with missing factors of c. In this solution we have tracked the factors carefully,
but on the exam setting c = 1 fixes a fair few issues of this type (up to factors of 4π).

3We note that a† is the creation operator because the † is like a plus, for creation. Furthermore, we know
n = a†a rather than the other way around because we know the vacuum state |0〉 must have n|0〉 = 0. This
is true for n = a†a and is false for aa†.
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2.4 Part (c)

Before beginning, we note that the hint given for the problem is a complete misdirection and
is at no point useful. With that said, the first task is to recall how the annihilation operator
is defined. If we remember that a = uP + ivQ for some u, v ∈ R and H = ~ω(a†a + 1/2),
we can multiply out a†a and identify the coefficients u2 and v2 of P 2 and Q2 with those in
(2.3.1) to reverse engineer the definition

a =
1√

2m~ω
P + i

√
mω

2~
Q =

1√
2m~ω

(P + imωQ) . (2.4.1)

Now that we have the definition for a, we need to rewrite it in terms of z = x + iy and
z̄ = x− iy. The simplest way to do this is probably to invert these relations to find

x =
z + z̄

2
, y =

z − z̄
2i

(2.4.2)

and use them in (2.4.1). However, before we do so, we also need to determine the induced
transformation in the momenta to pz, pz̄. It is tempting to assume that the z-momenta
satisfy the same algebraic relations as the z’s themselves, but this is not correct.

There are two ways to deduce the correct relationship between the momenta. Using the
chain rule to expand the x and y derivatives, we find

∂

∂x
=
∂z

∂x
∂ +

∂z̄

∂x
∂̄ = ∂ + ∂̄,

∂

∂y
=
∂z

∂y
∂ +

∂z̄

∂y
∂̄ = i∂ − i∂̄, (2.4.3)

which imply the relations

px = pz + pz̄, py = i(pz − pz̄) (2.4.4)

Alternatively, we could observe that the differential is a linear operator, so dx = 1
2
(dz+dz̄),

dy = 1
2i

(dz − dz̄). We then seek some expressions ∂x = a∂ + b∂̄ and ∂y = c∂ + d∂̄ for some
a, b, c, d ∈ C. We must satisfy the four relations dx(∂x) = 1, dx(∂y) = 0, dy(∂x) = 0, and
dy(∂y) = 1. This system has a unique solution which is exactly (2.4.3), from which the same
momenta relations follow.

In any case, we use the momenta and coordinate relations to rewrite the annihilation
operator

a =
1√

2m~ω

[(
i(pz − pz̄)−

qB

4c
(z + z̄)

)
− imω

qB

(
c(pz + pz̄) +

qB

4i
(z − z̄)

)]
=

1√
2m~ω

[(
i(pz − pz̄)−

qB

4c
(z + z̄)

)
− i(pz + pz̄)−

qB

4c
(z − z̄)

]
=

−1√
2m~ω

[
i2pz̄ +

qB

2c
z

]
.

(2.4.5)
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Which is then the annihilation operator written in terms of z, z̄.
Now, the problem also asks us to find the ground state wave function as a function of z, z̄,

ψ0(z, z̄). Since this is the ground state wave function, we know that it must be annihilated
by the annihilation operator, aψ0(z, z̄) = 0. Since pz̄ = −i~∂̄, it follows that ψ0 must satisfy

∂̄ψ0 = − qB
4~c

z. (2.4.6)

This is now a separable differential equation which may be integrated readily to obtain

lnψ0(z, z̄) = − qB
4~c

zz̄ + w(z), (2.4.7)

where w(z̄) is an integration constant, which may depend only on z since we integrated
with respect to z̄. Exponentiating and defining u(z) = ew(z). we find

ψ0(z, z̄) = u(z, z̄) exp [−qBzz̄/4~c] , (2.4.8)

where we have written u(z) = u(z, z̄) to match the problem statement, but obviously
∂̄u(z, z̄) = 0 since u does not actually depend on z̄. This is the desired result.

As mentioned earlier, the hint for the problem is actually useless. In fact, the only use
it might have is if you wished to prove that ∂̄u = 0 is equivalent to analiticity, though the
problem does not require this since the statement also tells you that ∂̄u = 0.

3 Problem 2: Quantum Mechanics

3.1 Problem Statement (Rabbi Flopping, Solving ODE)

A spin-1/2 particle processes in a magnetic field B0ẑ at the frequency ω0 = γB0. We turn
on a small transverse radiofrequency field given by

B = B1 cos(ωt)x̂−B1 sin(ωt)ŷ, (3.1.1)

so that the total field is B = B1 cos(ωt)x̂−B1 sin(ωt)ŷ +B0ẑ.

(a) Construct the 2× 2 Hamiltonian matrix for this system.

(b) Let χ(t) =

(
a(t)
b(t)

)
be the two-component spinor at time t. Show that

da

dt
=
i

2

(
Ωeiωtb+ ω0a

)
,

db

dt
=
i

2

(
Ωe−iωta− ω0b

)
, (3.1.2)

where Ω = γB1.

7



(c) Now, simplify the equations by the substitutions a(t) = A(t)eiω0t/2 and b(t) = B(t)e−iω0t/2

to find the equations for A(t) and B(t). Solve these equations at the resonance by set-
ting ω = ω0. Decouple them by taking another derivative. Apply the initial condition
a(0) = 1 and b(0) = 0 and sketch the probability of a transition to spin down, as a
function of time. Can arbitrarily small B1 flip the spin at resonance? Explain.

Hint: The spin-1/2 matrices are:

Sx =
~
2

(
0 1
1 0

)
, Sy =

~
2

(
0 −i
i 0

)
, Sz =

~
2

(
1 0
0 −1

)
. (3.1.3)

3.2 Part (a)

For this first part, you simply had to know that H = −γB ·S. However, if you did not know
this, it would be sufficient to remember only that H ∝ B · S. The coefficient may then be
reverse engineered to make the target expression match the equations we find. In any case,
we are given the spin matrices, so we may explicitly write out the dot product as

B · S =
~
2

(
Bz Bx − iBy

Bx + iBy −Bz

)
=

~
2

(
B0 B1e

iωt

B1e
−iωt −B0

)
. (3.2.1)

Hence,

H = −γ~
2

(
B0 B1e

iωt

B1e
−iωt −B0

)
. (3.2.2)

3.3 Part (b)

Now that we have the Hamiltonian, we need the equations of motion for the vector χ(t).
Firstly, the problem statement calls this a spinor. In this instance, what the problem actu-
ally means is that χ is the finite-dimensional wave function, so it satisfies the Schrödinger
equation. However, if we did not know this, we could always recall that the time-evolution
operator is e−iHt/~. It then follows that χ(t) = e−iHt/~χ(0). If we take a time derivative of
this and identify χ(t) in the result, we do, in fact, find that exactly the Schrödinger equation
determines the evolution of χ. So, we have

i~
(
ȧ(t)

ḃ(t)

)
= −γ~

2

(
B0 B1e

iωt

B1e
−iωt −B0

)(
a(t)
b(t)

)
. (3.3.1)

If we perform the matrix multiplication on the RHS and identify ω0 = γB0 and Ω = γB1,
we find the desired result, (3.1.2).
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3.4 Part (c)

Our first task for this part of the problem is to perform the indicated substitution, which
yields

dA

dt
eiω0t/2 +

iω0

2
Aeiω0t/2 =

i

2

(
Ωeiω0t/2B + ω0Ae

iω0t/2
)

dB

dt
e−iω0t/2 − iω0

2
Be−iω0t/2 =

i

2

(
Ωe−iω0t/2A− ω0Be

−ω0t/2
)
,

(3.4.1)

where we have already imposed the on-resonance condition, ω = ω0. We notice that the
last terms on the right and left hand sides cancel along with the exponentials, so we are left
with the simplified system

dA

dt
=
i

2
ΩB,

dB

dt
=
i

2
ΩA. (3.4.2)

Now, at this point there are two ways to proceed. We could proceed as the question
instructs and take and additional derivative of both equations in (3.4.2). That is,

d2A

dt2
=
i

2
Ω

dB

dt
= −1

4
Ω2A,

d2B

dt2
=
i

2
Ω

dA

dt
= −1

4
Ω2B.

(3.4.3)

These are the equations of motion of a pair of harmonic oscillators, for which we know the
solution already. However, when solving this system, we will note that by taking the extra
derivative we have increased the order of the differential equations. This means the supplied
initial conditions will be insufficient to determine the solution if we just solve (3.4.3). The
trick of the matter is to take the general solution found for (3.4.3) and require that it also
satisfy (3.4.2). This will eliminate some of the integration constants and allow the solution
to be determined by the initial conditions supplied in the problem statement.

