
Question 1: Quantum Mechanics

Consider two particles of masses m1,2 in a one-dimensional harmonic oscillator potential
V = 1

2
m1ω

2
1x

2
1 + 1

2
m2ω

2
2x

2
2. In the far past the x1-oscillator is in the ground state while the

x2-oscillator is in its first excited state. They then experience a perturbation ∆V (x2, x2, t) =
λ(x1 − x2)

2e−
1
2
α2t2 . Compute, to lowest nontrivial order in λ, the probability that in the

far future the x1-oscillator is in the first excited state while the x2-oscillator is in its ground
state.



Solution:

We apply time dependent perturbation theory. The amplitude for a transition from |i〉
to |f〉 is

Afi = − i
~

∫ ∞
−∞
〈f |∆H(t)|i〉eiωfitdt

The ground state and first excited states of the harmonic oscillator have opposite parity, so
only the cross term in the perturbation will have a nonzero matrix element, so

Afi =
2iλ

~
〈1|x1|0〉〈0|x2|1〉

∫ ∞
−∞

e−
1
2
α2t2eiω12tdt

with ω12 = ω1 − ω2. The Gaussian integral is∫ ∞
−∞

e−
1
2
α2t2ei(ω1−ω2)tdt =

√
2π

α
e−

ω212
2α2

For the matrix element we express x in terms of ladder operators as

x =

√
~

2mω
(a† + a)

which gives

〈1|x|0〉 =

√
~

2mω
〈0|aa†|0〉 =

√
~

2mω

We thus get

Afi =
2iλ

~

(
~

2
√
m1m2ω1ω2

) √
2π

α
e−

ω212
2α2 =

√
2πiλ

√
m1m2ω1ω2α

e−
ω212
2α2

The probability is

P = |Afi|2 =
2πλ2

m1m2ω1ω2α2
e−

ω212
α2



Question 2: Quantum Mechanics

A system is described by a Hilbert space spanned by two orthonormal kets |0〉 and |1〉. In this
basis, the matrix elements of the Hamiltonian H0 are:(

〈0|H0 |0〉 〈0|H0 |1〉
〈1|H0 |0〉 〈1|H0 |1〉

)
=

(
2h̄ω 0

0 0

)
where ω is real. At time t = 0 the system is in state |0〉, and a perturbation, H1, is suddenly
switched on. The matrix elements of H1 are:(

〈0|H1 |0〉 〈0|H1 |1〉
〈1|H1 |0〉 〈1|H1 |1〉

)
=

(
0 h̄λ
h̄λ 0

)
where λ is real.

(a) Find the eigenvalues and (normalized) eigenvectors of the full Hamiltonian H0 + H1. You
may express these eigenvalues, E±, and eigenvectors, |µ+〉 and |µ−〉, in terms of ω, λ, ∆ and α,
where ∆2 ≡ ω2 + λ2 and α2 ≡ 2∆(ω + ∆) = (ω + ∆)2 + λ2. The normalized eigenvectors can be
expressed in the form (c1/α, c2/α) and (−c2/α, c1/α). Write down expressions for c1 and c2.

(b) Show that the probability of finding the system in state |1〉 at time t, given that it was in
state |0〉 at time 0, is given by (λ2/∆2)sin2(∆t)

(c) By using time-dependent perturbation theory to first order, find an approximate expression
for the probability in part (b).

