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4. (Quantum Mechanics)

In the standard approximation, the hydrogen atom consists of a heavy, essentially motionless proton
of charge e, together with a ligher electron (charge �e) and mass m that orbits around it. We treat
both the proton and the electron as point charges, and the hydrogen wave functions are given by
 n`m = Rn`(r)Y`m(✓,�), with the quantum numbers n, `, and m. We usually use 1s, 2s, 2p, etc. to
represent the energy levels, which combine the quantum numbers n`. For example, we have n = 1 and
` = 0 for the 1s state, while n = 2 and ` = 1 for the 2p state.

In this problem, we instead take the proton to be a uniformly charged ball of radius R, with R/a ⌧ 1,
where a = 4⇡✏0~2/me

2 is the “Bohr radius” for hydrogen.

(a) Compute the change in energies of the 2s and 2p states due to the fact that the proton is not
point-like. Work to order (R/a)2. In other words, compute �E2s = E2s(R)� E2s(R = 0) to order
(R/a)2 and do the same for the 2p state. Here, E2s(R) is the energy of the 2s state for the proton
with finite size.
Compare the energies of the states 2s and 2p: E2s and E2p. Are they equal to each other?

(b) Show that the di↵erence in energy of the 2s and 2p state, E2s(R)�E2p(R), gives a measure of the
proton radius R.

Useful formulas: for the hydrogen wave functions  n`m = Rn`(r)Y`m(✓,�), the expressions for the first
few Rn`(r) are given by

R10(r) = 2a�3/2 exp(�r/a) ,

R20(r) =
1p
2
a
�3/2

✓
1� 1

2

r

a

◆
exp(�r/2a) ,

R21(r) =
1p
24

a
�3/2

r

a
exp(�r/2a) .
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

There are three features of this problem that we should note before starting, which may not be
immediately obvious from the description:

• This is a time-independent perturbation theory problem.

• The only e↵ect of the taking the proton to be a uniformly charged ball of radius R (that we
will consider) is to change the electric potential felt by the electron.

(a) To start, we need to calculate the electric potential for a uniformly charged ball of total charge e
and radius R. Let the charge density of the ball be ⇢ ⌘ e

4
3⇡R

3 . Use Gauss’ law
R
E·da = Qencl/✏0

with a Gaussian sphere of radius r to find the electric field:

For r < R: 4⇡r2E =

Z
E · da =

Qencl

✏0

=
4

3
⇡r

3
⇢

✏0

=
e

✏0

r
3

R3
using ⇢ ⌘ e

4

3
⇡R3

r =) E(r) =
e

4⇡✏0

r

R3
r̂ for r < R (38)

For r > R: 4⇡r2E =

Z
E · da =

Qencl

✏0

=
e

✏0

r
3

R3

=) E(r) =
e

4⇡✏0

1

r2
r̂ for r > R (39)

Setting the electric potential � equal to zero at infinity and using �(b)� �(a) = �
R
b

a
E · d`, we

can find the electric potential everywhere in space:

For r > R: �(r) = �(r)� �(1) since �(1) = 0

= �
Z

r

1
E · d`

=

Z 1

r

E(r0)dr0

=
e

4⇡✏0

Z 1

r

1

(r0)2
dr

0

=
e

4⇡✏0


� 1

r0

�1

r

=
e

4⇡✏0

1

r
(40)
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For r < R: �(r) = �(R) + (�(r)� �(R))

= �(R)�
Z

r

R

E · d`

= �(R)�
Z

r

R

E(r0)dr0

= �(R)� e

4⇡✏0

Z
r

R

r
0

R3
dr

0

= �(R)� e

4⇡✏0


(r0)2

2R3

�r

R

= �(R) +
e

4⇡✏0


1

2R
� r

2

2R3

�

= �(R) +
e

4⇡✏0

1

2R

h
1� (r/R)2

i

=
e

4⇡✏0

1

R
+

e

4⇡✏0

1

2R

h
1� (r/R)2

i
using (40)

=
e

4⇡✏0

1

2R

h
3� (r/R)2

i
(41)

Thus, the electric potential everywhere in space is

�(r) =

(
e

4⇡✏0

1

2R

h
3� (r/R)2

i
r < R

e

4⇡✏0

1

r
r > R

(42)

Note that �(r) is continuous at r = R, as it should be. The electric potential energy of the
electron is equal to the charge of the electron (�e) times the electric potential:

Vproton ball(r) =

(
� e

2

4⇡✏0

1

2R

h
3� (r/R)2

i
r < R

� e
2

4⇡✏0

1

r
r > R

(43)

This means that the Hamiltonian for the hydrogen atom where the proton is a uniformly charged
ball is

Hproton ball =
p
2

2m
+ Vproton ball(r) (44)

where m is the mass of the electron. (Technically speaking, it is the reduced mass, but the
proton is much more massive than the electron, so the reduced mass is approximately equal to
the electron mass.)

