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2. (Quantum Mechanics)

A system is described by a Hilbert space spanned by two orthonormal kets |0i and |1i. In this basis, the
matrix elements of the Hamiltonian H0 are:

✓
h0|H0|0i h0|H0|1i
h1|H0|0i h1|H0|1i

◆
=

✓
2~! 0
0 0

◆

where ! is real. At time t = 0 the system is in state |0i, and a perturbation, H1, is suddenly switched
on. The matrix elements of H1 are:

✓
h0|H1|0i h0|H1|1i
h1|H1|0i h1|H1|1i

◆
=

✓
0 ~�
~� 0

◆

where � is real.

(a) Find the eigenvalues and (normalized) eigenvectors of the full Hamiltonian H0 + H1. You may
express these eigenvalues E± and eigenvectors |µ±i in terms of !, �, �, and ↵, where �2

⌘ !
2+�2

and ↵2
⌘ 2�(! +�) = (! +�)2 + �

2. The normalized eigenvectors can be expressed in the form
(c1/↵, c2/↵) and (�c2/↵, c1/↵). Write down expressions for c1 and c2.

(b) Show that the probability of finding the system in state |1i at time t, given that it was in state |0i
at time 0, is given by (�2/�2) sin2(�t).

(c) By using time-dependent perturbation theory to first order, find an approximate expression for the
probability in part (b).

(d) By Taylor expanding the exact probability in part (b), recover the perturbative result of part (c)
in the limit that ! � �.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

(a) If a comp problem gives you equations or defines variables that can be used to simplify your
answer, use them! For this problem, those variables are � and ↵. If we don’t use them at ev-
ery opportunity, this problem will take too long. We will need to choose our strategy carefully
to make sure the algebra is not too di�cult (points at which this is done are noted throughout).

The matrix elements of the full Hamiltonian H ⌘ H0 +H1 are
✓
h0|H|0i h0|H|1i
h1|H|0i h1|H|1i

◆
=

✓
2~! ~�
~� 0

◆
(33)

We need to solve the eigenvalue problem

H |µ±i = E± |µ±i (34)

We apply standard methods from linear algebra, finding the eigenvalues first and then the
eigenvectors. To find the eigenvalues, find the zeros of the characteristic polynomial of the
matrix H, i.e., solve the equation det(H � EI) = 0 for E:

0 = det(H � EI)

= det

✓
2~! � E ~�

~� �E

◆

= (2~! � E)(�E)� (~�)(~�)
0 = E

2
� 2~!E � (~�)2 (35)

To solve this equation for E, use the quadratic formula:

E± =
1

2

⇣
2~! ±

p
(2~!)2 + 4(~�)2

⌘
(36)

Now simplify by pulling out common factors and applying the definition of �2
⌘ !

2 + �
2:

E± = ~! ± ~
p
!2 + �2

= ~! ± ~�

E± = ~(! ±�) (37)

To find the eigenvectors, we write (34) as a matrix equation and solve. It is possible to do this
in one fell swoop using the ± symbol, but because it is easy to get confused using this symbol,
we will solve for |µ+i and |µ�i separately. If we write

✓
h0|µ+i

h1|µ+i

◆
⌘

✓
u1

u2

◆
and

✓
h0|µ�i
h1|µ�i

◆
⌘

✓
v1

v2

◆
(38)

then (34) becomes

✓
2~! ~�
~� 0

◆✓
u1

u2

◆
= ~(! +�)

✓
u1

u2

◆
and

✓
2~! ~�
~� 0

◆✓
v1

v2

◆
= ~(! ��)

✓
v1

v2

◆
(39)

We first need to write u2 in terms of u1 and v2 in terms of v1. Each matrix equation in (39)
contains two equations:

2~!u1 + ~�u2 = ~(! +�)u1 2~!v1 + ~�v2 = ~(! ��)v1

~�u1 = ~(! +�)u2 ~�v1 = ~(! ��)v2
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Simplifying, we get

(! ��)u1 = ��u2 (! +�)v1 = ��v2 (40)

�u1 = (! +�)u2 �v1 = (! ��)v2 (41)

For each pair of equations, we only need one equation to relate u2 and v2 to u1 and v1. The
second equation is redundant. It’s important to choose the simpler of the two equations, or
else the algebra will get too complicated. But it might be unclear which equation is simplest,
so let’s just use both to write |µ+i and |µ�i up to an overall normalization constant. Again,
we pick the normalization constants so that the rest of each vector is as simple as possible,
avoiding annoying fractions.

