12. (Statistical Mechanics)

Consider a d-dimensional gas of spin- $1 / 2$ electrons (two spin states per electron). The gas is enclosed in a rectangular box whose sides have equal length L. Assume that the box is large enough such that the spectrum may b approximated by a continuum.
Define the surface area of the d-dimensional hypersphere of radius r as $S_{d} r^{d-1}$ (e.g. $S_{2}=2 \pi$ and $\left.S_{3}=4 \pi\right)$.
(a) Given electron density $\rho=N / L^{d}$, where N is the total number of electrons, calculate the Fermi wavevector k_{F}. Express your answer in terms of d, ρ, and S_{d}.
(b) Using the definition $E_{F}=\hbar^{2} k_{F}^{2} / 2 m$, calculate the density of states per unit volume, ρ_{E} as a function of energy E. Express your answer in terms of ρ, d, and E_{F}.

This problem relies on some background knowledge about phase space and the density of states:

Phase space and density of states:

Consider a particle in d-dimensional space. The particle's state can be defined by its position $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$, its momentum $\mathbf{p}=\left(p_{1}, \ldots, p_{d}\right)$, and any internal degrees of freedom (e.g. spin). Assume that there are g possible internal states for the particle.
The position and momentum of the particle constitute a point in $2 d$-dimensional phase space: $\left(x_{1}, \ldots, x_{d}, p_{1}, \ldots, p_{d}\right)$.
To solve problems, discretize phase space by dividing it into $2 d$-dimensional boxes. The volume of each box is h^{d}, where h is Planck's constant (which has units of position times momentum). The number of boxes in a phase-space volume $d^{d} p d^{d} x$ is the total volume divided by the volume of each box, or $\frac{d^{d} p d^{d} x}{h^{d}}$. Each box has g possible states, corresponding to the internal degrees of freedom of the particle. Therefore, the number of possible states in a phase-space volume $d^{d} p d^{d} x$ is

$$
\begin{equation*}
\text { Number of possible states in a phase-space volume } d^{d} p d^{d} x=g \frac{d^{d} p d^{d} x}{h^{d}} \tag{377}
\end{equation*}
$$

To find the density of states in terms of the wavenumber k or the energy E, change variables from p to k or E, typically using the relation for free particles $E=\frac{p^{2}}{2 m}=\frac{\hbar^{2} k^{2}}{2 m}$ and converting to spherical coordinates. Also, for free particles, you can replace $d^{d} x$ with V, the total volume since the wavenumber and energy does not depend on x. You can then extract your answer using the relation

$$
\begin{equation*}
g \frac{d^{d} p d^{d} x}{h^{d}}=\rho_{k} d k=\rho_{E} d E \tag{378}
\end{equation*}
$$

Part (a) also relies on understanding the Fermi wavenumber:

Fermi momentum/wavenumber/energy:

For a set of N free fermions in a volume V, the ground state consists of filling up the lowestenergy states until we have used up all N fermions. (By the Pauli exclusion principle, we can only fill each state once.) Since $E=\frac{p^{2}}{2 m}$ for free particles, this consists of filling up the momentum part of phase space in a spherically symmetric manner. The momentum radius of that sphere is the Fermi momentum p_{F}.
To find the Fermi momentum p_{F}, calculate the number of possible states in a phase-space volume that is a sphere of radius p_{F} in the momentum part of phase space, and that occupies a volume V in the position part of phase space. Then, set this number equal to the number of particles N. In other words, solve the following equation for p_{F} :

$$
\begin{equation*}
N=\int_{p \leq p_{F}} g \frac{d^{d} p d^{d} x}{h^{d}}=g \frac{V}{h^{d}} \int_{p \leq p_{F}} d^{d} p \tag{379}
\end{equation*}
$$

Here, g is the number of internal states per particle.
From the Fermi momentum, we can derive the Fermi wavenumber and the Fermi energy using

$$
\begin{equation*}
p_{F}=\hbar k_{F} \quad \text { and } \quad E_{F}=\frac{p_{F}^{2}}{2 m}=\frac{\hbar^{2} k_{F}^{2}}{2 m} \tag{380}
\end{equation*}
$$

(a) The form of the electron density $\rho=N / L^{d}$ may seem a bit confusing. It just means the total number of electrons over the total volume, and it is a different quantity than the density of states. We will use it only at the end of the calculation.

Our starting point is the equation (379). Here, the volume is L^{2}, so we get

$$
N=g \frac{V}{h^{d}} \int_{p \leq p_{F}} d^{d} p=g \frac{L^{d}}{h^{d}} \int_{p \leq p_{F}} d^{d} p
$$

This integrand is spherically symmetric, so we can replace the integration measure $d^{d} p$ with a single integration measure $d p$:

$$
\begin{equation*}
d^{d} p=(\text { Surface area of } d \text {-dimensional hypersphere }) \cdot p^{d-1} d p=S_{d} p^{d-1} d p \tag{381}
\end{equation*}
$$

For example, $d^{3} p=S_{3} p^{2} d p=4 \pi p^{2} d p$.
This boils the integral down to

$$
\begin{align*}
N & =g \frac{L^{d}}{h^{d}} \int_{p=0}^{p=p_{F}} S_{d} p^{d-1} d p \\
& =g \frac{L^{d}}{h^{d}} S_{d} \int_{p=0}^{p=p_{F}} p^{d-1} d p \\
& =g \frac{L^{d}}{h^{d}} S_{d}\left[\frac{p^{d}}{d}\right]_{p=0}^{p=p_{F}} \\
N & =g \frac{L^{d}}{h^{d}} S_{d} \frac{p_{F}^{d}}{d} \tag{382}
\end{align*}
$$