This procedure will work, but it takes a while and involves a fair bit of algebra to get
the final solution. So, we will instead propose an alternate method of solution. To begin, we
notice that the system (3.4.2) may be written in the matrix form

d

dt

(
A
B

)
=
i

2
Ω

(
0 1
1 0

)(
A
B

)
. (3.4.4)

However, the matrix here is just the Pauli matrix σx. The formal solution to this equation
is then (

A
B

)
= exp

[
i

2
Ωtσx

](
A(0)
B(0)

)
. (3.4.5)
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We may either recall that for a unit 3-vector n̂, exp(iαn̂ · σ) = cos(α) + in̂ · σ sin(α) and
specialize for our case n̂ = ẑ, or if we do not recall this, note that σ2

x = 1 and expand the
exponential in its Taylor series, recollecting the summation into odd and even powers of σx,
then identifying the Taylor series for the sine and cosine. In either case, we find(

A
B

)
= [cos(Ωt/2) + iσx sin(Ωt/2)]

(
A(0)
B(0)

)
. (3.4.6)

Now, we know the given initial conditions are a(0) = 1 and b(0) = 0. This implies the
initial conditions A(0) = 1 and B(0) = 0 in our new variables. Hence, the motion is given
by (

A
B

)
=

(
cos(Ωt/2)
i sin(Ωt/2)

)
, (3.4.7)

so the motion of the original variables is(
a
b

)
=

(
cos(Ωt/2)eiω0t/2

i sin(Ωt/2)e−iω0t/2

)
. (3.4.8)

So, now that we have solved the equations of motion, the problem asks for the probability
of a transition to spin down. So, if the current state is given by χ(t), we are interested in

P (|χ〉 → | ↓〉, t) = |〈↓ |χ〉|2 =

∣∣∣∣∣
(

0
1

)T
χ(t)

∣∣∣∣∣
2

= |i sin(Ωt/2)e−iω0t/2|2 = sin2(Ωt/2). (3.4.9)
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Finally, the problem asks whether an arbitrarily small, but non-zero field strength B1 is
capable of causing the spin to flip on-resonance. This question is a bit vague, but it seems
the answer is yes. Consider, Ω ∝ B1, so if B1 6= 0, then ω 6= 0. And, unless Ω = 0, the
transition probability (3.4.9) will be generically non-zero. As Ω → 0, the time it takes to
reach the first maxima of the transition probability goes to infinity, but as long as we are
willing to wait long enough, the probability of transition will become arbitrarily large.

4 Problem 3: Quantum Mechanics

4.1 Problem Statement (Commutator Algebras)

(a) Consider the lattice translation operator

T (a) = e−iap̂/~ (4.1.1)

where a is some constant and p̂ is the momentum operator. Show that

T †(a)x̂T (a) = x̂+ a. (4.1.2)

(b) Show that T (a) is unitary and show that T (a) has eigenvalues of the form eiφ where φ
is real (you may assume that p̂ is Hermitian).

(c) Consider the family of Hamiltonians which are periodic under shifts by a:

H =
p̂2

2m
+

∞∑
n=−∞

V (x− na). (4.1.3)

You may assume that V (x) goes exponentially fast to zero as |x| → ∞ so the sum-
mation is convergent, and that V (x) admits a power series expansion.

By examining the lattice translational symmetry of H or otherwise, prove that the
Hamiltonian, H, has eigenstates |E, k〉 where k is a real parameter. These states must
satisfy

H|E, k〉 = E|E, k〉 (4.1.4)

and must be such that the wave function in position space defined by

uk(x) = e−ikx〈x|E, k〉 (4.1.5)
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are periodic functions with period a. That is,

uk(x+ a) = uk(x). (4.1.6)

What is the significance of the parameter k?

This is Block’s theorem for periodic potentials (i.e. and energy eigenstate can be
written as a Block wave times a periodic function).

4.2 Part (a)

There are several ways to tackle this first problem. We will not demonstrate them all here,
but will pick a single method and simply mention the procedures for the others. Firstly,
if you recall the Baker-Campbell-Hausdorff formula for this exact situation, the problem
is finished in two lines. Failing that, we could use the result of part (b) (which does not
depend on the result of part (a), so the logic would not be circular) to write [x̂, T (a)] = aT (a),
which may be shown by expanding T (a) as a power series and computing the commutators
[x̂, p̂n] = i~np̂n−1. This identity itself may be proved inductively or via the trick we employ
to solve the problem directly.

We know that in position space, we are free to write p̂ = −i~∂x. A similar expression
exists for the position operator in momenta space, but with a positive sign. So, we are
free to write x̂ = i~∂p. We can always check the sign by putting this expression into the
commutator [x̂, p̂] = i~. Essentially, we are observing that p, i~∂p furnish a representation of
the abstract Lie algebra, so the results we obtain with this representation will hold in any
representation. In any case, noting that x̂ acts on all objects to its right, we may write

eiap̂/~i~
∂

∂p
e−iap̂/~ = i~eiap̂/~

(
−ia

~
e−iap̂/~ + e−iap̂/~

∂

∂p

)
= a+ x̂ = x̂+ a, (4.2.1)

as desired.

4.3 Part (b)

For unitarity, we require that T †(a)T (a) = T (a)T †(a) = 1. However, since we are on a
lattice which is infinite in both directions (as opposed to a Hilbert’s hotel type situation),
the commutivity of p̂ with itself suffices here.

To show that the eigenvalues of T (a) have the form eiφ, we may proceed in one of two
ways. Firstly, we way suppose that |λ〉 is an eigenvector of T (a) so T (a)|λ〉 = λ|λ〉. But
then if we take these eigenvectors to be normalized,

1 = 〈λ|〈〉 = 〈λ|T †(a)T (a)|λ〉 = |λ|2〈λ|λ〉 = |λ|2, (4.3.1)
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so λ must have modulus one, and hence has the form λ = eiφ for some φ ∈ R.
Alternatively, we could observe that if |p〉 is an eigenvector of p̂, it must also be an

eigenvector of T (a) with eigenvalue e−iap/~, which again has the desired form. This is the
preferred method since we will need to consider eigenvectors of p̂ such that p̂|k〉 = ~k|k〉 for
part (c).

4.4 Part (c)

Now, this part of the question is poorly worded as to rely on the reader already knowing what
the answer is supposed to be. Regardless, everyone who takes the exam needs to figure out
how to write something or other down. Unlike the wording might suggest on first reading,
this problem is not actually instructing us to show that [T (a), H] = 0, it is only suggesting
that we might want to do this.

So, we need to figure out what the quantum number k is supposed to be corresponding
to in order to make the final result (4.1.6) possible. Well, the use of the letter k and
the suggestion that we consider the translation operator suggests that k be some kind of
momenta. With the benefit of hind-sight, we will in fact want to define |k〉 such that
p̂|k〉 = ~k|k〉. So, to show that we may label the state vectors by E and k simultaneously, it
will suffice to show that T (a) and H commute since the |k〉 are also eigenvectors of T (a).

So, since T (a) is unitary, it will suffice to show that T †(a)HT (a) = H to show that
H and T (a) commute. Since T (a) clearly commutes with p̂2, we need only show that it
commutes with the potential term of the Hamiltonian. Towards this end, we first compute
T †(a)x̂nT (a) = (x̂+ a)n by inserting 1 = T (a)T †(a) between the factors of x̂.

Now, since V (x − na) admits a power series expansion, we may compute T †(a)V (x −
na)T (a) term by term to find V (x− (n− 1)a). But this now implies

T †(a)HT (a) =
p̂2

2m
+

∞∑
n=−∞

V (x− (n− 1)a) =
p̂2

2m
+

∞∑
n=−∞

V (x− na) = H, (4.4.1)

where we have reindexed the infinite sum to shift the value of n by one.
Now that we know T (a) and H commute, we know that they are simultaneously diago-

nalizable and hence we are free to label our states by E and k, |E, k〉.
If we now take a look at (4.1.6) and begin to think how to prove this, we may write out

the definition of the RHS, uk(x+ a) = e−ikxe−ika〈x+ a|E, k〉. Since we need this to become
uk(x), we need some way of writing 〈x + a| in terms of 〈x|. If the translation operator is
named with any sense, it should be able to do this for us. So we compute

x̂T (a)|x〉 = T (a)T †(a)x̂T (a)|x〉 = T (a)(x̂+ a)|x〉 = (x+ a)T (a)|x〉, (4.4.2)
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so we conclude4 T (a)|x〉 = |x+ a〉.
It now follows that

uk(x+ a) = e−ikxe−ika〈x|T †(a)|E, k〉 = e−ikxe−ika〈x|eika|E, k〉 = uk(x), (4.4.3)

as desired.
Finally, the problem asks us to interpret the quantity k. However, this is a bit vague, and

it’s not clear what the author of the problem wanted as an answer. More than likely, they
wanted the student to respond that k is the lattice momenta since that’s what condensed
matter physicists like to talk about and this problem was clearly written by a condensed
matter physicist.