From (40), we get the following forms for the eigenvectors, where M± are normalization con-
stants:

✓
h0|µ+i

h1|µ+i

◆
=

✓
u1

u2

◆
= M+

✓
��

! ��

◆
and

✓
h0|µ�i
h1|µ�i

◆
=

✓
v1

v2

◆
= M�

✓
��

! +�

◆
(42)

From (41), we get the following alternate forms for the eigenvectors, whereN± are normalization
constants:

✓
h0|µ+i

h1|µ+i

◆
=

✓
u1

u2

◆
= N+

✓
! +�
�

◆
and

✓
h0|µ�i
h1|µ�i

◆
=

✓
v1

v2

◆
= N�

✓
! ��
�

◆
(43)

The last step is finding the normalization constant, defined so that hµ±|µ±i = 1. We now need
to select the form of the eigenvectors that makes this calculation simplest:

1 = hµ+|µ+i =
�
u
⇤
1 u

⇤
2

�✓u1

u2

◆
=

(
|M+|

2(�2 + (! ��)2) using (42)

|N+|
2
�
(! +�)2 + �

2
�

using (43)
(44)

1 = hµ�|µ�i =
�
v
⇤
1 v

⇤
2

�✓u1

u2

◆
=

(
|M�|

2(�2 + (! +�)2) using (42)

|N�|
2
�
(! ��)2 + �

2
�

using (43)
(45)

We need only find one normalization constant for each eigenvector, so we should pay attention
to which normalization constant is easier to solve for. Remember that the problem gives us a
definition of ↵2

⌘ (!+�)2+�2, which we have not yet used. The bottom line of (44) contains
this factor, while the top line does not. Let’s therefore use the top line of (44) and solve for
N+:

1 = |N+|
2((! +�)2 + �

2) = |N+|
2
↵
2 =) |N+| = 1/↵ (46)

so we may write ✓
h0|µ+i

h1|µ+i

◆
=

✓
u1

u2

◆
= N+

✓
! +�
�

◆
=

✓
(! +�)/↵

�/↵

◆
(47)

Similarly, we should pick the top line, rather than the bottom line, of (45) and solve for M�:

1 = |M�|
2(�2 + (! +�)2) = |M�|

2
↵
2 =) |M�| = 1/↵ (48)

so we may write ✓
h0|µ�i
h1|µ�i

◆
=

✓
v1

v2

◆
= N+

✓
��

! +�

◆
=

✓
��/↵

(! +�)/↵

◆
(49)

Therefore, we have the normalized eigenvectors (up to an overall phase)

|µ+i =
! +�

↵
|0i+

�

↵
|1i and |µ�i = �

�

↵
|0i+

! +�

↵
|0i (50)

We can express the normalized eigenvectors as

(c1/↵, c2/↵) and (�c2/↵, c1.↵) for c1 ⌘ ! +� and c2 ⌘ � (51)
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(b) To reiterate, if a comp problem gives you equations or defines variables that can be used to
simplify your answer, use them! In this case, we will use the variables E±, c1, and c2 from
part (a). (Using these variables would also allow you to get partial credit if you weren’t able
to solve part (a) in time.)

To compute the time evolution of the initial state |0i, the first step is to write the initial
state in the energy eigenbasis |µ±i, where, by part (a),

|µ+i = (c1/↵) |0i+ (c2/↵) |1i and |µ�i = �(c2/↵) |0i+ (c1/↵) |1i (52)

We can write |0i in terms of |µ±i using the inner product:

|0i = |µ+i hµ+|0i+ |µ�i hµ�|0i

= (c1/↵) |µ+i � (c2/↵) |µ�i (53)

Now, we can time-evolve each of the energy eigenstates to get the state at a later time:

| (t)i = e
�iHt/~

|0i = (c1/↵)e
�iE+t/~

|µ+i � (c2/↵)e
�iE�t/~

|µ�i (54)

To find the probability of finding the system in state |1i, take the inner product with that state:

h1| (t)i = (c1/↵)e
�iE+t/~

h1|µ+i � (c2/↵)e
�iE�t/~

h1|µ�i

= (c1/↵)e
�iE+t/~(c2/↵)� (c2/↵)e

�iE�t/~(c1/↵)

=
c1c2

↵2

⇣
e
�iE+t/~

� e
�iE�t/~

⌘
(55)

From part (a), we have c1 = ! + �, c2 = �, and E± = ~(! ± �). The problem also tells us
that ↵2 = 2�(! +�). Plugging all this in and simplifying, we get

h1| (t)i =
(! +�)�

2�(! +�)

⇣
e
�i(!+�)t

� e
�i(!��)t

⌘

= e
�i!t

�

�

e
�i�t

� e
i�t

2

= e
�i!t

�

�
(�i sin(�t)) using sinx =

e
ix

� e
�ix

2i
(56)

The probability of finding the system in state |1i is the square of the absolute value of h1| (t)i:

P0!1(t) = |h1| (t)i|2 =
�
2

�2
sin2(�t) (57)

which is the answer given by the problem.