Using the fact that $p_{f}=\hbar k_{F}$ and $h=2 \pi \hbar$, this simplifies to

$$
N=g \frac{L^{d}}{d(2 \pi \hbar)^{d}} S_{d}\left(\hbar k_{F}\right)^{d}=g \frac{L^{d}}{d(2 \pi)^{d}} S_{d} k_{F}^{d}
$$

We can now solve for k_{F} :

$$
\begin{equation*}
k_{F}=\left(\frac{d(2 \pi)^{d}}{g S_{d}} \frac{N}{L^{d}}\right)^{1 / d} \tag{383}
\end{equation*}
$$

We can substitute ρ for N / L^{d}. The last thing to note is that $g=2$ here. That's because these are spin- $1 / 2$ particles, so because each particle can take one of two internal states (spin up or spin down). Putting all this together, we get

$$
\begin{equation*}
k_{F}=\left(\frac{d(2 \pi)^{d}}{2 S_{d}} \rho\right)^{1 / d} \tag{384}
\end{equation*}
$$

(b) By (378), the density of states is given by

$$
\rho_{E} d E=g \frac{d^{d} p d^{d} x}{h^{d}}
$$

We can replace $d^{d} x$ by the volume L^{d}, since the energy does not depend on the position:

$$
\rho_{E} d E=g \frac{L^{d}}{h^{d}} d^{d} p
$$

This integrand is spherically symmetric, so we can replace the integration measure $d^{d} p$ with a single integration measure $d p$:

$$
\begin{equation*}
d^{d} p=(\text { Surface area of } d \text {-dimensional hypersphere }) \cdot p^{d-1} d p=S_{d} p^{d-1} d p \tag{385}
\end{equation*}
$$

We can therefore write

$$
\begin{equation*}
\rho_{E} d E=g \frac{L^{d}}{h^{d}} S_{d} p^{d-1} d p \tag{386}
\end{equation*}
$$

We now need to change variables from p to E, using the relation for free particles valid for this problem:

$$
\begin{equation*}
E=\frac{p^{2}}{2 m} ; \quad \text { so } \quad p=(2 m E)^{1 / 2} \quad \text { and } \quad d E=\frac{p}{m} d p \tag{387}
\end{equation*}
$$

Substituting in these values, we get

$$
\begin{aligned}
\rho_{E} d E & =g \frac{L^{d}}{h^{d}} S_{d} p^{d-1} d p \\
& =g \frac{L^{d}}{h^{d}} S_{d} p^{d-2} p d p \\
& =g \frac{L^{d}}{h^{d}} S_{d}(2 m E)^{(d-2) / 2} p\left(\frac{m}{p} d E\right) \\
& =g \frac{L^{d}}{h^{d}} S_{d}(2 m E)^{(d / 2)-1}(m d E) \\
& =g \frac{L^{d}}{h^{d}} S_{d} \frac{(2 m E)^{d / 2}}{2 E} d E \\
& =\frac{L^{d}}{h^{d}} S_{d} \frac{(2 m E)^{d / 2}}{E} d E \quad \text { since } g=2 \text { for a spin-1/2 particle }
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\rho_{E}=\left(\frac{L^{d}}{h^{d}} S_{d}\right) \frac{(2 m E)^{d / 2}}{E} \tag{388}
\end{equation*}
$$

All that remains is to write this in terms of the Fermi energy. From part (a), we know that since $g=2$, we have (382)

$$
N=2\left(\frac{L^{d}}{h^{d}} S_{d}\right) \frac{p_{F}^{d}}{d}
$$

Using the fact that $E_{F}=\frac{p_{F}^{2}}{2 m}$, we can rewrite this relation in terms of E_{F} :

$$
\begin{equation*}
N=2 \frac{L^{d}}{h^{d}} S_{d} \frac{\left(2 m E_{F}\right)^{d / 2}}{d} \Longrightarrow \frac{L^{d}}{h^{d}} S_{d}=\frac{N d}{2} \frac{1}{\left(2 m E_{F}\right)^{d / 2}} \tag{389}
\end{equation*}
$$

Plugging this into (388), we get

$$
\begin{align*}
\rho_{E} & =\left(\frac{L^{d}}{h^{d}} S_{d}\right) \frac{(2 m E)^{d / 2}}{E} \\
& =\left(\frac{N d}{2} \frac{1}{\left(2 m E_{F}\right)^{d / 2}}\right) \frac{(2 m E)^{d / 2}}{E} \\
& =N \frac{d}{2 E}\left(\frac{E}{E_{F}}\right)^{d / 2} \tag{390}
\end{align*}
$$

The problem asks for the density of states per unit volume, which is equal to the density of states divided by the volume L^{d} :

$$
\begin{align*}
D(E)=\frac{\rho_{E}}{L^{d}} & =\frac{N}{L^{d}} \frac{d}{2 E}\left(\frac{E}{E_{F}}\right)^{d / 2} \\
& =\rho \frac{d}{2 E}\left(\frac{E}{E_{F}}\right)^{d / 2} \quad \text { since } \rho=\frac{N}{L^{d}} \tag{391}
\end{align*}
$$

Therefore, the density of states per unit volume is

$$
\begin{equation*}
D(E)=\rho \frac{d}{2 E}\left(\frac{E}{E_{F}}\right)^{d / 2}=\rho \frac{d}{2 E_{F}}\left(\frac{E}{E_{F}}\right)^{d / 2-1} \tag{392}
\end{equation*}
$$

