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6. (Classical Mechanics)

Consider a field  (r, t); r = x, y, z, which obeys the following equation of motion:

@
2 

@t2
� c

2
r

2 = V (z) � (sech ) (tanh )

where V (z) is a real function of z, and c is a constant.

(a) Write down a Lagrangian density L( ) whose variation (when set equal to zero) yields the above
equation of motion for the field  (r, t).

(b) Consider the energy and momentum of the field  (r, t). Which of these quantities is conserved and
why?

(c) Write down the law for the time development of the energy density for this field theory.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

In general, it is easier to handle classical field theory using the notation of special relativity. For
those unfamiliar with that notation, though, we provide two solutions: one in special relativistic
notation and one in more elementary notation.

Special relativistic notation:
We use the following conventions:

@µ ⌘

✓
1

c

@

@t
,r

◆
and ⌘µ⌫ ⌘ diag(+1,�1,�1,�1) (199)

(a) The equation of motion can be written as

c
2
@
µ
@µ = V (z) � (sech ) (tanh ) (200)

One way or another, you need to come up with the following ansatz for the Lagrangian density:

L = A @
µ @µ +Q( , r, t) (201)

where A is an undetermined constant and Q( , r, t) is an undetermined function. Here is how
to come up with this ansatz:

• If you have some experience with the Klein-Gordon Lagrangian, you might already know
that a term in the Lagrangian of the form @

µ @µ produces a term in the equation of
motion of the form @

µ
@µ .

• If you don’t, you might remember the process of finding the equation of motion by taking
the variation of the action. That process involves integration by parts, so a term in the
Lagrangian of the form @

µ @µ would produce a term in the equation of motion of the
form @

µ
@µ .

• Otherwise, you might know the formula for the Euler-Lagrange equation

@µ

✓
@L

@ (@µ )

◆
�

@L

@ 
= 0 (202)

which clarifies that a term in the Lagrangian of the form @
µ @µ would produce a term

in the equation of motion of the form @
µ
@µ .

Now that we have the ansatz (201), we can match the given equation of motion (200) to the
Euler-Lagrange equation derived from the ansatz (201) by variation of the action and integration
by parts:

�S = �

✓Z
d
4
xL

◆

= �

✓Z
d
4
x [A @

µ @µ +Q( , r, t)]

◆

=

Z
d
4
x [2A @

µ @µ (� ) +Q
0( , r, t) � ] where Q

0
⌘

@Q

@ 

=

Z
d
4
x [�2A @

µ
@µ � +Q

0( , r, t) � ] + boundary term

=

Z
d
4
x [�2A @

µ
@µ +Q

0( , r, t)] � + boundary term (203)

We may ignore the boundary term. To get the classical solution for  , we set �S = 0 for all
possible values of � , which gives us

2A @
µ
@µ = Q

0( , r, t) where Q
0
⌘

@Q

@ 
(204)
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Alternatively, we can use the formula for the Euler-Lagrange equation (202) to get

@µ

✓
@L

@ (@µ )

◆
=

@L

@ 

@µ (2A@
µ ) = Q

0( , r, t)

2A @
µ
@µ = Q

0( , r, t) where Q
0
⌘

@Q

@ 
(205)

Either way, matching the calculated Euler-Lagrange equation to the equation of motion (200),
we get

A =
c
2

2
and Q

0( , r, t) = V (z) � (sech ) (tanh ) (206)

Taking the antiderivative of Q0 to get Q requires knowing that

(sinhx)0 = coshx and (coshx)0 = sinhx (207)

Note that unlike the analogous trigonometric identities, the hyperbolic trigonometric iden-
tities don’t have a minus sign. We can use this information to write the antiderivative of
(sech ) (tanh ):

(sech ) (tanh ) =
sinh 

cosh2 
=

✓
�

1

cosh 

◆0
= (� sech )0 (208)

Thus, ignoring the integration constant, we can write

Q =
1

2
V (z) 2 + sech (209)

Therefore, putting everything together using our ansatz (201), we can write one form of the
Lagrangian density:

L =
c
2

2
@
µ @µ +

1

2
V (z) 2 + sech =

1

2

✓
@ 

@t

◆2

�
c
2

2
(r )2 +

1

2
V (z) 2 + sech (210)

We can add any total derivative (including a constant) to the Lagrangian density without
changing the equation of motion, and we can multiply the Lagrangian density by any constant
without changing the equation of motion.

(b) In the form we have written it, the Lagrangian density has no explicit time dependence. There-
fore, the energy of the field  (r, t) is conserved.

In the form we have written it, the Lagrangian density has no explicit dependence on the
coordinates x or y. Therefore, the momentum of the field  (r, t) in the x-direction and in the
y-direction, i.e., Px and Py, are conserved.

The Lagrangian density explicitly depends on z because of the potential V (z), and such de-
pendence cannot be eliminated by adding a total derivative to the Lagrangian. Therefore, the
momentum of the field  (r, t) in the z-direction is not conserved.

