
Richard Myers 2016 Comp. Exam Solutions August 2019

1 Using this Document and Disclaimer

This document is intended to record the solutions to the 2016 comprehensive exam as I
understand them. No guarantees are made about the correctness of these solutions, though
I have tried to careful to do things correctly. Throughout this document, I have also made
an effort to point out how the reader might remember the details common formulae. It is
important to note that these explanations are not intended to be rigorous justifications, but
rather are intended as a collection of mnemonics from which one might hope to interpolate
the correct formula from an imperfect memory.

With this said, I do hope this document will prove as useful to others as I hope it will
be for myself in creating it. Feedback is appreciated, and should be directed to the author’s
email: myersr(at the system)physics.ucla.edu.
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2 Problem 1: Classical Mechanics

2.1 Problem Statement (Pendulum in a Rotating Frame/Lagrange
Multipliers)

Consider a pendulum made of a very heavy mass m suspended by a light wire of length `
from a tall ceiling. The pendulum is allowed to swing freely for long periods of time, and
moves in both the east-west and north-south directions.

(a) Choose a set of axes such that x is east and y is north and z is vertically upwards and
assume small oscillations to calculate the two coupled differential equations for the
motion of the pendulum in a frame rotating with angular velocity Ω||z, much smaller
than the pendulum characteristic frequency so you can neglect all effects ∝ Ω2.

(b) If the pendulum starts oscillating in the x-plane with zero initial velocity and initial
offset x0, use perturbation theory to obtain the first order correction to the trajectory.

(c) Find the full solution using the substitution η = x+ iy and then trying a solution for
the resulting equation of motion of the form η(t) = f(t)e−iΩt.

2.2 Part (a)

The problem statement is an exceedingly long run-on sentence, but if we parse carefully,
we note that the problem only asks us to find the equations of motion, not solve them.
Furthermore, if we look at parts (b) and (c), it seems we are expected to deal with these
equations in terms of Cartesian coordinates. So, while it may be tempting to convert to
spherical coordinates since that’s the symmetry of the problem, we will actually be better
off staying in Cartesian coordinates over the course of this problem. This does add a bit
of a complication in imposing the constraint that the pendulum have length ` since we can
no longer impose this by fixing the radial coordinate in the spherical coordinate system.
Instead, we need to impose the constraint via a Lagrange multiplier in our Lagrangian.

Suppose first that the coordinate system r′ = (x′,y′, z′) is the fixed, stationary frame of
reference and that r = (x,y, z) is the rotating frame. If R(θ) is the rotation matrix for a
rotation about the z-axis by an angle θ, then r = R(Ωt)r′. Since a rotation about the z-axis
takes the general form

R(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 = exp [−i(σy ⊕ 0)Ωt] , (2.2.1)
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where σy is the Pauli y matrix. It therefore follows that

Ṙ(Ωt) = −iΩ(σy ⊕ 0)R(Ωt) = Ω

 0 −1 0
1 0 0
0 0 0

R(Ωt) = Ω

 − sin Ωt − cos Ωt 0
cos Ωt − sin Ωt 0

0 0 0


(2.2.2)

The reason we need to know about this rotation operator is because will need to convert
the kinetic energy 1

2
mṙ′ to be in terms of the rotating coordinates. Writing the relationship

r′ = R(−Ωt)r, we are free to now compute the time derivative

ṙ′ = R(−Ωt)ṙ + Ṙ(−Ωt)r = R(−Ωt)ṙ + iΩ(σy ⊕ 0)R(−Ωt). (2.2.3)

From here, we are free to compute ṙ′ · ṙ′ to be

ṙ′ 2 = ṙ2 + Ω2r2 + iΩ
[
ṙT (σy ⊕ 0)r− rT (σy ⊕ 0)ṙ

]
, (2.2.4)

where we have used RTR = 1, [R, σy ⊕ 0] = 0, and σTy = −σy. The commutator can be
evaluated directly, but it is easier to note that R is a matrix exponential of σy⊕0, and so they
necessarily commute. Next, note that for any vectors a,b, and matrix A, it is necessarily
the case that

aTAb =
(
aTAb

)T
= bTATa. (2.2.5)