(d) By Taylor expanding the exact probability in part (b), recover the perturbative result of
part (c) in the limit that ω � λ.
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Solution

(a) The eigenvalues are given by diagonalizing the matrix:(
2h̄ω h̄λ
h̄λ 0

)
These eigenvalues are given by:

E± = h̄ω ±
√

4h̄2ω2 + 4h̄2λ2

2
= h̄(ω ±∆)

The eigenkets are given by solving:(
h̄ω − h̄∆ h̄λ

h̄λ −h̄ω − h̄∆

) (
v1

v2

)
=

(
0
0

)
and (

h̄ω + h̄∆ h̄λ
h̄λ −h̄ω + h̄∆

) (
w1

w2

)
=

(
0
0

)
These equations give v1 = ω + ∆, v2 = λ, w1 = −λ and w2 = ω + ∆. Normalizing gives:

|µ+〉 =

(
v1/
√
v2

1 + v2
2

v2/
√
v2

1 + v2
2

)
=

(
(ω + ∆)/α

λ/α

)
= ((ω + ∆)/α) |0〉+ (λ/α) |1〉

and

|µ−〉 =

(
w1/

√
w2

1 + w2
2

w2/
√
w2

1 + w2
2

)
=

(
−λ/α

(ω + ∆)/α

)
= (−λ/α) |0〉+ ((ω + ∆)/α) |1〉

(b) The time evolution of state |0〉 can be expressed as:

|0(t)〉 = e−iE+t/h̄((ω + ∆)/α) |µ+〉 − e−iE−t/h̄(λ/α) |µ−〉

State |1〉 can be expressed in the diagonal basis as:

|1〉 = (λ/α) |µ+〉+ ((ω + ∆)/α) |µ−〉
The probability is P0−→1 = |〈1|0(t)〉|2 = (λ2(ω+∆)2/α4)(2−2cos((E+−E−)t/2h̄)) = (λ2/∆2)sin2(∆t).

(c) Using time dependent perturbation theory, the probability amplitude for the transition is:

A0−→1 = 1
ih̄

∫ t
0 (0 1)

(
0 h̄λ
h̄λ 0

) (
1
0

)
ei(Ef−Ei)t1/h̄dt1 = 1

i

∫ t
0 λe

−2iωt1dt1

The transition probability is P0−→1 = |A0−→1|2 = λ2/ω2sin2(ωt).

(d) In the limit that ω � λ, we get: ∆ =
√
ω2 + λ2 = ω

√
1 + λ2/ω2 = ω(1 + λ2/2ω2 + ...).

Therefore, to first order, ∆ ≈ ω and (b) then resembles (c).



Question 3: Quantum Mechanics

Consider a system of two spin 1 particles: |m1〉 , |m2〉 with m1,m2 ∈ {−1, 0, 1}. The
system is governed by the Hamiltonian:

H = −αS1 · S2 + β(S1z + S2z)
2

where S1 and S2 are the spin operators of the two particles and α, β are positive constants
with β > 2α .

By using the ladder operator S− |j,m〉 =
√

(j +m)(j −m+ 1)~ |j,m− 1〉 or otherwise,
find the energies and wavefunctions of the lowest two energy eigenstates. Express these
energy eigenstates in the product basis of the two spin 1 particles.



Solution:

Let’s represent the eigenstates of (S1 + S2)
2, (S1z + S2z) by |j,m〉, i.e.,

(S1 + S2)
2 |j,m〉 = j(j + 1)~2 |j,m〉

(S1z + S2z) |j,m〉 = m~ |j,m〉

The Hamiltonian can be recast as:

H = −(α/2){(S1 + S2)
2 − S2

1 − S2
2}+ β(S1z + S2z)

2

H |j,m〉 = {−(α/2)~2{(j(j + 1)− 2− 2}+ β(m)2~2} |j,m〉

The lowest energy eigenstate corresponds to largest j and smallest m and is thus |j = 2,m = 0〉
and the energy eigenvalue is −α~2.

