
UCLA Physics Fall 2019 Comprehensive Exam

10. (Electromagnetism)

A Halbach quadrupole is made by assembling segmented permanent magnet pieces where the magne-
tization vector is rotated through 6⇡ as one travels around the azimuth, as shown below. In order

to calculate the magnetic field of this magnet, approximate the magnetization vector as a continuous
function of ' as follows

~M “ M0 p´⇢̂ sinp2'q ` '̂ cosp2'qq

for ri † ⇢ † ro and zero elsewhere. Assume the magnet to be infinitely long in the z-direction.

(a) Calculate the magnetization currents.

(b) Calculate the magnetic field in the vicinity of the axis (i.e. for ⇢ † ri).

(c) Calculate the magnetic field outside the quadrupole (i.e. for ⇢ ° ro).

Hint: In order to solve this problem, calculate first the magnetic field due to an azimuthal current sheet
~K “ K0 sin 2' '̂ located at ⇢ “ a and recall the general solution of the Laplace equation for the magnetic
scalar potential in 2D polar coordinates.

The hint should have given the equation of the azimuthal current sheet as K “ K0 cosp2'qẑ.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

The key equations to memorize or write on your formula sheet for this problem are the equations
for the bound currents in a magnetic material with magnetization (magnetic dipole moment per
unit volume) M:

Bound volume current: Jb “ r ˆ M (70)

Bound surface current: Kb “ M ˆ n̂ (71)

(a) To calculate the magnetization currents, apply equations (70) and (71) to the given expression
for magnetization:

M “ M0p´⇢̂ sinp2'q ` '̂ cosp2'qq (72)

The bound surface currents occur at radii ⇢ “ ri and ⇢ “ r0. The unit vector n̂ points away
from the magnetic material. Therefore, at ⇢ “ ri, n̂ “ ´⇢̂. At ⇢ “ ro, n̂ “ `⇢̂. Keeping in mind
the unit-vector cross products in cylindrical coordinates, ⇢̂ ˆ '̂ “ ẑ and cyclic permutations
thereof, we get the bound surface current density

Kbp⇢ “ riq “ M0 cosp2'q p'̂ˆ ´⇢̂q “ M0 cosp2'qẑ (73)

Kbp⇢ “ roq “ M0 cosp2'q p'̂ˆ ⇢̂q “ ´M0 cosp2'qẑ (74)

To get the bound volume current density, use the formula for curl in cylindrical coordinates:

r ˆ A “
„
1

s

BAz

B' ´ BA'

Bz

⇢
⇢̂`

„BA⇢

Bz ´ BAz

B⇢

⇢
'̂` 1

⇢

„Bp⇢A'q
B⇢ ´ BA⇢

B'

⇢
ẑ (75)

In this case, there is no z-component of M, and M does not depend on z, so r ˆ M has only
a z-component, which we now calculate:

Jb “ r ˆ M “ 1

⇢

„Bp⇢M'q
B⇢ ´ BM⇢

B'

⇢
ẑ

“ M0

⇢

„ B
B⇢ p⇢ cosp2'qq ´ B

B' p´ sinp2'qq
⇢
ẑ

“ M0

⇢
rcosp2'q ` 2 cosp2'qqs ẑ

“ 3M0

⇢
cosp2'qẑ (76)

Collecting our answers, we get that

Kb “ M0 cosp2'qẑ for ⇢ “ ri (77)

Kb “ ´M0 cosp2'qẑ for ⇢ “ ro (78)

Jb “ 3M0

⇢
cosp2'qẑ for ri † ⇢ † ro (79)

To solve parts (b) and (c), we start by solving the problem given in the hint. Consider an
azimuthal current sheet K “ K0 cosp2'qẑ located at ⇢ “ a. Inside and outside the current
sheet, there is no free current, so r ˆ H “ Jf “ 0. Therefore, we may write H as the gradient
of a magnetic scalar potential (introducing a minus sign solely to strengthen the analogy with
the electric potential):

H “ ´r (80)
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In this case, we are working with H just for convention’s sake. The problem from the hint has
no magnetic materials in it, so B “ µ0H in this case. (This is not true for the original problem
involving the quadrupole, however.) The no-magnetic-monopoles law tells us that

r2
 “ ´r ¨ H “ ´ 1

µ0
r ¨ B “ 0 (81)

so  satisfies Laplace’s equation inside and outside the sheet. The general solution to Laplace’s
equation in polar coordinates is

 p⇢,'q “ pA0 ` B0 ln ⇢qpC0 ` D0'q `
8ÿ

k“1

ˆ
Ak⇢

k ` Bk

⇢k

˙
pCk sinpk'q ` Dk cospk'qq (82)

Recall that

In potential theory problems, only the multipole moments in the setup will be present in
the solution.

In this case, the surface current is proportional to cosp2'q. The surface current is proportional
to the di↵erence in H, which is the gradient of  , so we expect  to be proportional to sinp2'q.
Our ansatz for  is therefore

 in/outp⇢,'q “
ˆ
A

1
⇢
2 ` B

1

⇢2

˙
sinp2'q (83)

A
1 and B

1 do not have the same units, and this problem has only one length scale (a), so let’s
redefine the constants so that they do have the same units:

 in/outp⇢,'q “
ˆ
A
⇢
2

a2
` B

a
2

⇢2

˙
sinp2'q (84)

The magnetic scalar potential ought to be finite as ⇢ Ñ 0 and ⇢ Ñ 8, so we can refine the
ansatz to meet these boundary conditions:

 p⇢,'q “
#
A

⇢
2

a2 sinp2'q for ⇢ † a

B
a
2

⇢2 sinp2'q for ⇢ ° a
(85)