In our case, we are interested in making the two remaining bilinear forms in (2.2.4) have
the same vector on the same side, so we might be able to combine them in some way and
simplify the expression. Conveniently, this identity implies ṙT (σy ⊕ 0)r = −rT (σy ⊕ 0)ṙ by
the previously noted identity σTy = −σy. Therefore, we have

ṙ′ 2 = ṙ2 + Ω2r2 − 2iΩrT (σy ⊕ 0)ṙ = ṙ2 + Ωr2 − 2Ω [yẋ− xẏ] . (2.2.6)

Now, to impose the constraint r2 = `2, we introduce the Lagrange multiplier α. Our
Lagrangian is now

L =
1

2
m
(
ṙ2 + Ω2r2 − 2Ω[yẋ− xẏ]

)
−mgz +

1

2
α
(
r2 − `2

)
. (2.2.7)

Hence, the equations of motion for the z coordinate is

mz̈ = mΩ2z −mg + αz = −mg + (mΩ2 + α)z ≈ −mg + αz, (2.2.8)
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where we have dropped the term of order O(ω2) as suggested by the problem statement.
The remaining two equations of motion are

mẍ− 2mΩẏ = αx,

mÿ + 2mΩẋ = αy.
(2.2.9)

If we now take two derivatives of the constraint, we find the condition

xẍ+ yÿ + zz̈ = −(ẋ2 + ẏ2 + ż2). (2.2.10)

This becomes useful to us if we multiply the x equation by x, the y equation by y, and
similarly for z, and then sum the results,

−mgz+α`2 = m(xẍ+yÿ+zz̈)−2mΩ [xẏ − yẋ] = −m(ẋ2+ẏ2+ż2)−2mΩ [xẏ − yẋ] . (2.2.11)

Hence,
α`2 = mgz −m(ẋ2 + ẏ2 + ż2)− 2Ω [xẏ − yẋ] . (2.2.12)

However, since1 z = −
√
`2 − (x2 + y2), we can write

ż2 =
(xẋ+ yẏ)2

z2
, (2.2.13)

which would then allow us to eliminate the z dependence from α, and using the resulting
expression for α, we would be left with two equations of motion for the system, (2.2.9).

For small oscillations, inspection of (2.2.9) shows that only zeroth order terms in α are
capable of contributing to the motion. The only term that is capable of making a zeroth order
contribution is the term mgz since z = −`

√
1− (x2 + y2)/`2 ≈ −`. Hence, α ≈= −mg/`

which then leads us to the equations

mẍ− 2mΩẏ = −mg
`
x,

mÿ + 2mΩẋ = −mg
`
y,

(2.2.14)

for small oscillations.

1We must choose the negative branch to make the bottom of the pendulum, which is already a distance
` away, be a distance ` away, downwards.
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2.3 Part (b)

For the classical perturbation, we expand the exact solution in powers of Ω, since we are
told in the problem statement that this is supposed to be a small parameter. To first order,
the solution is then x(t) = x(0)(t) + Ωx(1)(t) +O(Ω2) and similarly for y(t). The equations
of motion are then

0 =
(
mẍ(0) +

mg

`
x(0)
)

+ Ω
(
mẍ(1) +

mg

`
x(1) − 2mẏ(0)

)
+O(Ω2),

0 =
(
mÿ(0) +

mg

`
y(0)
)

+ Ω
(
mÿ(1) +

mg

`
y(1) + 2mẋ(0)

)
+O(Ω2),

(2.3.1)

which we now demand holds order by order in Ω. The zeroth order correction is then clearly
a harmonic oscillator, whose solution we know to be

x(0)(t) = x0 cosω0t, y(0)(t) = 0, (2.3.2)

for the given boundary conditions and where ω0 =
√
g/`. The first order corrections then

satisfy
0 = ẍ(1) + ω2

0x
(1),

0 = ÿ(1) + ω2
0y

(1) − 2ω0x0 sinω0t.
(2.3.3)

The equation for x(1)(t) is again that of a harmonic oscillator, but since we forced the
zeroth order solution to satisfy the boundary conditions, the first order correction must
contribute zero initial position and velocity. Therefore, x(1)(t) = 0. The equation for y(1)(t)
is the equation of a driven harmonic oscillator with no damping, so we know the particular
solution will look like a cosine function2 of the same frequency, ω0. But if we were to do
this, we would find no solution. We could think of this issue as being on-resonance with zero
damping. The solution is therefore of the form At cosω0t, which implies A = −x0 so the
particular solution is y

(1)
p (t) = −x0t cosω0t.