The corresponding eigenstate can be obtained by acting the ladder operator S− = S1−+
S2− on

|j = 2,m = 2〉 = |1, 1〉 ⊗ |1, 1〉

S− |j,m〉 =
√

(j +m)(j −m+ 1)~ |j,m− 1〉
S− |2, 2〉 =

√
4~ |2, 1〉

=
√

2~(|1, 0〉 ⊗ |1, 1〉+ |1, 1〉 ⊗ |1, 0〉)
(S−)2 |2, 2〉 =

√
4~S− |2, 1〉

=
√

4
√

3
√

2~2 |2, 0〉
= ~2
√

2(
√

2 |1,−1〉 |1, 1〉+
√

2 |1, 0〉 |1, 0〉+
√

2 |1, 0〉 |1, 0〉+
√

2 |1, 1〉 |1,−1〉)
= 2~2(|1,−1〉 |1, 1〉+ 2 |1, 0〉 |1, 0〉+ |1, 1〉 |1,−1〉)

=⇒ |2, 0〉 =

√
1

6
(|1,−1〉 |1, 1〉+ 2 |1, 0〉 |1, 0〉+ |1, 1〉 |1,−1〉)

The states with j = 2 have energies −α~2 + β~2m2, the states with j = 1 have energies
α~2 + β~2m2

For β > 2α, the first excited state is the |j = 1,m = 0〉 state.

To find this state, we first note that the state |j = 1,m = 1〉 is the unique state with
m = 1 which is orthogonal to |2, 1〉. Thus, |1, 1〉 = 1√

2
(|1, 0〉 ⊗ |1, 1〉 − |1, 1〉 ⊗ |1, 0〉)

Then,

2



S− |j = 1,m = 1〉 =
√

2~ |1, 0〉

= S−
1√
2

(|1, 0〉 |1, 1〉 − |1, 1〉 |1, 0〉)

=
~√
2

(
√

2 |1,−1〉 |1, 1〉+
√

2 |1, 0〉 |1, 0〉 −
√

2 |1, 0〉 |1, 0〉 −
√

2 |1, 1〉 |1,−1〉)

=⇒
√

2 |1, 0〉 = (|1,−1〉 |1, 1〉 − |1, 1〉 |1,−1〉)

=⇒ |1, 0〉 =
1√
2

(|1,−1〉 |1, 1〉 − |1, 1〉 |1,−1〉)

3



Question 4: Quantum Mechanics

A particle of mass m and charge q is confined to a circular ring of radius R lying in the x-y
plane. There are also constant electric and magnetic fields: ~E = E ŷ, ~B = Bẑ.

a) Write a Schrodinger equation for the energy levels of this system

b) Compute the energy spectrum in the regime where E is negligible compared to B. Hint:
this will be simpler with the right choice of gauge

c) By making a suitable approximation in the Hamiltonian, compute the energy spectrum
in the regime where E is large and B is negligible. Hint: think about where the wavefunction
is concentrated in this limit.



Solution:

a) Set c = 1. We will start with the Lagrangian, although one could also directly write 
down the Hamiltonian.

The Lagrangian is

L =
1

2
m(ẋ2 + ẏ2)− qV + q ~A · ~̇x , x2 + y2 = R2

We have the potentials

V = −Ey , Ax = −1

2
By , Ay =

1

2
Bx

Polar coordinates
x = Rsinθ , y = R cos θ

This gives

L =
1

2
mR2θ̇2 − qBR2

2
θ̇ + qER cos θ

The canonical momentum is

p =
∂L

∂θ̇
= mR2θ̇ − qBR2

2

The Hamiltonian is

H = pθ̇ − L =
1

2mR2
p2 +

qB

2m
p− qER cos θ +

1

2m

(
qBR

2

)2

The Schrodinger equation is[
− ~2

2mR2

d2

dθ2
− i~qB

2m

d

dθ
− qER cos θ +

1

2m

(
qBR

2

)2 ]
ψ(θ) = Eψ(θ)

The wavefunction should be single valued on the ring: ψ(θ + 2π) = ψ(θ).

b) If we ignore the E term, then we can take ψn(θ) = Ane
inθ, where n = 0,±1,±2, . . ..