To make this a time-independent perturbation theory problem, we should break this up into
the unperturbed Hamiltonian and the small perturbation. Here, the unperturbed Hamiltonian
should be the Hamiltonian for the hydrogen atom with a point proton. That’s because we
already know the energy levels for this Hamiltonian and want to find the change in energy from
this Hamiltonian. That said, we should write

Hproton ball =

✓
p
2

2m
� e

2

4⇡✏0

1

r

◆

| {z }
Hpointlike proton

unperturbed Hamiltonian

+

✓
Vproton ball(r) +

e
2

4⇡✏0

1

r

◆

| {z }
V (r)

small perturbation

(45)
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Using (43), we can write the perturbation Hamiltonian as

V (r) = Vproton ball(r) +
e
2

4⇡✏0

1

r

=

(
� e

2

4⇡✏0

1

2R

h
3� (r/R)2

i
+ e

2

4⇡✏0

1

r
r < R

� e
2

4⇡✏0

1

r
+ e

2

4⇡✏0

1

r
r > R

V (r) =

(
e
2

4⇡✏0

1

r

⇣
1� 3

2

r

R
+ 1

2

�
r

R

�3⌘
r < R

0 r > R

(46)

Technically speaking, this is a degenerate perturbation theory problem, since there are in-
finitely many degenerate energy eigenstates identified by angular momentum quantum number
`. Moreover, there are 2` + 1 degenerate energy eigenstates with orbital angular momentum
quantum number `, and each of these states has degeneracy 2 because the electron is a spin-1/2
particle. However, the perturbation Hamiltonian V (r) does not depend on angular momentum
or spin, so it does not lift the degeneracy. For that reason, we can treat this as a nondegenerate
time-independent perturbation theory problem.

In nondegenerate time-independent perturbation theory, the first-order correction to the nth
unperturbed energy level is

�E
(1) = hn|V |ni =

Z
d
3
r V (r) | n(r)|2 (47)

where  n(r) is the wave function of the nth unperturbed energy level. In this case, the problem
tells us that the wave functions of the 2s state (n = 2, ` = 0, m = 0) and 2p state (n = 2,
` = 1, and some value of m) are

 2s(r) = R20(r)Y00(✓,') (48)

 2p(r) = R21(r)Y1m(✓,') (49)

Here Y`m(✓,') is one of the spherical harmonics. We don’t need to know anything about them
for this problem, other than that the spherical harmonics are properly normalized when we
integrate over the solid angle:

Z
d⌦ |Y`m(✓,')|2 = 1 (50)

With this information, we are ready to set up the integral for the energy shift to the 2s state:

�E2s =

Z
d
3
r V (r) | 2s(r)|2

=

Z
dr d⌦ r

2
V (r) | 2s(r)|2 using the spherical integration measure d

3
r = r

2
drd⌦

=

Z
dr d⌦ r

2
V (r) |R20(r)Y00(✓,')|2

=

✓Z 1

0

dr r
2
V (r) |R20(r)|2

◆✓Z
d⌦ |Y00(✓,')|2

◆

=

Z 1

0

dr r
2
V (r) |R20(r)|2 (51)
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Plugging in the provided formula for R20(r), we get

�E2s =

Z 1

0

dr r
2
V (r)


1p
2
a
�3/2

✓
1� 1

2

r

a

◆
exp (�r/(2a))

�2

=

Z 1

0

dr r
2
V (r)

"
1

2
a
�3

✓
1� 1

2

r

a

◆2

exp (�r/a)

#

=
1

2a3

Z 1

0

dr r
2
V (r)

✓
1� 1

2

r

a

◆2

exp(�r/a) (52)

By (46), V (r) is equal to zero for r > R, so we can change the upper limit of the integral to
r = R. We can then plug in our result from (46) for r < R to get

�E2s =
1

2a3

Z
R

0

dr r
2


e
2

4⇡✏0

1

r

✓
1� 3

2

r

R
+

1

2

⇣
r

R

⌘3
◆�

1� 1

2

r

a

�2
exp(�r/a)

=
e
2

4⇡✏0

1

2a3

Z
R

0

dr r

✓
1� 3

2

r

R
+

1

2

⇣
r

R

⌘3
◆

1� 1

2

r

a

�2
exp(�r/a) (53)

We now follow an important guideline for keeping comp answers manageable:

Make approximations before taking integrals.