5 Problem 4: Quantum Mechanics

5.1 Problem Statement (Time Independent Perturbation Theory)

Consider a two-level system with unperturbed energy levels such that

H0|1〉 = ε|1〉, H0|2〉 = −ε|2〉. (5.1.1)

Add a perturbation with off-diagonal elements only:

V =

(
0 V
V ∗ 0

)
. (5.1.2)

(a) What are the exact eigenvalue of the total Hamiltonian, H = H0 + V?

(b) Assuming the perturbation is small, i.e. V � ε, expand the exact energies to second
order in V/ε.

(c) Show that this agrees with the results of second order non-degenerate perturbation
theory.

(d) If ε→ 0, the level are degenerate. How do the exact energy eigenvalues depend on V
in this case?

(e) Show that for ε 6= 0, V � ε, the energy eigenvalues are linear in V .

4Technically, this equality is only true up to a phase, but since there are no superselection rules in this
system, we are free to choose this phase to be identically equal to zero.
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(f) In atoms and molecules, the field-free energy eigenstates are also eigenstates of parity.
Show that the perturbation from applying an electric field, ε, in the dipole approxi-
mation (i.e. V = −d · ε = −er · ε) has only off-diagonal elements.

(g) In atoms, opposite parity states have nergy separations much bigger than the Stark
energy shifts due to an electric field that can be applied in the laboratory. How does
the Stark shift depend on ε in this case?

(h) In chemistry, you are typically taught that molecules have dipole moments and thus
energy shifts linear in electric field (i.e. ∆E = −d · ε). Given that truly degenerate
energy levels rarely (if ever) exist, how do you reconcile this?

5.2 Parts (a)-(e)

First, the total Hamiltonian is

H =

(
ε V
V ∗ −ε

)
. (5.2.1)

The energy eigenvalues are then determined by 0 = det(H − λ) = −(ε − λ)(ε + λ) − |V |2
which implies λ = ±

√
ε2 + |V |2 are the exact energy eigenvalues.

To expand this in powers of V/ε, we write

λ = ±ε

√
1 +

∣∣∣∣Vε
∣∣∣∣2 ≈ ±ε

(
1 +

1

2

∣∣∣∣Vε
∣∣∣∣2
)
, (5.2.2)

taking the first order expansion of
√

1 + x, which is second order in V/ε.
Next we look at the the second order non-degenerate perturbation theory. First of all,

since V has no on-diagonal terms, the first order perturbation, E
(1)
n = 〈n|V|n〉 = 0. For the

second order perturbation, we recall the formula

E(2)
n =

∑
m6=n

|〈n|V|m〉|2

E
(0)
n − E(0)

m

. (5.2.3)

We note that in this formula, the energy index we are currently looking at always comes
first in the denominator. For the problem at hand, we have

E
(2)
1 =

|〈1|V|2〉|2

ε+ ε
=

1

2

|V |2

ε
,

E
(2)
2 =

|〈1|V|2〉|2

−ε− ε
= −1

2

|V |2

ε
,

(5.2.4)
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which both agree with the exact energy eigenvalues to second order in V/ε.
For part (d), we take ε → 0 in the exact formula to find λ = ±|V |, which is then linear

in V .
Finally, for part (e), we take ε 6= 0, but V � ε. Then we write

λ = ±|V |
√

1 +
∣∣∣ ε
V

∣∣∣2 ≈= ±|V |
(

1 +
1

2

∣∣∣ ε
V

∣∣∣2) , (5.2.5)

which, if we insist on keeping till only first order in ε/V , is linear in |V |, as requested.

5.3 Parts (f)-(h)

In part (f), we are asked to show that V = −er ·ε has no on-diagonal elements knowing that
the basis of eigenstates when ε = 0 have definite parity. Let π̂ be the parity operator and
|En〉 be the ε = 0 energy eigenstates. Then π̂|En〉 = ηn|En〉 where ηn = ±1. By definition,
we know that π̂rπ̂ = −r. Then5 π̂Vπ̂ = −V. it follows that

〈En|V|En〉 = 〈En|π̂π̂Vπ̂π̂|En〉 = −η2
n〈En|V|En〉. (5.3.1)

Hence, 〈En|V|En〉 = −〈En|V|En〉, which implies 〈En|V|En〉 = 0, so V has no on-diagonal
elements.

For part (g), we note that the unperturbed levels are much further apart than the shifts.
In the language of this problem, that would be the case ε� V so the energies are highly non-
degenerate. As we showed in part (b), the energy shifts will be of order ε2. Alternatively, we
could argue that because the system is highly non-degenerate, non-degenerate perturbation
theory is good, but we already argued that on-diagonal elements of the Stark perturbation
are zero by parity, so we know the first order correction will be zero, leaving the second order
correction as the lowest order correction available.

Finally, in part (h), we note that a linear dependence of the shift on the electric field
comes from a degenerate, or nearly degenerate, perturbation of the states, as we saw in
part (e). Suppose the conclusion to draw is that the energy levels in molecules are nearly
degenerate. It is unclear what reconciliation is necessary since the case here and in part
(g) are simply different limits. Perhaps it is worthwhile to point out that nearly-degenerate
perturbations may have first-order dependence even though the perturbation is off-diagonal.

5There is an important point to be made here. The astute reader may have noticed that the electric field
is supposed to transform under parity like a vector, and hence should pick up a sign. However, the electric
field we have here is not dynamical, it is only a parameter in the problem. Another way of arguing this is
to point out that ε is a c-number, not an operator, so π̂ necessarily commutes with it. If we had a fully
dynamical electric field as in QED, then we would need to account for the lack of commutivity.
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6 Problem 5: Classical Mechanics

6.1 Problem Statement (Galilean Lagrangian Calculation)

Consider a point mass m sliding on a wire defined by the function z = f(r), where r =√
x2 + y2. The wire has a fixed shape and is rotating about the z-axis with an angular

velocity ω. Consider the gravitational acceleration g (acting towards −ẑ) and ignore any
friction.

(a) Write down the Lagrangian L(r, ṙ, t) for the mass.

(b) Using (a), find he equation of motion for r(t). Then let r0 be the (constant) radius
of a fixed circular orbit. Derive the condition on f(r) at r = r0 for a circular orbit to
exist. (Hint: show that r′(r0)/r0 equals a constant).

(c) Consider a small change in the circular orbit r(t) = r0 + ε(t). What is the condition
on f(r) in order to have a stable circular orbit at r = r0?

(d) From the Lagrangian, find the Hamiltonian H(r, p, t), where p is the canonical momen-
tum. Is the Hamiltonian conserved?

6.2 Part (a)

We know that for a discrete particles in Cartesian coordinates, L = T − V where T is the
Cartesian kinetic energy and V is the Cartesian potential energy. Rather than attempt this
problem with Lagrange multipliers, it is more convenient to impose the constraints of the
problem from the beginning. Since the problem has a cylindrical symmetry, we convert to
cylindrical coordinates,

x = r cos θ, y = r sin θ. (6.2.1)
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The constraints for the problem are θ = ωt and z = f(r), so the velocities may be computed
to be

ẋ = ṙ cosωt− ωr sinωt, ẏ = ṙ sinωt+ ωr cosωt, ż = ṙf ′(r). (6.2.2)

Since T = 1
2
m(ẋ2 + ẏ2 + ż2), it follows that the kinetic energy written in cylindrical coordi-

nates with constraints imposed must be

T =
1

2
m
(
[1 + f ′ 2(r)]ṙ2 + ω2r2

)
. (6.2.3)

Since the only force on the particle besides the constraints, which have already been imposed,
is gravity, the potential energy is given by V = mgz = mgf(r).

It now follows that the Lagrangian is given by

L =
1

2
m
(
[1 + f ′ 2(r)]ṙ2 + ω2r2

)
−mgf(r). (6.2.4)

6.3 Part (b)

The Euler-Lagrange equations for a Lagrangian depending on only the first time derivative
of the coordinate are given by

d

dt

∂L

∂ṙ
=
∂L

∂r
. (6.3.1)

We therefore compute

∂L

∂r
= mω2r +mgf ′(r),

∂L

∂ṙ
= m[1 + f ′ 2(r)]ṙ, (6.3.2)

and hence the equations of motion are

mr̈[1 + f ′ 2(r)] +mṙ2f ′(r)f ′′(r) = mω2r −mgf ′(r) (6.3.3)

after computing
d

dt

∂L

∂ṙ
= m(r̈ + r̈f ′ 2(r) + 2ṙ2f ′(r)f ′′(r)). (6.3.4)

Now that we have the equations of motion, we are interested in finding a condition for
having a stable orbit, so we suppose r = r0, which is a constant. Then immediately all the
derivatives of r vanish in (6.3.3) and we are left with

f ′(r0)

r0

=
ω2

g
, (6.3.5)

which we take as the condition for the existence of a stationary orbit.