(c) You might already know (or have on your formula sheet) the definition of the energy-momentum
tensor:

T
µ

⌫
⌘

@L

@ (@µ )
@⌫ � �

µ

⌫
L (211)

Assuming that the Lagrangian density is independent of x⌫ , the 4-divergence of this tensor is
zero:

@µT
µ

⌫
= 0 (212)
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If you didn’t know this result, you could derive it using the following argument: Suppose that L
does not explicitly depend on the coordinate x⌫ . Then, the partial derivative of L with respect
to x

⌫ depends only on the dependence of the fields  and their derivatives on x
⌫ . Applying

the chain rule, we get
@L

@x⌫
=

@L

@ (@µ )
@⌫ (@µ ) +

@L

@ 
@⌫ 

Now, integrating the first term on the right-hand side by parts and keeping the boundary term,
we get

@L

@x⌫
= @µ

✓
@L

@ (@µ )
@⌫ 

◆
� @µ

✓
@L

@ (@µ )

◆
@⌫ +

@L

@ 
@⌫ 

By the Euler-Lagrange equation, @µ
⇣

@L
@(@µ )

⌘
�

@L
@ = 0, so the last two terms cancel:

@L

@x⌫
= @µ

✓
@L

@ (@µ )
@⌫ 

◆

Writing @L
@x⌫ = @

@xµ (�µ
⌫
L) and simplifying, this becomes

@µ

✓
@L

@ (@µ )
@⌫ � �

µ

⌫
L

◆
= 0 (213)

This is equal to @µT
µ

⌫
= 0 after we apply the definition of the energy-momentum tensor (211).

Breaking up @µT
µ

⌫
= 0 into a sum of spatial and time components, we get

0 = @µT
µ

⌫
=

1

c

@T
0
⌫

@t
+

3X

i=1

@iT
i

⌫
(214)

The law for the time dependence of the energy is the component of this equation with µ = 0:

0 =
1

c

@T
0
0

@t
+

3X

i=1

@iT
i

0 (215)

Using the definition (211) and the fact that @µ ⌘
�
1
c

@

@t
,r
�
, we get that

T
0
0 =

@L

@ (@t )
� L and T

i

0 =
1

c

@L

@ (r )

@ 

@t
(216)

so (215) becomes (after canceling a factor of 1/c) a continuity equation for the energy density:

0 =
@

@t

✓
@L

@ (@t )
� L

| {z }
energy density

◆
+r ·

✓
@L

@ (r )

@ 

@t| {z }
energy current

density

◆
(217)

Plugging in our Lagrangian from part (a) (210), we get that the energy density is

u ⌘
@L

@ (@t )
� L

=
@ 

@t
�

 
1

2

✓
@ 

@t

◆2

�
c
2

2
(r )2 +

1

2
V (z) 2 + sech 

!

=
1

2

✓
@ 

@t

◆2

+
c
2

2
(r )2 �

1

2
V (z) 2

� sech (218)
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and that the energy current density is

S ⌘
@L

@ (r )

@ 

@t

= �c
2
r 

@ 

@t

Thus, the law for the time development of the energy density u of this theory is

@u

@t
+r ·

✓
�c

2
r 

@ 

@t

◆
= 0 for u ⌘

1

2

✓
@ 

@t

◆2

+
c
2

2
(r )2 �

1

2
V (z) 2

� sech (219)

Nonrelativistic notation:

(a) The equation of motion is given by

@
2 

@t2
� c

2
r

2 = V (z) � (sech ) (tanh ) (220)

One way or another, you need to come up with the following ansatz for the Lagrangian density:

L = B

✓
@ 

@t

◆2

+ C(r )2 +Q( , r, t) (221)

where B and C are an undetermined constants and Q( , r, t) is an undetermined function.
Here is how to come up with this ansatz:

• You might remember the process of finding the equation of motion by taking the variation
of the action. That process involves integration by parts, so a term in the Lagrangian of

the form
�
@ 
@t

�2
would produce a term in the equation of motion of the form @

2
 

@t2
, and

a term in the Lagrangian of the form (r )2 would produced a term in the equation of
motion of the form r

2 .

• Otherwise, you might know the formula for the Euler-Lagrange equation

@t

✓
@L

@ (@t )

◆
+r ·

✓
@L

@ (r )

◆
�

@L

@ 
= 0 (222)

This clarifies that a term in the Lagrangian of the form
�
@ 
@t

�2
would produce a term in

the equation of motion of the form @
2
 

@t2
, and a term in the Lagrangian of the form (r )2

would produced a term in the equation of motion of the form r
2 .

Now that we have the ansatz (221), we can match the given equation of motion (220) to the
Euler-Lagrange equation derived from the ansatz (221) by variation of the action and integration
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by parts:

�S = �

✓Z
d
4
xL

◆

= �

 Z
d
4
x

"
B

✓
@ 

@t

◆2

+ C(r )2 +Q( , r, t)

#!