This gives

En =
~2

2mR2

(
n2 +

qBR2n

~
+

(
qBR2

2~

)2
)

= − ~2

2mR2

(
n+

qBR2

2~

)2

c) Now ignore the B terms,[
− ~2

2mR2

d2

dθ2
− qER cos θ

]
ψ(θ) = Eψ(θ)



At large E the wavefunction will be localized near the minimum of the potential at θ = 0,
so we approximate cos θ ≈ 1− 1

2
θ2. This gives[

− ~2

2m

d2

dθ2
+

1

2
qER3θ2

]
ψ(θ) = R2(E + qER)ψ(θ)

The left hand side is a harmonic oscillator Hamiltonian with frequency ω2 = qER3/m.
Therefore the energy levels are

R2(En + qER) =

(
n+

1

2

)
~
√
qER3

m

i.e.

En =

(
n+

1

2

)
~
√

qE
mR
− qER



Question 5: Classical Mechanics 

a) Find a canonical transformation ),(),,( qpQQqpPP == that turns the

Hamiltonian: 

22
0

2

0
2

1

2
qm

m

p
H +=

into 

PQiH 00 = where QP, are the new momentum and position.  

b) Next, consider the driven harmonic oscillator:

tFkqqm =+ cos

Using the transformation QPqp ,, →  that you derived in a), compute the transformed  

Hamiltonian and write down Hamiltons’s equations of motion for QP, .  



Solution 

a)-These are all quadratic forms so dqcpQbqapP +=+= ,

22
2 ),( qPqPqPF  ++= so match terms. 

2/2/,2/2/ 0000  miqmpQmqmipP +=−−=

2
00

2
2 )2/(2)2/(),( qmimiPqPiqPF  ++= ;  

b)- With the driving term included  tFqHH −= cos0 ;

in transformed coordinates: 

02/][ miQPq +−= : 

tmiQPFPQiH ++= cos]2/][ 00 

and by basic eqtns: 

tmFQiPHQ +== cos]2/[/ 00 

tmFiPiQHP −−=−= cos]2/[/ 00 
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Question 7: Electromagnetism 

A linearly polarized electromagnetic plane wave of wavenumber k and frequency  is 
propagating in the z-direction. The electric field is in the y direction. The wave is scattered by 
two small dielectric spheres of radius a separated by a distance b with b >> a. The first sphere 
is centered at the origin while the second sphere is located on the z-axis with z = b. The two 
spheres have dielectric constant   𝜀/𝜀  1 𝜒, with 𝜒 ≪ 1. 

a) Consider the case kb<<1. Determine the differential and total cross section for the two
spheres to leading order in kb.

b) Consider the case kb~1, but still ka <<1. Determine the differential cross-section of the
two spheres for light scattered at an angle  in the x,z plane, measured with respect to the
z-axis

c) Can you find values of kb for which the total radiated power from part a) and b) are the
same?







Question 8: Electromagnetism

The purpose of this problem is to determine the current density and the magnetic field 
created by two spheres immersed in a medium with homogeneous and isotropic conductivity 
σ. Consider two spheres of equal radii a whose centers are separated by a distance 2d � a, 
and which are held at constant potentials +V and −V respectively with V > 0. In the 
midplane between the two spheres, consider points at an equal distance R � d from the two 
centers,

1. compute the current density vector J in terms of σ, V, a, d, R;

2. compute the magnetic field vector B in terms of σ, V, a, d, R.

Hint: place the center of the spheres at (0, 0,±d), so the midplane is the xy-plane.
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We choose an oriented orthonormal frame with unit vectors ex, ey, ez and place the centers
of the spheres with potentials ±V on the z-axis at coordinates (0, 0,±d) respectively. Since
a ≪ d ≪ R the potentials on the spheres may be generated by point-like charges ±Q located
at the centers of the spheres whose magnitude is given by,

V =
Q

4πε0a

1. To compute the current J we use Ohm’s law J = σE, and compute the electric field at
an arbitrary point r in space,

E(r) =
Q

4πε0

(

r− dez

|r− dez|3
− r+ dez

|r+ dez|3
)