18



6.4 Part (c)

We now suppose that r(t) = r0 + ε(t), and expand the equations of motion to first order in
ε(t). immediately, the ṙ2 term vanishes and we have

mε̈(1 + f ′ 2(r0)) = mω2(r0 + ε)−mg (f ′(r0) + εf ′′(r0)) , (6.4.1)

where we have expanded f ′(r0 + ε) = f ′(r0) + εf ′′(r0). Collecting terms now in derivatives
of ε, we find

mε̈(1 + f ′ 2(r0)) = −ε
(
mgf ′′(r0)−mω2

)
−
(
mgf ′(r0)−mω2r0

)
. (6.4.2)

But if we recall that f ′(r0)/r0 − ω2/g, we see that the last term of (6.4.2) vanishes and we
are left with equation of motion of a harmonic oscillator for ε.

To have a stable orbit then, we need this to be a stable harmonic oscillator. That is, we
require (mgf ′′(r0)−mω2) ≥ 0 for the “spring constant.” This then implies the condition

f ′′(r0) ≥ ω2/g (6.4.3)

to ensure that a stable orbit is possible.

6.5 Part (d)

We recall that the Hamiltonian is defined to be the Legendre transformation of the La-
grangian, H = ṙp− L where p ≡ ∂L

∂ṙ
. But we have already computed p in (6.3.2). It is then

a matter of simple algebra to find

H =
1

2m

p2

1 + f ′ 2(r)
− 1

2
mω2r +mgf(r). (6.5.1)

Finally, we are asked whether or not the Hamiltonian is conserved. It is because it
does not depend explicitly on time and we know dH

dt
= ∂H

∂t
since the Hamiltonian Poisson

commutes with itself. We could have also seen that the Hamiltonian would not depend on
time explicitly before computing it by noting ∂H

∂t
= −∂L

∂t
, and the Lagrangian did not depend

explicitly on time.

7 Problem 6: Classical Mechanics

7.1 Problem Statement (Formal Relativistic Hamiltonian Dynam-
ics)

(In this problem, we will not consider radiation effects).
Consider a particle of charge q and mass m in a uniform magnetic field B = Bẑ.
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(a) Write the non-relativistic Hamiltonian for he particle and find and integrate he equa-
tions of motion.

(b) Write the relativistic energy-momentum relation for the particle. Guess or anyway
write down the relativistic Hamiltonian for the particle in the uniform magnetic field,
and find the equations of motion.

7.2 Part (a)

We recall that the Hamiltonian for a non-relativistic particle in an electromagnetic field is

H =
1

2m
(p− qA)2 + qφ. (7.2.1)

Since we have no electric field, it is convenient to choose the symmetric gauge, which is even
more conveniently provided in the statement of problem 1 on this exam. The symmetric
gauge has φ = 0 and

A =
B

2
(−yx̂ + xŷ). (7.2.2)

Hence, the Hamiltonian is given by

H =
1

2m

[
(px + yBq/2)2 + (py − xBq/2)2 + p2

z

]
. (7.2.3)

The equations of motion are then given by

ż = pz
m

ẋ = 1
m

(px + yBq/2), ẏ = 1
m

(py − xBq/2)

ṗz = 0, ṗx = Bq
2m

(py − xBq/2), ṗy = −Bq
2m

(px + yBq/2)
(7.2.4)

We may immediately integrate the z-equations to find z(t) = z0 +vzt, so we need only worry
about the x and y equations.

Now at this point we are faced with a bit of an issue because there is not an obvious
symmetry to the system (7.2.4) which is easily exploitable. There are several strategies we
could pursue to solve this system. The first would be to find a set of conserved quantities and
gain some algebraic equations to replace the differential equations. For the sake of an exam,
this is really only a possibility if we already know what quantities should be conserved, which
typically means we already know what the solution is supposed to be – in this case we know
we are dealing with a cyclotron motion, so the radius of the motion in the xy-plane will be
conserved. But showing that this is, in fact, a conserved quantity and then computing the
reduced system of equations will take quite a while in the scheme of a timed exam.
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The second strategy we could pursue would be to come up with a canonical transformation
which sends the Hamiltonian to a known form, such as the form of a harmonic oscillator. We
may notice that the quantities within the squares of (7.2.3) taken to be the new P and Q
could be good candidates, and in fact we know that these will work up to constant prefactors
because we applied exactly this transformation in problem 1 on this exam. The issue with
this, however, is the mapping (px, py, x, y) 7→ (P,Q) is obviously not invertable, so while we
can find the solution for P and Q without much difficulty, we would not be able to uniquely
determine the solution in the original coordinates. We would need to find another conjugate
pair (P ′, Q′) such that the entire transformation (px, py, x, y) 7→ (P, P ′, Q,Q′) is canonical.
This would require us to compute the partial generating function for the known part of the
transformation and then deduce the form of the remaining portion of the transformation.

The final strategy, which we will actually employ here, will be to instead solve the Euler-
Lagrange equations since the reader has almost certainly solve for the motion of a cyclotron
from the Lorentz force law. This requires us to effectively go from the Hamiltonian for-
mulation to the Lagrangian formulation of the problem, though as we will see it will not
be necessary to actually write down the Lagrangian for the system. Typically, we start
with a Lagrangian and convert to a Hamiltonian description, for which we know to compute
p = ∂L

∂q̇
which then gives q̇ = q̇(p, q). To do the reverse, we actually use the relation q̇ = ∂H

∂p
,

which then gives us p = p(q̇, q). Using this relation in the ṗ equation gives the reverse
correspondence between the Euler-Lagrange equations and Hamilton’s equations.

For the system at hand, we find

px = mẋ− Bq

2
y, py = mẏ +

Bq

2
x. (7.2.5)

Using these relations, we may now write the ṗ equations, after some simplification, in the
form

ẍ =
qB

m
ẏ, ÿ = −qB

m
ẋ, (7.2.6)

which should be the familiar equations of motion for the cyclotron. There are three ways
to solve this system. The first is to take an extra time derivative to decouple the equations.
But I am really not a fan of this method for solving differential equations. A better way
would be to define the complex variable z = ẋ+ iẏ, in terms of which the system above may
be written ż = −i qB

m
z. From here, the solution is clearly a complex exponential and the

general solution follows readily.
There is, however, a third method which is optimal for flexing. We begin by observing

that if a = ẋ and b = ẏ, we may write (7.2.6) in the form

d

dt

(
a
b

)
=
qB

m

(
0 1
−1 0

)(
a
b

)
= i

qB

m
σy

(
a
b

)
(7.2.7)
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where σy is the Pauli y. The solution is then given by the matrix exponential of the Pauli
matrix, which we know6. Then(

a(t)
b(t)

)
= exp

(
i
qB

m
σyt

)(
a(0)
b(0)

)
, (7.2.8)

which we integrate to find x and y. Integrating this, we note that σy is its own inverse, so(
x(t)
y(t)

)
=

(
x0

y0

)
− i m

qB
σy exp

(
i
qB

m
σyt

)(
ẋ(0)
ẏ(0)

)
, (7.2.9)

which we may write explicitly as(
x(t)
y(t)

)
=

(
x0

y0

)
+

1

ω

(
sin(ωt) − cos(ωt)
cos(ωt) sin(ωt)

)(
ẋ(0)
ẏ(0)

)
(7.2.10)

which is the usual thing7. For additional flex, note that the matrix, which is σy times the
matrix exponential, is a unitary operator, and hence (x(t) − x0)2 + (y(t) − y0)2 is clearly a
constant, giving us circular motion as expected.