=

Z
d
4
x


2B

@ 

@t

@

@t
(� ) + 2Cr ·r(� ) +Q

0( , r, t) � 

�
where Q

0
⌘

@Q

@ 

=

Z
d
4
x


�2B

@
2 

@t2
� � 2Cr

2 � +Q
0( , r, t) � 

�
+ boundary term

=

Z
d
4
x


�2B

@
2 

@t2
� 2Cr

2 +Q
0( , r, t)

�
� + boundary term (223)

We may ignore the boundary term. To get the classical solution for  , we set �S = 0 for all
possible values of � , which gives us

2B
@
2 

@t2
+ 2Cr

2 = Q
0( , r, t) where Q

0
⌘

@Q

@ 
(224)

Alternatively, we can use the formula for the Euler-Lagrange equation (222) to get

@t

✓
@L

@ (@t )

◆
+r ·

✓
@L

@ (r )

◆
=

@L

@ 

@t

✓
2B

@ 

@t

◆
+r · (2Cr ) = Q

0( , r, t)

2B
@
2 

@t2
+ 2Cr

2 = Q
0( , r, t) where Q

0
⌘

@Q

@ 
(225)

Either way, matching the calculated Euler-Lagrange equation to the equation of motion (220),
we get

B =
1

2
; C = �

c
2

2
; Q

0( , r, t) = V (z) � (sech ) (tanh ) (226)

Taking the antiderivative of Q0 to get Q requires knowing that

(sinhx)0 = coshx and (coshx)0 = sinhx (227)

Note that unlike the analogous trigonometric identities, the hyperbolic trigonometric iden-
tities don’t have a minus sign. We can use this information to write the antiderivative of
(sech ) (tanh ):

(sech ) (tanh ) =
sinh 

cosh2 
=

✓
�

1

cosh 

◆0
= (� sech )0 (228)

Thus, ignoring the integration constant, we can write

Q =
1

2
V (z) 2 + sech (229)

Therefore, putting everything together using our ansatz (221), we can write one form of the
Lagrangian density:

L =
1

2

✓
@ 

@t

◆2

�
c
2

2
(r )2 +

1

2
V (z) 2 + sech (230)

We can add any total derivative (including a constant) to the Lagrangian density without
changing the equation of motion, and we can multiply the Lagrangian density by any constant
without changing the equation of motion.
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(b) In the form we have written it, the Lagrangian density has no explicit time dependence. There-
fore, the energy of the field  (r, t) is conserved.

In the form we have written it, the Lagrangian density has no explicit dependence on the
coordinates x or y. Therefore, the momentum of the field  (r, t) in the x-direction and in the
y-direction, i.e., Px and Py, are conserved.

The Lagrangian density explicitly depends on z because of the potential V (z), and such de-
pendence cannot be eliminated by adding a total derivative to the Lagrangian. Therefore, the
momentum of the field  (r, t) in the z-direction is not conserved.

(c) You might already know (or have on your formula sheet) the energy continuity equation:

0 =
@

@t

✓
@L

@ (@t )
� L

| {z }
energy density

◆
+r ·

✓
@L

@ (r )

@ 

@t| {z }
energy current

density

◆
(231)

If you didn’t know this result, you could derive it using the following argument: Suppose that
L does not explicitly depend on the coordinate t. Then, the partial derivative of L with respect
to t depends only on the dependence of the fields  and their derivatives on t. Applying the
chain rule, we get

@L

@t
=

@L

@ (@t )
@t (@t ) +

@L

@ (r )
·r(@t ) +

@L

@ 
@t 

Now, integrating the first two terms on the right-hand side by parts and keeping the boundary
term, we get

@L

@t
=

@

@t

✓
@L

@ (@t )
@t 

◆
+r·

✓
@L

@ (r )
· @t 

◆
�

@

@t

✓
@L

@ (@t )

◆
@t �r·

✓
@L

@ (r )

◆
@t +

@L

@ 
@t 

By the Euler-Lagrange equation, @t
⇣

@L
@(@t )

⌘
+r ·

⇣
@L

@(r )

⌘
�

@L
@ = 0, so the last three terms

cancel:
@L

@t
=

@

@t

✓
@L

@ (@t )
@t 

◆
+r ·

✓
@L

@ (r )
· @t 

◆

Simplifying, this becomes

0 =
@

@t

✓
@L

@ (@t )
� L

| {z }
energy density

◆
+r ·

✓
@L

@ (r )

@ 

@t| {z }
energy current

density

◆
(232)

Plugging in our Lagrangian from part (a) (230), we get that the energy density is

u ⌘
@L

@ (@t )
� L

=
@ 

@t
�

 
1

2

✓
@ 

@t

◆2

�
c
2

2
(r )2 +

1

2
V (z) 2 + sech 

!

=
1

2

✓
@ 

@t

◆2

+
c
2

2
(r )2 �

1

2
V (z) 2

� sech (233)
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and that the energy current density is

S ⌘
@L

@ (r )

@ 

@t

= �c
2
r 

@ 

@t

Thus, the law for the time development of the energy density u of this theory is

@u

@t
+r ·

✓
�c

2
r 

@ 

@t

◆
= 0 for u ⌘

1

2

✓
@ 

@t

◆2

+
c
2

2
(r )2 �

1

2
V (z) 2

� sech (234)
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