Points at equal distance R from the two charges lie on a circle in the x, y plane given by,

R = |r− dez| = |r+ dez|

the above formula simplifies and, eliminating Q in favor of V , we find,

E(r) = −2
V ad

R3
ez, J = −2

σV ad

R3
ez, for r · ez = 0

2. The magnetic field B at points in the x, y plane is constant on the circle R2 = r2 + d2

and points in the direction eφ tangent to the circle with eφ = ey for a point on the positive
x-axis. By Ampère’s law, we have,

∮

dl ·B = µ0

∫

r
2≤R2−d2

dS · J

The line integral on the left is over the circle in the x, y plane with radius |r| =
√
R2 − d2.

With B = Beφ, and using RdR = r · dr we have,

2π|r|B = −2σµ0V ad× 2π

∫ R

d

R′dR′ 1

(R′)3

Carrying out the integral, using the approximation |r| ∼ R on the left side in view of d ≪ R,
and simplifying the result, we find,

B = 2
σµ0V ad

R

(

1

R
− 1

d

)

≈ −2
σµ0V a

R

This means that the orientation of the magnetic field at a point on the positive x-axis is in
the direction −ey = −eφ, which is consistent with the cork-screw mnemonic.



Question 9: Electromagnetism

A conductor is often modeled with a simple Ohm’s law:

~j = σ0 ~E

in both real and Fourier space where σ0 is the conductivity. However,
a conductor is more accurately modeled with a modified frequency
dependent conductivity σ = σ0

1−iω σ0
ε0ω

2
p

(this frequency dependent

conductivity assumes quantities vary as e−iωt), which is equivalent to
the modified Ohm’s law,

σ0
ε0ω2

p

∂~j/∂t+~j = σ0 ~E

where ωp is the plasma frequency of the conduction electrons,

ω2
p ≡ e2n0

ε0m
, n0 is the density of conduction electrons, and ε0 is the

permittivity of free space. Finally, at t=0, a small amount of excess
charge, Q, is uniformly distributed throughout a sphere of radius r0
with conductivity σ0 at t=0.

a) Using combinations of the relevant Maxwells equations and the
continuity equation, derive the equation for the charge density inside
the sphere and then obtain the solution for it for the correct initial
conditions. Your answer should depend on r0, ε0, σ0, ωp, and t.

b) For copper the density of conduction electrons, n0 = .85× 1029m−3

and the conductivity is 6× 107S/m. Show that for these parameters,
4 >> ε20ω

2
p/σ

2
0. Under this condition, what is the formula and the

time in seconds that it takes for the charge density to decrease to 1/e
of its initial value at any location in the sphere?



Solutions:

S1.a There are several ways to obtain a single equation for the charge
density. The quickest is to take the divergence of Ohm’s law to get

σ

ε0ω2
p

∂~∇ ·~j/∂t+ ~∇ ·~j = σ~∇ · ~E

From the continuity equation substitute ~∇ ·~j = −∂ρ/∂t and from

Gauss’s law substitute ~∇ · ~E = ρ/ε0 to get:

∂2ρ/∂t2 +
ε0ω

2
p

σ0
∂ρ/∂t+ ω2

pρ = 0

This is a simple harmonic oscillator equation with a damping term.
There are several ways to get a general solution which is of the form

ρ = Ae−iω+t +Be−iω−t

where

ω± =
1

2
(−iε0ω2

p/σ0 ±
√

4ω2
p − ε20ω4

p/σ
2
0)

and
A = ρ0(1− i

ω+

ω−
/(1 + (

ω+

ω−
)2)

B = ρ0(1− i
ω−

ω+

/(1 + (
ω−

ω+

)2)

where we used the fact ∂ρ/∂t = 0 at t=0. In addition,
ρ = Q/[(4/3)πr30]. This solution is valid for all space because there are
no partial derivatives in space.