7.3 Part (b)

We will begin from the Lagrangian, L = −mc2
√

1− v2

c2
+ qv ·A. It follows that

p ≡ ∂L

∂v
= m

v√
1− v2/c2

+ qA. (7.3.1)

Rewriting this as

m
v√

1− v2/c2
= p− qA, (7.3.2)

we may square it and solve for v2 to find

v2 = c2 (p− qA)2

m2c2 + (p− qA)2
, (7.3.3)

from which we compute

1− v2

c2
=

m2c2

m2c2 + p− qA)2
, v = c

√
1

m2c2 + (p− qA)2
(p− qA). (7.3.4)

6See the solution for problem 2 on this exam.
7We note that (x0, y0) is not the initial condition for x and y, but rather are just some integration

constants which we will find to be the center of our cyclotron.
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Hence, we may rewrite the Lagrangian in terms of the momenta by

L = −m2c2χ+ qχ(p ·A− qA2), (7.3.5)

where we have defined χ = c
√

1
m2c2+(p−qA)2

for brevity. Next, since

v · p = χ(p2 − qA · p), (7.3.6)

it follows that the Hamiltonian is given by

H = v · p− L = χ
[
p2 − 2qA · p + q2A2 +m2c2

]
= χ

[
(p− qA)2 +m2c2

]
= c
√

(p− qA)2 +m2c2.
(7.3.7)

It then follows that the equations of motion are given by

ṙ =
c2

H
(p− qA), ṗi = q

c2

H
(pj − qAj)∂iAj, (7.3.8)

with summation over the 3-index j implied.

8 Problem 7: Electromagnetism

8.1 Problem Statement (Electrostatic Calculation)

A spherical shell of radius R is uniformly charged so that the charge per unit area on the
surface is σ. You take a sword and chop off the very top of the sphere, so that there is a
hole at the apex with polar opening angle α, as shown below.
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(a) In the limit that the angle α is small (so that the diameter of the opening is much
smaller than the radius of the sphere), calculate the electric field at the center of the
sphere (magnitude and direction).

(b) Assuming the same limit, calculate the electric field at point P in the diagram (in the
opening, at the location where the apex of the sphere used to be before I sliced off the
top).

8.2 Part (a)

Since it is not clear from the problem statement, we will also assume that the aperture is
intended to be circular and that the surface charge density does not change when the section
of sphere was removed.

So, here’s the approximation we will be making. Since the solid angle removed was small,
we will approximate it by a disk of radius R sinα ≈ Rα. Then, since Maxwell’s equations are
linear, the solution of this problem is equivalent to the sum of the solution for a completed
sphere and the solution for a disk located at the removed section with surface charge density
−σ so the total density at the hole is zero.

Now, by Gauss’ law, we know that the field inside the completed sphere is zero, while
the field outside the sphere is E = 4πR2σ

4πε0

ρ̂
r2

= σ
ε0
R2

r2
ρ̂. So, we just need the field due to the

disk.
To find the field due to a disk of radius R, let’s consider a disk of surface charge density

σ located at the origin, the plane of the disk orthogonal to the z-axis. The field is then

E(zẑ) =

∫
Disk

σdA′

4πε0

r− r′

|r− r′|3
=

∫ R

0

2πσr′dr′

4πε0

zẑ

(z2 + r′2)3/2

=
σzẑ

2ε0

∫ R

0

dr′
r′

(z2 + r′2)3/2
=
σzẑ

2ε0

|z| −
√
z2 +R2

|z|
√
z2 +R2

,

(8.2.1)

where we have used the symmetry of the system to argue that only the z-component of the
electric field survives the integration on axis.

Now for the system at hand, the surface charge density of the disk is −σ, the radius is
αR, and we must be careful that the z in (8.2.1) is the distance from the center of the disk,
not the center of our sphere, and hence we must take d = z −R to be the distance from the
disk. Thus, the field due to the disk in the problem at hand is

E(zẑ) = −σdẑ
2ε0

|d| −
√
d2 + α2R2

|d|
√
d2 + α2R2

= − σẑ
2ε0

d

|d|
|d| −

√
d2 + α2R2

√
d2 + α2R2

. (8.2.2)
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So to find the field at the center of the sphere, we must add the field due to the disk
with the field due to the completed sphere. However, we already argued that the field at the
center due to the completed sphere must be zero, so we are just left with the field due to the
disk, which we evaluate at z = 0, which is d = R. The field is then

E(0) = − σẑ
2ε0

1−
√

1 + α2

√
1 + α2

≈ − σẑ
2ε0

[
1−

(
1− 1

2
α2

)]
=
σα2

4ε0
ẑ. (8.2.3)

8.3 Part (b)

Since we already know the field (8.2.2), we just need to evaluate it at z = R, or d = 0.
There is, however, a nicky point to watch out for when we do this. We know that since
in the actual situation of interest, there is no surface charge at the location P , so the field
should be continuous when crossing P . However, both the disk and the completed sphere
have surface charge densities at the location P , so their fields are not continuous across P ,
but their discontinuities must cancel exactly so the sum is continuous again.

It is then simpler to evaluate the field as we come to the point P from the center of the
sphere, so we need only to evaluate the field due to the disk. Doing so, we find

E(P ) =
σẑ

2ε0
. (8.3.1)

While this would be good enough for the exam, for the sake of this document, we will
also check that the field is correct when we evaluate the limit from the outside of the sphere.
Doing so, we find

E(P ) =
σ

ε0

R2

R2
ẑ− σẑ

2ε0
=
σẑ

2ε0
. (8.3.2)

Nice.

9 Problem 8: Electromagnetism

9.1 Problem Statement (Electromagnetic Angular Momentum)

A solenoid of radius R with n turns per unit length carries a stationary current I. Two hollow
cylinders of length L are fixed coaxially and are free to rotate. One cylinder of radius a is
inside the coil (a < R) and carries the uniformly distributed charge Q. The outer cylinder
of radius b (b > R) carries the charge −Q. If the current is switched off, the cylinders start
to rotate.

25



(a) Calculate the angular momentum of each cylinder.

(b) Calculate the total angular momentum at the end and explain where it is coming from.

9.2 Part (a)

Though the problem does not say so, we neglect edge effects in the fields. We do this because
if we do not, it is not possible to solve the problem by hand. With this, however, we find by
Gauss’ and Amperé’s laws the fields

E =


0, r < a.

Qρ̂
2πε0Lr

, a < r < b.

0, b < r.

B =

 µ0nI ẑ, r < R.

0, R < r.
(9.2.1)

where we have taken the current to flow in the θ̂ direction.
Now, we need to find the angular momentum of the two cylinders. Well, we know that

the time derivative of the angular momentum is the torque, and the torque is given by r× f
where f is the Lorentz force,

dL

dt
=

∫
Σ

dAr× f , (9.2.2)

where r points from the origin to a point on one of the cylinders. Since the axes and radii
of the cylinders are fixed, the Lθ and Lρ components of L are constrained to be zero. This
means that the z-component of r in (9.2.2) may be neglected since when crossed with any
other vector, it will not produce a vector again in the z-direction. Hence, we only need to
compute

dLz
dt

=

∫
Σ

dA(rfθ − θfρ), (9.2.3)

but the latter term in the integrand integrates to zero since the system is cylindrically
symmetrical8. Thus, we need only write

dLz
dt

= 2πLR2
cfθ(Rc), (9.2.4)

where Rc equals a or b, depending on the cylinder we are looking at.

8This is a bit of a hand-wavy argument. To make it precise, we would really need to distinguish explicitly
between the coordinates and the vectors of the tangent space at a point since the two are not quite the same
in cylindrical coordinates. Instead, we rely on the reader’s intuition that a force acting radially which does
not vary azimuthally will not torque the cylinder about the z-axis.
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So, let’s look at the Lorentz force to compute fθ. Since f = σ(E + v × B), we note
immediately that the static electric field (9.2.1) does not contribute to fθ. Furthermore, we
note that v × B ∝ θ̂ × ẑ ∝ ρ̂, so the magnetic field (9.2.1) also fails to contribute to the
system’s torque.