In this case, we can make the approximation R/a ⌧ 1. Within the integral, r/a < R/a ⌧ 1,
so we can set all terms of the form r/a (but not r/R) to zero. This gets us

�E2s ⇡
e
2

4⇡✏0

1

2a3

Z
R

0

dr r

✓
1� 3

2

r

R
+

1

2

⇣
r

R

⌘3
◆

=
e
2

4⇡✏0

1

2a3

Z
R

0

dr

✓
r � 3

2

r
2

R
+

1

2

r
4

R3

◆
(54)

We can now take the integral to get

�E2s ⇡
e
2

4⇡✏0

1

2a3

✓
R

2

2
� R

3

2R
+

R
5

10R3

◆

=
e
2

4⇡✏0

1

2a3

✓
R

2

10

◆

=
e
2

4⇡✏0a

1

20

✓
R

a

◆2

to order (R/a)2 (55)

Using the same logic as we used to get (51), we can set up the integral for the energy shift to
the 2p state:

�E2p =

Z
dr d⌦ r

2
V (r) |R21(r)Y1m(✓,')|2

=

✓Z 1

0

dr r
2
V (r) |R21(r)|2

◆✓Z
d⌦ |Y1m(✓,')|2

◆

=

Z 1

0

dr r
2
V (r) |R21(r)|2 (56)

Plugging in the provided formula for R21(r), we get

�E2p =

Z 1

0

dr r
2
V (r)


1p
24

a
�3/2

r

a
exp(�r/(2a))

�2

=
1

24a3

Z 1

0

dr r
2
V (r)

⇣
r

a

⌘2

exp(�r/a)

15 Last revised August 8, 2022



UCLA Physics OPEN-BOOK, OPEN-NOTE Fall 2021 Comprehensive Exam

Using (46) and substituting in for V (r) for r < R, we get

�E2p =
1

24a3

Z
R

0

dr r
2


e
2

4⇡✏0

1

r

✓
1� 3

2

r

R
+

1

2

⇣
r

R

⌘3
◆�⇣

r

a

⌘2

exp(�r/a)

=
e
2

4⇡✏0

1

24a3

Z
R

0

dr r

✓
1� 3

2

r

R
+

1

2

⇣
r

R

⌘3
◆⇣

r

a

⌘2

exp(�r/a) (57)

Making the approximation r/a < R/a ⌧ 1 within the integral, we get

�E
(1)

2p
⇡ e

2

4⇡✏0

1

24a3

Z
R

0

dr r

✓
1� 3

2

r

R
+

1

2

⇣
r

R

⌘3
◆⇣

r

a

⌘2

=
e
2

4⇡✏0

1

24a3

Z
R

0

dr

✓
r
3

a2
� 3

2

r
4

Ra2
+

1

2

r
6

R3a2

◆
(58)

We can take the integral to get

�E2p ⇡ e
2

4⇡✏0

1

24a3

✓
1

4

R
4

a2
� 3

10

R
5

Ra2
+

1

14

R
7

R3a2

◆

=
e
2

4⇡✏0

1

24a3

✓
1

4

R
4

a2
� 3

10

R
4

a2
+

1

14

R
4

a2

◆

=
e
2

4⇡✏0a

1

24

✓
1

4
� 3

10
+

1

14

◆✓
R

a

◆4

(59)

Since �E
(1)

2p
is proportional to (R/a)4, the energy change of the 2p state to order (R/a)2 is

zero:
�E2p = 0 to order (R/a)2 (60)

Summarizing our results, we have

�E2s =
e
2

4⇡✏0a

1

20

✓
R

a

◆2

and �E2p = 0 to order (R/a)2 (61)

The unperturbed hydrogen atom eigenstates are

En = � me
4

2(4⇡✏0)2~2
1

n2
= � e

2

8⇡✏0a

1

n2
(62)

Therefore, the perturbed 2s and 2p eigenstates are

E2s(R) = � e
2

32⇡✏0a
+

e
2

4⇡✏0a

1

20

✓
R

a

◆2

and E2p(R) = � e
2

32⇡✏0a
to order (R/a)2

(63)
The energies are not the same; the perturbation lifts the energy degeneracy between the 2s and
2p states in the unperturbed Hamiltonian.

(b) Using the answer from part (a), the energy di↵erence between the 2s and 2p states, to order
(R/a)2, is

E2s(R)� E2p(R) =
e
2

4⇡✏0a

1

20

✓
R

a

◆2

(64)

Therefore, if we know the energy di↵erence between the 2s and 2p states, the Bohr radius a,
and the constants e and ✏0, we can calculate an approximation of the proton radius R using
this equation. (Note that there could be other perturbations that change the energy of the 2s
state relative to the 2p state, like spin-orbit coupling.)
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