Since we already know the homogeneous solution is y
(1)
h (t) = A sinω0t + B cosω0t, we

just need to impose the initial conditions y(0) = 0 and ẏ(0) = 0. These imply B = 0 and
A = x0/ω0. Hence, the full first order solution to (2.2.14) is

x(t) = x0 cosω0t+O(Ω2),

y(t) = Ω
x0

ω0

sinω0t− x0Ωt cosω0t+O(Ω2).
(2.3.4)

We should also point out that the prefactor of t represents a singularity in the perturbation,
making this perturbation valid only for small t.

2The proper way of doing this without already knowing the answer would be to Fourier transform y(1).
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2.4 Part (c)

Before we begin, it’s worth pointing out that we might have guessed that this coordinate
transformation would work by noting that the equations of motion are essentially those of a
charged particle in a magnetic field with the addition of a harmonic potential. In any case,
we are going to make the variable transformation by multiplying the y equation of (2.2.14)
by i and then adding the two equations of motion to find

0 = η̈ + ω2
0η + 2Ω(iẋ− ẏ) = η̈ + 2iΩη̇ + ω2

0η, (2.4.1)

which has the form of a damped harmonic oscillator. The suggested form of solution,
however, gives a nice cancellation:

f̈ = −(Ω2 + ω2
0)f. (2.4.2)

While we could solve this problem exactly, we are still ignoring terms of order Ω2, so the
solution is again sines and cosines in ω0. If it were the case that we were able to find a solution
for f which was real, then f(0) = x(0), but we would also have η̇(0) = ḟ(0)− iΩf(0). This
would imply ẋ(0) = ḟ(0), but would also imply ẏ(0) = −Ωf(0) = −Ωx(0). Since ẏ(0) = 0
but ẋ(0) 6= 0, it is impossible to find a real-valued function f(t).

Instead, we must write f(t) = Ae−iω0t + Beiω0t for some A ∈ C and we must satisfy the
initial conditions f(0) = x0 and 0 = ḟ(0) − iΩf(0). The first of these implies A + B = x0

while the latter implies −iω0A+ iω0B = −iΩx0, or A−B = Ω
ω0
x0. Therefore,

A = x0
ω0 + Ω

2ω0

, B = x0
ω0 − Ω

2ω0

. (2.4.3)

This implies

f(t) = x0 cosω0t− ix0
Ω

ω0

sinω0t, (2.4.4)

which then allows us to write the full solution for x and y as

x(t) = x0

(
cosωt cos Ωt− Ω

ω0

sinω0 sin Ωt

)
,

y(t) = x0

(
cosω0t sin Ωt− Ω

ω0

sinω0t cos Ωt

)
.

(2.4.5)

If we look carefully, we can even note that the perturbation we found in part (b) is indeed
the expansion of the exact solution found here to first order in Ω.

8



3 Problem 2: Classical Mechanics

3.1 Problem Statement (Newtonian Mechanics or Lagrange Mul-
tipliers)

A ring of mass M = 0.1 kg hangs from a thread, and two beads of mass m = 0.2 kg slide on
it without friction. The beads are released simultaneously from rest at the top of the ring
and slide down opposite sides. The ring is initially motionless, but when the beads pass a
critical angle, θc, the ring is observed to start moving upwards. Find the value of θc.

3.2 Solution (Newtonian Mechanics)

To analyze this problem with Newton’s equations, we note that there will be a normal force
due to the hoop which acts on the beads to keep them on the hoop. Since the beads must
act on the hoop in an identical but opposite fashion, there will be a force on the hoop due
to the two beads in addition to the force supplied by gravity and the tension in the thread.
When the vertical components of these normal forces on the hoop are capable of matching
the gravitational force on the hoop, the tension in the thread will be zero and any additional
force from the beads will cause it to rise. This is the condition we will use to determine θc.
First, however, we must compute these forces.