However, as the current is turning off, the static magnetic field in (9.2.1) changes, which
induces an electric field by Faraday’s law9. To compute this electric field, we first compute
the magnetic flux through a disk of radius r whose normal is aligned with the z-axis,

ΦB(r) = 2π

∫ r

0

r′dr′Bz = πµ0nI min{r, R}2, (9.2.5)

so
d

dt
ΦB(r) = πµ0nmin{r, R}2 dI

dt
. (9.2.6)

The electric field induced by this changing flux satisfies

d

dt
ΦB(r) = −

∮
d` · E = −2πrEθ, (9.2.7)

hence

Eθ = −1

2
µ0n

min{r, R}2

r

dI

dt
. (9.2.8)

It now follows that time derivative of the angular momentum of the inner cylinder is

dLa,z
dt

= −1

2
µ0nQa

2 dI

dt
, (9.2.9)

which which we deduce

La,z =
1

2
µ0nQIa

2 (9.2.10)

since ∆I = −I and ∆La,z = La,z.
In much the same fashion, just being careful about the computation of min{b, R} and

that the charge should be −Q, we compute the angular momentum of the outer cylinder to
be

Lb,z = −1

2
µ0nQIR

2. (9.2.11)

9Now, spoilers, this induced electric field is going to generate a torque. But we might also think that, as
this torque is applied and the cylinders begin to spin, there will be a current which creates a magnetic field.
However, since the induced currents will again be in the θ̂ direction, the magnetic field will be along the ẑ
just like another solenoid, so it produces no torque and we are safe to ignore it.
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9.3 Part (b)

Now, the answer to the question “where did the momentum come from” is, of course, the
field momentum, with the total final momentum in the cylinders being

La,z + Lb,z =
1

2
µ0nQI(a2 −R2). (9.3.1)

We may, in fact, compute the initial angular momentum to be

LEM =
1

c2

∫
dV r× S = −2πL

µ0c2
ẑ

∫ R

a

rdr
µ0nIQ

2πε0L
=

1

2
µ0nQI(a2 −R2)ẑ (9.3.2)

It is interesting that this is equal to the final angular momentum of the cylinders because
conservation of angular momentum would then imply that there is zero field momentum after
the motion has completed. However, after the process has completed, we have two charged
cylinders rotating. This means that there will be currents circulating in the θ̂ direction –
effectively creating two solenoids. So, we have the electric field which is produced by the
existence of the charges, and also the magnetic field between the two now-solenoids. These
fields will but just as orthogonal as the original fields (9.2.1), though their magnitudes and
regions of non-zero magnitude will be different. This means the Poynting vector will again
be non-zero, and will have a component again in the θ̂ direction, so the field momenta after
the process has concluded should still be non-zero. It is unclear to me what the source of this
apparent non-conservation is, though there are three likely candidates. It could be due to
our neglect of the fringe fields, the approximate iterative solution to Maxwell’s equations, or
the neglect of the external supply governing the original current I. Whatever the case may
be though, it is quite surprising that the issue works out to cancel the final field momenta
exactly.

10 Problem 9: Electromagnetism

10.1 Problem statement (Dielectric Scattering)

Calculate the scattering cross section for unpolarized light of a small dielectric sphere with
electric susceptibility χ and radius a� λ.

(a) First calculate the induced dipole moment of a sphere in an external field.

(b) Then use this induced dipole to calculate the radiated power and then the cross section.
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(c) What changes for a ∼ λ? Do not calculate the cross section, just qualitatively explain
the difference with respect to the main case of this problem and what approach you
would follow to calculate this.

(d) Can you estimate the cross section in the opposite limit, a� λ?

10.2 Part (a)

Since the wavelength of the of the incident wave is much longer than the diameter of the
sphere, we are free to approximate the field at the sphere as spatially constant. We call
Ei = E0ẑe

i(k0·r−ωt) the incident wave. We also note that if a � λ, then the frequency is
small, so we are also free to approximate the solution by its first order classical perturbation
– the solution to the time-independent problem evaluated at the time-dependent field. So,
it will be sufficient to solve the potential theory problem to find the induced electric field.

To this end, we exploit the azimuthal symmetry of the problem to expand the potential
in the interior and exterior regions in terms of the Legendre polynomials,

φin =
∞∑
k=0

Akr
kPk(cos θ), φout = φext +

∞∑
k=0

Bk

rk+1
Pk(cos θ). (10.2.1)

To determine the coefficients Ak and Bk, we must require that the potentials match at
the boundary of the sphere and that the discontinuity in the normal component of the
displacement field is equal to the free surface charge density, of which there is none. To
simplify the calculation, however, we will rely on past experience and simply recall from the
get go that Ak = Bk = 0 for k > 1. Furthermore, we point out that the potential for the
external field is given by φext = −Eiz = −Eir cos θ = −EirP1(cos θ). Hence, the potentials
we are left with are

φin = A0 + A1rP1(cos θ), φout =
B0

r
+

(
B1

r2
− Eir

)
P1(cos θ). (10.2.2)

Imposing the constraint at the boundary for the displacement field is equivalent to forcing

ε
∂φin
∂r

∣∣∣∣
a

= ε0
∂φout
∂r

∣∣∣∣
a

(10.2.3)

where ε = (1 + χ)ε0. In terms of the coefficients to be determined, this requires

εA1P1(cos θ) = −ε0
B0

a2
− ε0

(
2
B1

a3
+ Ei

)
P1(cos θ). (10.2.4)
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Since we require this to hold across the entire sphere, the above condition must hold for all
θ, and hence the orthogonality of the Legendre polynomials forces B0 = 0 and

A1 = −ε0
ε

(
2
B1

a3
+ Ei

)
. (10.2.5)

So now, the continuity condition on the scalar potential implies

A0 − a
ε0
ε

(
2
B1

a3
+ Ei

)
P1(cos θ) =

(
B1

a2
− aEi

)
P1(cos θ), (10.2.6)

which must again hold for all θ, so A0 = 0 and

− aε0
ε

(
2
B1

a3
+ Ei

)
=

(
B1

a2
− aEi

)
. (10.2.7)

Solving this for B1 and putting the resulting expressions back in terms of χ, we find

φin = − 3

3 + χ
EirP1(cos θ), φout = Ei

(
3

3 + χ

a3

r2
− r
)
P1(cos θ). (10.2.8)

Now, we note that rP1(cos θ) = r cos θ = z. It then follows that φin = − 3
3+χ

Eiz, and

hence the electric field interior to the sphere is Ein = 3
3+χ

Eiẑ. We know by definition that

P = ε0χE = 3ε0χ
3+χ

Eiẑ. Since the integral of P is the total dipole moment, it follows that

p =

∫
dVP =

4

3
πa3 3ε0χ

3 + χ
Eiẑ = πε0

4χ

3 + χ
a3Eiẑ =

4πχε0
3 + χ

E0a
3ei(k0·r−ωt). (10.2.9)

We note that we are only justified in writing Ein = 3
3+χ

Eiẑ because the a is small compared
to the distance light travels per cycle, and so the retarded time is negligibly different from the
frame-time. If this were not the case, then we would need to use the chain rule in computing
the gradient. This is why we don’t bother calculating the electric field outside the sphere
here – the calculation would be at odds with the approximations we have made thus far.

10.3 Part (b)

Now that we have the induced dipole moment, we can compute the radiated power of the
dipole and the scattering cross-section of the process. To calculate the power, we can just
recall the formula for the power radiated by a dipole,

dPdipole
dΩ

=
µ0

16π2c
|̂r× p̈ret|2. (10.3.1)
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This is mostly a formula to be remembered because dipole radiation is the most common
thing we can be asked to compute. However, we can still think about how we should go
about remembering this formula, and the numeric prefactor in particular.

To this end, recall that the Poynting vector, S = 1
µ0
E×B is the energy flux – that is, the

energy per second per area. Let us consider the power passing through the surface element
r2dΩ. The power differential must then be dP = r̂ · Sr2dΩ, where we have assumed that
the surface element is oriented to be on a sphere of radius r so that r̂ points to the surface
element of interest. It should be noted that in older terminologies, such as Landau, this
quantity dP is known as the intensity, dI.

Next, we note that ∫
dV ′j(r′, t) =

∑
qkvk =

d

dt

∫
dV ′r′ρ =

dp

dt
. (10.3.2)

now, as was pointed out in the disclaimer for this document, this is not a rigorous justifica-
tion, but more of a mnemonic for remembering that the integral over all space of the current
density should be equal to the first time derivative of the electric dipole moment10.

Now, let us recall that the Green function for the vector potential is given by11

A(r, t) =
µ0

4π

∫
dV ′

j(r′, t− |r− r′|/c)
|r− r′|

. (10.3.3)

Since we are looking to talk about radiation, we are interested in the far-field approximation
in which

|r− r′| ≈ r

(
1− r′

r
r̂ · r̂′

)
. (10.3.4)

With this, we are free to write the far field, or radiation, vector potential in the form

Arad(r, t) =
µ0

4πr

∫
dV ′j(r′, t− r/c+ r̂ · r′/c), (10.3.5)

and by nearly identical arguments,

φrad(r, t) =
1

4πε0

∫
dV ′ρ(r′, t− r/c+ r̂ · r′/c). (10.3.6)

10It is, however, worth pointing out that this is only true for systems of finite physical extent so the current
density goes to zero sufficiently fast at infinity.

11We note that this is Lorenz gauge.
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In fact, since the retarded time comes up so often, we define the symbol t∗(r, r′, t) =
t− |r− r′|/c ≈ t− r/c+ r̂ · r′ for the retarded time. In this notation, we have

Arad(r, t) =
µ0

4πr

∫
dV ′j(r′, t∗(r, r′, t)),

φrad(r, t) =
1

4πε0r

∫
dV ′ρ(r′, t∗(r, r′, t)).