(c) This is a time-dependent perturbation theory problem, so here is a quick review of time-
dependent perturbation theory (it is the same as the one presented in 2020 Q1):

The key to deriving the formulas for time-dependent perturbation theory is to work in the
interaction picture. For an unperturbed, time-independent Hamiltonian H0 added to a time-
dependent perturbation V (t),

H(t) = H0 + V (t) (58)

we write the interaction picture by folding the time-evolution of each state under H0 into the
quantum operators. If OS is an operator in the (typical) Schrödinger picture, the equivalent
operator OI in the interaction picture is defined by

OI(t) ⌘ e
iH0t/~ OS e

�iH0t/~ (59)
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To make sure that the expectation value h |O| i is the same in both pictures, we must change
the state | i accordingly. If | S(t)i is a time-evolved ket in the Schrödinger picture, the
equivalent ket | I(t)i in the interaction picture is defined by

| I(t)i ⌘ e
iH0t/~ | S(t)i (60)

Kets in the interaction picture obey the Schrödinger equation for the perturbation Hamiltonian
VI(t) in the interaction picture:

i~ @
@t

| I(t)i = VI(t) | I(t)i (61)

We can integrate this equation (applying the initial condition for the state  at a reference
time t0) to get

| I(t)i = | I(t0)i �
i

~

Z
t

t0

dt
0
VI(t

0) | I(t
0)i (62)

To lowest order in perturbation theory, | I(t0)i ⇡ | I(t0)i, so this equation becomes

| I(t)i = | I(t0)i �
i

~

Z
t

t0

dt
0
VI(t

0) | I(t0)i to lowest order (63)

Now suppose that at t = t0, the system is in an eigenstate |ni of H0, and we are interested in
the transition amplitude to another eigenstate |mi. We can then take the inner product of (63)
with hm|:

hm| I(t)i = hm|ni �
i

~

Z
t

t0

dt
0
hm|VI(t

0)|ni

= �mn �
i

~

Z
t

t0

dt
0
e
i(Em�En)t

0
/~

hm|VS(t
0)|ni to lowest order (64)

In the second line, we have applied the definition of an operator in the interaction picture (59).
Since hm| I(t)i = e

�iEmt/~
hm| S(t)i by (60), this is what we need to calculate transition

probabilities.

As always,

For all time-dependent perturbation theory problems, start by calculating the matrix ele-
ments of the perturbation Hamiltonian between initial and final states.

In this case, the perturbation Hamiltonian is H1, and its matrix elements are already given.
The initial state is |0i, and the final state is |1i. Therefore, by (64), we have

h1| I(t)i = �
i

~

Z
t

0
dt

0
e
i(E1�E0)t

0
/~

h1|H1|0i to lowest order (65)

Note that E0 and E1 are the unperturbed energy eigenstates, i.e., those for the Hamiltonian
H0:

E0 = 2~! and E1 = 0 because

✓
h0|H0|0i h0|H0|1i
h1|H0|0i h1|H0|1i

◆
=

✓
2~! 0
0 0

◆
(66)
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Therefore, using the fact that h1|H1|0i = ~� and plugging into (65) we get

h1| I(t)i = �i�

Z
t

0
dt

0
e
2i!t

0

= �i� ·
1

2i!

h
e
2i!t

0
it
0

= �
�

2!

�
e
2i!t

� 1
�

= �
�

2!
e
i!t

�
e
i!t

� e
�i!t

�

= �i
�

!
e
i!t sin(!t) to lowest order, using sinx =

e
ix

� e
�ix

2i
(67)

The probability of finding the system in state |1i is the square of the absolute value of h1| I(t)i,
since the Schrödinger picture and the interaction picture di↵er by an overall phase:

P0!1(t) = | h1| I(t)i |
2 =

�
2

!2
sin2(!t) to lowest order (68)

(d) In the limit of ! � �, we may expand �2 in a Taylor series:

�2 = !
2 + �

2
⇡ !

2
, so � ⇡ ! for ! � � (69)

Then, the part (b) answer becomes

P0!1(t) =
�
2

�2
sin2(�t) ⇡

�
2

!2
sin2(!t) (70)

which matches the part (c) answer.
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