S1.b First, if you plug in the numbers you can see that
ε20ω

2
p

4σ2
0
∼ 10−5. Under

this condition,

ω± ≈ (−iε0ω2
p/(2σ0)± ωp,

therefore the charge decays as e−ε0ω
2
p/(2σ0)t and the charge will decay

(towards the surface) in a time

τ = 2σ0/(ε0ω
2
p) = 2.1× 10−14s

while it oscillates at the plasma frequency.



Consider the effect of a birefrigent medium with a complex linear suscep-
tibility, χ, on a linearly polarized electromagnetic wave, ~E = E0ε̂ cos(kz − ωt),
with E0 the electric field amplitude, ε̂ a unit vector in the direction of the polar-
ization, k the wavenumber, and ω the angular frequency. Near a resonance ω0

in the medium, the susceptibility has a complex Lorentzian lineshape given by

χ(∆) = χ0

[
2∆

1 + 4∆2
− i 1

1 + 4∆2

]
where χ0 is the amplitude of linear susceptibilty and ∆ = (ω − ω0)/γ0 is the
detuning from resonance in units of the resonance width γ0. For χ0 � 1 the
complex index of refraction is approximated by n ≈ 1 + χ/2.

(a) Discuss qualitatively what effects the real and imaginary parts of the sus-
ceptibility can have on the plane wave.

(b) On resonance (∆ = 0) what is the absorption length, L, defined as the
distance where the electric field amplitude is 1/e smaller than the initial
value the wave had when it entered the medium?

(c) In the presence of a magnetic field, the resonance in a birefringent medium
splits, giving twp different detunings

∆± = ∆±∆B

where the +, − refer to left- and right-handed circular polarizations, re-
spectively. This leads to a difference in the indices of refraction

∆n = n(∆+) − n(∆−)

for the right- and left-handed circularly polarized waves. Consider a wave 
that initially has linear polarization. After a distance l in the birefrin-
gent medium and on resonance (∆ = 0), what is the angle, θ, that the 
polarization has rotated? Sketch the angle of rotation, θ versus ∆B .

Question 10: Electromagnetism



Solution

(a) The index of refraction affects the wavenumber k± = n±ω/c. Looking at
the spatial part of our plane wave

~E ∝ ε̂ exp(ikz) = ε̂ exp(inωz/c)

it is clear that the real part of n leads to a phase shift while the imag-
inary part leads to exponential attenuation. Thus the real part of the
susceptibility leads to a phase shift of an electromagnetic wave while the
imaginary part leads to absorption.

(b) The field amplitude depends on the imaginary part of the index of refrac-
tion:

E(l) = E0 exp(−Im(n)ωl/c).

The amplitude is down by a factor of e when

Im(n)ωL

c
= 1

or

L =
2c

χ0ω
.

(c) Circular polarizations

ε̂± =
±x̂+ iŷ√

2

are related to linear polarizations by

x̂ =
1√
2

(ε̂+ − ε̂−)

ŷ =
−i√

2
(ε̂+ + ε̂−).

It is clear that a relative phase shift of ∆φ = π between the two circular
polarizations changes x̂-polarized light to ŷ-polarized light, or a rotation
of θ = π/2 = ∆φ/2. The rotation angle is then given by

θ = ∆φ/2 = Re[n(∆+)− n(∆−)]
ωl

2c

Substituting in the new detunings gives

n(∆±) ≈ 1 +
χ0

2

[
2(∆±∆B)

1 + 4(∆±∆B)2
− i 1

1 + 4(∆±∆B)2

]
.



The real part of the difference in the indices of refraction is then

∆n = Re[n(∆+)− n(∆−)] ≈ χ0

2

[
2(∆ + ∆B)

1 + 4(∆ + ∆B)2
− 2(∆−∆B)

1 + 4(∆−∆B)2

]
= χ0

{
(∆ + ∆B)[1 + 4(∆−∆B)2]− (∆−∆B)[1 + 4(∆ + ∆B)2]

[1 + 4(∆ + ∆B)2][1 + 4(∆−∆B)2]

}
= 2χ0

[
∆B(1 + 4∆2

B − 4∆2)

16∆2 + (1 + 4∆2
B − 4∆2)2

]
.

