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1. Consider a pendulum consisting of a point mass m attached to a string of slowly
increasing length ℓ(t). The change of length versus time is ℓ̇. The motion is confined to a
plane and we assume that |ℓ/ℓ̇| is much greater than the period of the oscillation.

(a) (6 pts) Find the Lagrangian L(θ, θ̇, t) and the Hamiltonian H(θ, pθ, t) of the system,
where θ is the angle of the string relative to downward, pθ is the conjugate momentum, and
θ̇ is the change of θ versus time.

(b) (4 pts) Show why H is or is not equal to the total energy E of the pendulum.

(c) (4 pts) Derive the equation of motion for θ in the form of a differential equation. When
the change of length versus time ℓ̇ = 0, what is the angular frequency ω0 of small oscillations?

(d) (6 pts) Suppose the length varies slowly so that |ℓ̇/ℓ| ≪ ω0, the angular frequency
of oscillation. Show that as the length varies, the amplitude of small oscillations varies pro-
portionally to ℓa and find a, the numerical exponent. (Hint: Consider using

∫
pθdθ as an

adiabatic invariant.)





3. Physicists at a top-secret government laboratory discovered a Super-Gas that has the

following number of microstates:

Ω =
κ10N

N !

π10N V 10N U 10N

h20N c10N

as a function of internal energy U , volume V , and the number of particles N . The constants
π, h, and c are pi, Planck’s constant, and the speed of light. The constant κ makes the units
come out correctly.

The Super-Gas is placed on the left-hand side of the container below and helium gas is
placed on the right-hand side. Both have the same number of particles N and occupy the
same volume V/2. (For simplicity, neglect the heat capacity of the container and assume the
container is isolated from the rest of the world. Use a simple model for the helium gas.)

a) The wall between the gas and the Super-Gas conducts heat but cannot move. At thermal
equilibrium what is the ratio of the internal energy of the Super-Gas to that of the helium gas?

b) Now both sides are at temperature T . The wall is allowed to slide so that the volumes
can change slowly. What is the ratio of the final volume of Super-Gas to that of helium?



4. Part of a circuit consists of an Archimedean spiral which is given by the following

equation in cylindrical coordinates:

ρ = aϕ,

where a > 0, N is a positive integer > 1, and 2π < ϕ < 2πN as shown below for N = 5.
The origin is marked by O.

A steady current I is running counter-clockwise in the spiral. Find the contribution to
the magnetic field (direction and magnitude) from the spiral at the origin as a function of
N , a, I, and physical constants.

For simplicity, ignore the contribution from the rest of the circuit and assume no charge
is building up at the ends.
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5. Starting with the time-independent Schrödinger equation, work out the fraction of
incident particles transmitted through a rectangular one-dimensional potential barrier in
the case shown below, where the energy E of the incident particles is equal to the barrier
height V . Let the particles have mass m and let the barrier width be a.













Solution for problem 2
Calculate the angular momentum stored in the fields before the current starts 
to flow; this will be the mechanical angular momentum after the capacitor is 
drained.

!Lem = µoεo

∫

!r × !SdV = εo

∫

!r × !E × !BdV

The electric field between the plates is:

!E =
Q

2πLεor
r̂

And the Poynting vector in between the plates is then (B = Bẑ):

!S = −
QB

2πLµoεor
φ̂

And Lem becomes (After integrating):

!Lem = −
QB

2πL

∫ b

a
2πrdrL = −

QB

2

(

b2
− a2

)

ẑ

The final angular velocity of the capacitor is just this divided by the
moment of inertia:

!ω =
!Lem

I
= −

QB

2I

(

b2
− a2

)

ẑ











Solution: Problem 6
(Source: This is almost verbatim from the discussion in Ch. 1 of Sakurai that
concludes with his statement, “Here lies the heart of quantum mechanics.”)

(a) Operating on the left with any arbitrary B eigenstate ⟨b′′| gives

⟨b′′|a′⟩ = ⟨b′′|
∑
b

cb|b⟩

= cb′′⟨b′′|b′′⟩
= cb′′

and so cb = ⟨b|a′⟩ . The same procedure applied to the second case shows

that cc = ⟨c|b′⟩ .

(b) The probability of outcome |b′⟩ given |a′⟩ is P (b′|a′) = |cb′ |2. The prob-
ability of outcome |c′⟩ given |b′⟩ is P (c′|b′) = |cc′ |2. Therefore, we have

P (c′|a′ & b′) = |cb′ |2 |cc′ |2 .

(c) ∑
b′

P (c′|a′ & b′) =
∑
b′

|cb′ |2 |cc′ |2

=
∑
b′

⟨a′|b′⟩⟨b′|c′⟩⟨c′|b′⟩⟨b′|a′⟩ (3)

(d) P (c′|a′) = |⟨a′|c′⟩|2 = ⟨a′|c′⟩⟨c′|a′⟩. To compare this to Eq. (3), we can write
⟨a′| in the B basis,

⟨a′| =
∑
b

⟨a′|b⟩⟨b|

which gives us

P (c′|a′) =

∣∣∣∣∣∑
b

⟨a′|b⟩⟨b|c′⟩

∣∣∣∣∣
2

=
∑
b,b′′

⟨a′|b⟩⟨b|c′⟩⟨c′|b′′⟩⟨b′′|a′⟩. (4)

Comparing Eq. (3) to Eq. (4), we see that these will not have to be the
same probability.

There are other ways to arrive at this answer as well. For instance, if |a′⟩
and |c′⟩ are orthogonal, clearly P (c′|a′) = 0, but there may be B eigenstates
that are not orthogonal to either one, in which case result (3) is nonzero.