(10.3.7)

In terms of these fields, we could compute the electric and magnetic radiation fields. We
demonstrate how to get the magnetic field and then will just state the result for the electric
field. To perform this computation, we require ∇×Arad. This could be a bit of a mess, but
remember that we are in the far field approximation, so we are only keeping terms to order
1/r in the fields12. As such, ∇(1/r) ≈ 0 for us. Hence, the curl commutes into the integral
in (??) and we convert the derivative into a time derivative via

∂

∂xa
jb(r

′, t− r/c+ r̂ · r′) ≈ − r̂a
c

∂

∂t
jb(r

′, t− r/c+ r̂ · r′). (10.3.8)

Hence,

Brad(r, t) = − µ0

4πc

r̂

r
×
∫

dV ′
∂

∂t
j(r′, t− r/c+ r̂ · r′) = − r̂

c
× ∂

∂t
Arad(r, t). (10.3.9)

The computation for the electric field is essentially the same, but requires us to use the
continuity equation to convert the time derivative of the charge density to a derivative of
the current density. The result is

Erad = −r̂× cBrad. (10.3.10)

This should be more or less reminiscent to the quite general free-field result, |E| = c|B|. in
particular, we note that these relations imply that S ∝ r̂.

So, we’ve done all of this, how do we make use of any of it? Our goal has been to compute
the power radiated to infinity, which means the computation of dP , which itself means the
computation of r̂ ·S. However, as we have already noted the directionality of S, we find that
we need only compute dP = r2|S|dΩ. This is fortunate since

|S| = 1

µ0

|Erad ×Brad| =
1

µ0c
|Erad|2 =

c

µ0

|Brad|2. (10.3.11)

12As another way to argue for this approximation, note that if we has a term of order n > 1 in 1/r, then
the definition given above for power (intensity) would have order 2n− 2 > 0 in 1/r. Since we are ultimately
interested in the power radiated to infinity, we see that in the limit r → ∞, all such terms will n > 1 will
not contribute to the intensity.
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Hence, dP = r2

µ0c
|Erad|2dΩ = cr2

µ0
|Brad|2dΩ.

Now, going back to the dipole situation, we have computed that
∫

dV ′j = d
dt
pret. It then

follows from the above that

Arad =
µ0

4πr

dpret
dt

, (10.3.12)

and hence we have the magnetic field

Brad = − µ0

4πcr
r̂× d2pred

dt2
= − µ0

4πcr
r̂× p̈ret. (10.3.13)

From here we just need to substitute the expressions to find

dP

dΩ
=

µ0

(4π)2c
|̂r× p̈ret|2, (10.3.14)

which is exactly the canned formula from the beginning of this section. So, we see that the

coefficient out front has a factor of 1/(4π)2 from the Green function and the factor of c
µ0

µ20
c2

comes from the coefficient of the Poynting vector times the µ2
0 again from the square of the

Green function and the 1/c2 from the square of the derivative of the retarded time.

Anyway, to proceed with the problem at hand, we just need to plug the dipole moment
we found in part (a) into this formula to get the radiated power per solid angle. So, we take
the two derivatives of the dipole moment to find

p̈ret = −4πχε0
3 + χ

ω2a3Ei. (10.3.15)

Then if we denote the direction of the incident electric field vector by ê,

dP

dΩ
=

µ0

16π2c

(
4πχε0
3 + χ

ω2a3

)2

E2
0 |̂r× ê|2 = α|̂r× ê|2, (10.3.16)

where we have defined the prefactor α for brevity.
However, this is only the radiated intensity for a single polarization. The problem states

that the incident light is unpolarized, so we have to first average over all of the possible
polarizations. To do so, let us fix the direction of propagation of the incident wave to
be k̂0 = ẑ. Then the electric field for this incident wave may point in any direction in
the xy-plane, ê = sin βx̂ + cos βŷ for any angle β, which we will be averaging over. The
angular position we are looking at is arbitrary, and so we may write the unit vector r̂ as
r̂ = cos θ sinφx̂ + sin θ sinφŷ + cosφẑ. Computing the cross product, we find

r̂× ê = −r̂zcosβx̂ + r̂z sin βŷ + (r̂x cos β − r̂y sin β)ẑ, (10.3.17)
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which squares to
|̂r× ê|2 = r̂2

z + (r̂x cos β − r̂y sin β)2. (10.3.18)

But now since sin β and cos β are orthogonal and both sin2 β and cos2 β average to 1/2, we
find that

〈|̂r× ê|2〉 =
1

2
(1 + cos2 φ), (10.3.19)

where φ is the zenith angle, so the radiated power is〈
dP

dΩ

〉
=

1

2
α(1 + cos2 φ) =

µ0

32π2c

(
4πχε0
3 + χ

ω2a3

)2

E2
0(1 + cos2 φ). (10.3.20)

Our next task for this part of the problem is to compute the scattering cross-section for
the problem. As we will see, however, almost all of the heavy lifting has already been done.
So first, we must define the differential scattering cross-section, dσ. Essentially, this is just
another way of looking at the quantity dP in a slightly less situation-dependent way. Notice
that the power (10.3.20) is proportional to the amplitude of the incident wave, and therefore
proportional to the incident energy flux. It makes sense to normalize out the incident flux
when considering the scattered power. So, we define

dσ =
〈dP 〉
|〈Sinc〉|

=
〈dP/dΩ〉
|〈Sinc〉|

dΩ. (10.3.21)

So, for the sake of this problem, we only need that |〈Sinc〉| = 1
2
ε0cE

2
0 and the power we just

found to write

dσ

dΩ
=

µ2
0

16π2

(
4πχε0
3 + χ

ω2a3

)2

(1 + cos2 φ) =

(
χ

3 + χ

ω2a3

c2

)2

(1 + cos2 φ) (10.3.22)

It is worth mentioning that there is a general result concerning what we’ve done here.
As we mentioned above, we expanded the fields to order 1/r everywhere, which is just the
largest term in the Laurent expansion which vanishes at infinity – we could call it the lowest
order expansion of the fields about infinity. The total field in the far-field region is the sum of
the incident wave and the scattered radiation, E = Einc+Erad. Unless the system of interest
is radiating in some way which is independent of the incident wave, which is typically not the
case when dealing with scattering problems, we know that the magnitude of the radiation
field will be proportional to the incident electric field’s amplitude. It therefore makes sense
to write Erad = 1

r
E0f(k)ei(kr−ωt) for some function f(k). Then the scattering cross-section

may be written
dσ

dΩ
= |f(k)|2, (10.3.23)

which, we point out, makes contact with scattering theory in quantum mechanics.
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10.4 Part (c)

For the case a ∼ λ, we can no longer approximate the incident field as being constant
across the sphere. As such, the potential theory calculation of part (a) would be worthless
since it is dependent on there being a uniform incident wave and, in particular, the integral
(10.2.9) would no longer be the integral of a constant as the polarization P would be spatially
dependent.

To deal with this, we might be able to use the Born approximation, which approximates
the field inside the dielectric, and therefore the field responsible for determining P, as being
equal to the incident electric field. That is, P ≈ ε0χEinc. This approximation is, however,
only good for weak dielectrics and weak conductors, so it would also require an assumption
on the value of χ.

10.5 Part (d)

If we are considering the limit a� λ, we are essentially in the regime of geometrical optics.
In this limit, we expect the the total cross section to converge to 2σgeom = πa2.

The discussion of why this is the case is also a good opportunity to gain an intuition for
what the cross-section is describing. Let us consider the case of a perfectly reflecting disk,
oriented with normal along the direction of propagation for the incident wave in the short
wavelength limit. In this limit, the disk casts a sharp circular shadow. As such, we would
expect the amplitude of the scattered light to be zero everywhere except possibly where the
light is reflected and, as we will see, in the shadow. So, when we integrate (10.3.23) over
solid angle, only the cylinder defined by the disk will matter. However, if we look in the
reflected portion, we see that |f(k)|2 must be unity here because all of the incident energy
is reflected, and hence the amplitude of the reflected radiation must be equal to that of the
incident wave. If we look in the shadow, we might not intuit that there is radiation here,
however, the way we have defined things is only to consider the part of the total electric
field which is not the incident wave. Well, in the shadow region, the total electric field is
zero – which necessitates that the radiation field is the negative of the incident field so they
cancel to create the shadow. Since the cross-section cares not for directionality, it follows
that |f(k)|2 must be unity in this region as well. Hence, we actually have two regions of area
σgeom which add together to make σ = 2σgeom.