Therefore the rotation angle is

θ =
χ0ωl

c

∆B(1 + 4∆2
B − 4∆2)

16∆2 + (1 + 4∆2
B − 4∆2)2

.

On resonance, ∆ = 0, we have

θ =
χ0ωl

c

∆B

1 + 4∆2
B

= 2
l

L

∆B

1 + 4∆2
B

.



Question 11: Statistical Mechanics

The only degrees of freedom we retain in an approximate description of an assembly of N 
weakly interacting particles are their internal energy levels, which we assume to be non-

degenerate and taking the three possible values −ε, 0, ε with ε > 0. The system is in 
equilibrium contact with a heat bath at temperature T . Assume Boltzmann statistics. 
Evaluate the following quantities for the system,

1. the entropy at zero temperature;

2. the maximal possible entropy;

3. the minimal possible energy;

4. the partition function;

5. the average energy;

6. the value of
∫∞
0
dT C(T )

T
where C(T ) is the specific heat function.



Solution:

1. S(T = 0) = 0 by the third law of thermodynamics;

2. Smax = k ln Ωmax = k ln 3N = kN ln 3;

3. the minimum energy is −Nε
4. The partition function is,

Z =
(
eβε + 1 + e−βε

)N
β =

1

kT

5. The average energy is the internal energy,

E = − ∂

∂β
lnZ = −Nε eβε − e−βε

1 + eβε + e−βε

6. The integrand satisfies C(T )dT/T = dS, so it follows,∫ ∞
0

dT
C(T )

T
=

∫ T=∞

T=0

dS = kN ln 3



Question 12: Statistical Mechanics

Consider a d-dimensional gas of spin-1/2 electrons (two spin states per elec-
tron). The gas is enclosed in a rectangular box whose sides have equal
length L. Assume that the box is large enough such that the spectrum may
be approximated by a continuum.

Define the surface area of the d-dimensional hypersphere of radius r as
Sdr

d−1 (e.g. S2 = 2π and S3 = 4π).

(a) Given electron density ρ = N/Ld, where N is the total number of
electrons, calculate the Fermi wavevector kF . Express your answer in terms
of d, ρ, and Sd.

(b) Using the definition EF = h̄2k2F /2m, calculate the density of states per
unit volume, D(E), as a function of energy E. Express your answer in terms
of ρ, d and EF .



Solution

(a) The total number of electrons, N can be summed in the following way:

N = 2

∫
ddn = 2

Ld

(2π)d

∫ kF

0
ddk = 2

LdSd
(2π)d

∫ kF

0
dkkd−1 = 2

LdSdk
d
F

d(2π)d
(1)

We can then solve for kF in terms of the density, ρ = N/Ld:

kF =

(
dρ(2π)d

2Sd

)1/d

(2)

(b) The density of states, D(E) can be obtained using N = Ld
∫
D(E)dE.

Using E = h̄2k2/2m, we can write:

k =

√
2mE

h̄
and dk =

√
m

h̄
√

2E
dE (3)

Using the expression from (a), we can plug the appropriate values in:

N = 2
LdSd
(2π)d

∫ kF

0
dkkd−1 =

LdSd
(2π)d

∫ EF

0
dE

(
2m

h̄2

)d/2

E
d−2
2 (4)

Therefore, the density of states per unit volume is therefore:

D(E) =
Sd

(2π)d

(
2m

h̄2

)d/2

E
d−2
2 (5)

To express this in terms of the necessary quantities, we use that EF =
h̄2k2F /2m and the answer from part (a) to write:

D(E) =
dρ

2EF

(
E

EF

) d−2
2

(6)
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