Using the gradient operator in polar coordinates, r “ ⇢̂
B

B⇢ ` '̂
1
⇢

B
B' , we get that

Hp⇢,'q “ ´r p⇢,'q “
#

2A⇢

a2 r´ sinp2'q⇢̂´ cosp2'q'̂s for ⇢ † a

2Ba
2

⇢3 rsinp2'q⇢̂´ cosp2'q'̂s for ⇢ ° a
(86)

Now to apply the boundary conditions at ⇢ “ a. The normal component of B is always
continuous, and B “ µ0H on both sides of the boundary in this setup. Therefore, the normal
component of H, which is the ⇢̂ component, must be continuous at ⇢ “ a. This implies that

´2A⇢

a2
“ 2Ba

2

⇢3

ˇ̌
ˇ̌
ˇ
⇢“a

ùñ A “ ´B (87)

The boundary condition for the tangential component of the H field is

n̂ ˆ pH2 ´ H1q “ Kf where n̂ points from medium 1 to medium 2 (88)
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This implies that

´2Ba
2

⇢3
` 2A⇢

a2

ˇ̌
ˇ̌
ˇ
⇢“a

“ K0

´B ` A “ aK0

2

B “ ´aK0

4
since B “ ´A (89)

Since A “ ´B, this means that

A “ K0a

4
and B “ ´K0a

4
(90)

Plugging into equation (86), we get the following:

Hp⇢,'q “
#

K0⇢

2a r´ sinp2'q⇢̂´ cosp2'q'̂s for ⇢ † a

´K0a
3

2⇢3 rsinp2'q⇢̂´ cosp2'q'̂s for ⇢ ° a
(91)

Simplifying further and using the fact that B “ µ0H on both sides of the boundary in this
setup, we get that

Bp⇢,';K0, aq “
#

´µ0K0⇢

2a rsinp2'q⇢̂` cosp2'q'̂s for ⇢ † a

´µ0K0a
3

2⇢3 rsinp2'q⇢̂´ cosp2'q'̂s for ⇢ ° a
(92)

We have added the explicit dependence pK0, aq to clarify that the value of B depends on the
strength and location of the surface current.

Now we are ready to discuss parts (b) and (c). Using our results for the bound currents in
part (a), the quadrupole problem is equivalent to a superposition of azimuthal current sheets
of infinitesimal thickness located at ri § ⇢ § r0, with the following magnitudes:

Kp⇢q “

$
’&

’%

M0 cosp2'qẑ for ⇢ “ ri

3M0
⇢

d⇢ cosp2'qẑ for ri † ⇢ † ro

´M0 cosp2'qẑ for ⇢ “ ro

(93)

Notice the use of the di↵erential d⇢ to turn the volume current density inside the bulk of the
permanent magnet into a superposition of surface current densities.

All of these surface current densities are of the form K0 cosp2'qẑ, and we calculated the mag-
netic field due to such a current in the hint! We may now forget all about the permanent magnet
and simply treat this as a superposition problem, integrating up the solutions in equation (92)
to get the magnetic field wherever we please:

Bp⇢,'q “ Bp⇢,';M0, riq ` Bp⇢,';´M0, roq `
ª

ro

ri

B

ˆ
⇢,';

3M0

⇢1 d⇢
1
, ⇢

1
˙

(94)

In the integral, note the di↵erence between the radius of the observation point ⇢ and the location
of the current sheet ⇢1.

(b) For ⇢ † ri, we are inside all the azimuthal current sheets, so we consistently use the top line in
equation (92). Therefore, the magnetic field points in the sinp2'q⇢̂ ` cosp2'q'̂ direction, and
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its (signed) magnitude is given by

Bp⇢,'q “ ´µ0M0⇢

2ri
´ µ0p´M0q⇢

2r0
`

ª
ro

ri

ˆ
´µ0⇢

2⇢1
3M0

⇢1 d⇢
1
˙

“ ´µ0M0⇢

2ri
` µ0M0⇢

2r0
´ 3µ0M0⇢

2

ª
ro

ri

d⇢
1 1

p⇢1q2

“ ´µ0M0⇢

2ri
` µ0M0⇢

2r0
´ 3µ0M0⇢

2

ˆ
1

ri
´ 1

ro

˙

“ ´2µ0M0⇢

ˆ
1

ri
´ 1

ro

˙
(95)

Putting everything together, we get that

Bp⇢,'q “ ´2µ0M0⇢

ˆ
1

ri
´ 1

ro

˙
rsinp2'q⇢̂` cosp2'q'̂s for ⇢ † ri (96)

(c) For ⇢ ° ro, we are outside all the azimuthal current sheets, so we consistently use the bottom
line in equation (92). Therefore, the magnetic field points in the sinp2'q⇢̂´ cosp2'q'̂ direction,
and its (signed) magnitude is given by

Bp⇢,'q “ ´µ0M0r
3
i

2⇢3
´ µ0p´M0qr3

o

2⇢3
`

ª
ro

ri

ˆ
´µ0p⇢1q3

2⇢3
3M0

⇢1 d⇢
1
˙

“ ´µ0M0r
3
i

2⇢3
` µ0M0r

3
o

2⇢
´ 3µ0M0

2⇢3

ª
ro

ri

p⇢1q2d⇢1

“ ´µ0M0r
3
i

2⇢3
` µ0M0r

3
o

2⇢
´ 3µ0M0

2⇢3

ˆ
r
3
o

3
´ r

3
i

3

˙

“ ´µ0M0r
3
i

2⇢3
` µ0M0r

3
o

2⇢
´ µ0M0r

3
o

2⇢3
` µ0M0r

3
i

2⇢3

“ 0 (97)

Putting everything together, we get that

Bp⇢,'q “ 0 for ⇢ ° ro (98)
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