Now, this result is explained for the specific case of a particular geometry and a perfectly
reflecting object. There is a bit of a trick about how the cross-section is defined for a perfectly
absorbing object, but the end result is that in the small wavelength limit, the cross-section
converges to 2σgeom there as well. In fact, it is conjectured that this convergence happens
independent of absorption and geometry, as long as we are in the small wavelength limit.
Numerical investigations appear to indicate that this is the case, though this remains an open
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question of electromagnetism since no major analytic results are known. This phenomena is
known as the Extinction Paradox, though there is, of course, no paradox to be had.

11 Problem 10: Electromagnetism

11.1 Problem Statement (Special Relativity)

(a) An infinitely long straight wire of negligible cross-sectional area with a uniform linear
charge density q0 is at rest in the inertial frame K ′. The frame K ′ moves with a
speed v = βc, where c is the speed of light, along the axis of the wire with respect to
the laboratory frame, K. Write down the electric and magnetic fields in cylindrical
coordinates in the rest frame of the wire. Using the Lorentz transformation properties
of the fields, find the components of the electric and magnetic fields in the laboratory
frame.

(b) What are the charge and current densities associated with the wire in its rest frame?

(c) From the laboratory charge and current densities, calculate directly the electric and
magnetic fields in the laboratory. Compare with the results of part (a).

11.2 Part (a)

The first part of this problem is a simple matter of using Gauss’ law to find the electric field.
Since there is no current in the K ′ frame, there is no magnetic field. Using Gauss’ law, the
electric field is simply

E′ =
q0

2πε0r
ρ̂. (11.2.1)

So, we now need to boost the fields to the laboratory frame. Since the system K ′ moves
with a velocity v in K, it follows that the boost from K ′ to K is by a velocity −v. Now, in
theory, we could remember the form of the boost matrix, then apply it to the 4-potential,
and then derive the transformation rules for the electromagnetic fields. Or, we could recall
that the field strength matrix transforms like a Lorentz tensor and takes the form

F µν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 , (11.2.2)
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then apply the boost to both indices. However, these are both sub-optimal solutions for the
sake of a timed exam, so it is likely better just to remember that the transformation law on
the fields for boost velocity v from an unprimed frame to a primed frame is

E′|| = E||, B′|| = B||,

E′⊥ = γ(E⊥ + v ×B⊥), B′⊥ = γ
(
B⊥ − v

c2
× E⊥

)
.

(11.2.3)

So, for the problem at hand, the laboratory fields are

E = γ
q0

2πε0r
ρ̂, B = γ

v

c2

q0

2πε0r
θ̂, (11.2.4)

where θ̂ is the angular direction in cylindrical coordinates. We also note that since the
distance r and the direction ρ̂ are orthogonal to the boost direction, they are the same in
both frames, and so we don’t need to worry about transforming the coordinates.

11.3 Part (b)

Since jµ = (ρ, j) is a vector which transforms under the Lorentz group, it could be feasible
to remember the boost matrix and apply it to jµ. Regardless though, the result is

ρ′ = γρ, j′⊥ = j⊥, j′|| = γ(j|| − ρv), (11.3.1)

where we are again going from the unprimed to the primed frame with boost velocity v.
So, for our case,

ρ = γρ′, j|| = γρ′v = γρ′vẑ. (11.3.2)

11.4 Part (c)

Finally, we just need to compute the electromagnetic fields in the laboratory frame using
the charge and current densities just found and check that they match the Lorentz boosted
fields we found in part (a). So, we apply Gauss’ and Amperé’s laws once again to write

E =
γq0

2πε0r
ρ̂,

µ0γvq0

2πr
θ̂ =

v

c2

γq0

2πε0r
θ̂, (11.4.1)

which match the fields found previously, as desired.
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12 Problem 11: Statistical Mechanics

12.1 Problem Statement (Partition Functions)

Consider a gas of classical and non-interacting atoms in thermal equilibrium at temperature
T in a container of volume V and surface area A. Each atom in the 3D bulk has zero
potential energy, but when absorbed on the surface, has a negative potential energy −E0

and can be treated as a 2D ideal gas. Each atom has mass m.

(a) Find the free energy FB and chemical potential µB for the bulk gas with NB atoms.

(b) Find the free energy FS and chemical potential µS for the surface gas with NS atoms.

(c) Compute the surface density σ(ρ, T ) = NS/A in terms of the bulk density ρ = NB/V
and T . What is the value of σ in the limit ~→ 0. (Hint: N ! ≈ NN/eN)

12.2 Part (a)

Now, before we get into just immediately calculating things, we should first discuss the usage
of the partition function vs the grand partition function. At first glance, it may seem more
reasonable to use the grand partition function to model the bulk and the surface separately,
and so perhaps we should use the grand partition function for this problem. However, we
could take the problem at face value and assume fixed NB and NS because the problem
says so in the prompt, but we could also come to the conclusion that this is the reasonable
thing to do ourselves once we realize that we should not, in fact, be trying to model the
two system separately. Instead, if we consider the composite system, then it’s clear that we
should use the partition function since the total particle number is conserved. Then since
the system are non-interacting, the total partition function may be written as the product
of the partition functions of the two system separately, Ztot = ZBZS. This can also be seen
by writing the Hamiltonian for the composite system and noting that it factors. Since the
total particle number of the composite system is conserved, it follows that N = NB +NS is
not a variable of the the sample space we are on, but merely a parameter determining the
fixed sample space. Therefore, we cannot vary the total N , and we see

µtot ≡ −kT
∂

∂N
lnZtot = 0. (12.2.1)

However, we could also write this as

0 = −kT ∂

∂N
(lnZB + lnZS) = −kT ∂ lnZB

∂NB

+ kT
∂ZS
∂NS

= µB − µS, (12.2.2)

38



and hence µB = µS in order for the particle number of the composite system to be con-
served. We could have also assumed this because it is usually the condition referred to as
“equilibrium,” but as we see, we could have deduced this ourselves.

In any case, we turn to the problem of computing the partition function for the bulk so
we can actually finish this problem. The Hamiltonian in the bulk is simply HB =

∑
k

1
2
mv2

k.
This obviously factors, and the particles are considered to be identical, so the partition
function for the bulk is given in terms of the single particle partition function in the bulk by
ZB = 1

NB !
ZNB

1 . The single particle partition function is computed to be

Z1 =

∫
d3pd3q

h3
e−βp

2/2m =
V

h3

∫
d3pe−

β
2m

p2 = V

(
2mπ

h2β

)3/2

=
V

λ3
(12.2.3)

where λ =
√

2π~2β
m

is a stupid meme known as the thermal wavelength. In any case, the

bulk partition function is now

ZB =
1

NB!

V NB

λ3NB
≈
(

e

NB

V

λ3

)NB
. (12.2.4)

Alright, at this point, we recall the definition of the free energy as FB = −kT lnZB, so
we may write it in the form

FB = −kTNB

[
1− lnNB + ln

V

λ3

]
. (12.2.5)

Now, while FB is a Legendre transformation of EB, the pair (µB, NB) is not transformed,
hence ∂FB

∂NB
= µB. So,

µB = kT ln
NBλ

3

V
. (12.2.6)

12.3 Part (b)

We now do the same thing for the surface subsystem. Very little changes between these
two computations, through we do have to be careful to replace the appropriate powers of
3 with powers of 2 and remember to track the potential energy −E0 around. As before,
ZS = 1

NS !
ZNS

1 and

Z1 =

∫
d2pd2q

h2
e−βp

2/2m+βE0 =
A

h2
eβE0

∫
d2pe−

β
2m

p2 =
A

λ2
eβE0 , (12.3.1)
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so the full partition function is

ZS =
1

NS!
ZNS

1 =

(
e

NS

A

λ2
eβE0

)NS
. (12.3.2)

The definition of the free energy does not depend on dimension, so we use the same free
energy formula to find

FS = −kTNS

[
1− lnNS + ln

A

λ2
+ βE0

]
, (12.3.3)

which then gives a chemical potential

µS = kT ln
NSλ

2

A
− E0. (12.3.4)

And that’s all folks.

12.4 Part (c)

Now for this part, we are supposed to compute σ = NS/A as a function of ρ = NB/V . This
requires us to have some relation connecting the two system. Fortunately, we already know
of such a connection which is forced on us by the conservation of the total particle number,
and hence which we might expect to give a relationship between the number of particles in
each of the two systems: µS = µB. In terms of the expressions just obtained, this imposes

kT ln
NBλ

3

V
= kT ln

NSλ
2

A
− E0. (12.4.1)

Fortunately for us, this relation is already in terms of the quantities σ and ρ. Solving this
equation for σ, we find

σ = λρeβE0 . (12.4.2)

Finally, we are asked about the limit ~→ 0. We note that the only quantity here which
depends on ~ is the thermal wavelength λ ∝ ~. Hence, in the ~→ 0 limit, the surface density
goes to zero and all particles of the system accumulate in the bulk.
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