To get the normal force3 acting on one of the beads, we note via sufficient trigonometry
that the sum of forces on the bead which point towards the center of the hoop is Fc =
mg cos θ − N where θ is the angular position of the bead with θ = 0 at the top of the
hoop. But since the bead travels on a circular path, it must be the case that Fc = mv2/r,
so N = m(g cos θ − v2/r). To find v2/r, we can consider the energy of the bead. Since
the bead and hoop do no work on each other, the energy of the bead will be conserved. It

3We note that it doesn’t matter which direction we assume N to point, as long as we are consistent in
our convention.
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then follows that if we choose the top of the hoop to be our level of zero potential, that
0 = −mgr(1− cos θ) + 1

2
mv2 from which we find v2/r = 2mg(1− cos θ).

We now have N = mg(3 cos θ − 2). The condition for the hoop to jump is then written
0 = 2N cos θ +Mg, as discussed above. This may now be written in the form

6 cos2 θ − 4 cos θ +
M

m
= 0. (3.2.1)

This may be solved for cos θ to find

cos θc =
4±

√
16− 24M/m

12
=

2±
√

4− 6M/m

6
=

2± 1

6
=

{
1/6
1/2

(3.2.2)

Since cos θ is a decreasing function on [0, π/2], as θ increases, the value of cos θ will be 1/2
before it is 1/6. Therefore, we accept the solution cos θc = 1/2, which then implies θc = 60◦.

3.3 Solution (Lagrange Multipliers)

The solution using Newtonian mechanics given above is definitely the faster of these two
options if you think to go that path. However, if nothing but for the sake of practice, we
will present a solution using Lagrange multipliers as well. Well, as we will see, once we’ve
seen how to do the problem from Newton’s laws, the Lagrangian calculation will just trade
trigonometry for calculus.

We will model the hoop as static4, and then compute the vertical component of the normal
force from the constraint, and require it to be equal to the gravitational force acting on the
hoop. In fact, since the two beads don’t interact, we will calculate the force supplied by only
one bead, and then double it. The constraint for this problem is then clearly x2 + y2 = r2

where r is the radius of the hoop. The Lagrangian for the system is then

L =
1

2
m(ẋ2 + ẏ2) +mg(r − y)− 1

2
α(x2 + y2 − r2). (3.3.1)

The equations of motion are therefore

x2 + y2 = r2, mẍ = −αx, mÿ = −mg − αy. (3.3.2)

The constraint force in the y-direction on the bead is therefore −αy. Hence, the hoop
experiences a force 2αy, which must match Mg. So, we must find α. Disintegrating the

4If we did not do this, then the tension would act as a non-holonomic constraint.
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constraint twice, we find (xẍ + yÿ) = −(ẋ2 + ẏ2). If we multiply the x and y equations of
motion by x and y, respectively, and then sum the results, we find

m(ẋ2 + ẏ2) = mgy + αr2. (3.3.3)

To determine the velocity squared, we are free to use the energy, which is clearly conserved
since the Lagrangian is time independent5. This implies that 0 = m(ẋ2 + ẏ2)− 2mg(r − y),
so we find

2mg(r − y) = mgy + αr2, (3.3.4)

from which we find
α =

mg

r2
(2r − 3y). (3.3.5)

It now follows that our constraint takes the form

M =
m

r2
(2r − 3y)y = m(2− 3 cos θ) cos θ, (3.3.6)

where we have changed coordinates to y = r cos θ since we were asked to find the angle, not
the height. From here, we find exactly the same polynomial in cos θ that was found from
the Newtonian analysis, and hence the same result follows.

4 Problem 3: Quantum Mechanics

4.1 Problem Statement (Tensor Products of Two-State Systems)

An apparatus is constructed that emits pairs of photons whose polarizations are quantum-
mechanically correlated because each pair is in the state

|ψ〉 = (|HA, HB〉 − |VA, VB〉)/
√

2 (4.1.1)

where H (Horizontal) and V (Vertical) corresponding to orthogonal linear polarizations for
the photons. Each photon from the pair is collected in a separate (polarization-maintaining)
optical fiber and the output of the first fiber is sent to Alice while the output of the second
is sent to Bob (corresponding to the A and B subscripts above).

Alice and Bob each have a fancy single-photon polarization detection system that will
report a result of +1 if the measurement of the polarization finds H and −1 if it finds

5Note that this essentially follows from our assumption that the hoop is fixed, and the Lagrangian for
the hoop and particle therefore factors.
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V . Expressed in the H,V basis, each detector implements the measurement given by the
operator

Mp = |Hp〉〈Hp| − |Vp〉〈Vp| =
(

1 0
0 −1

)
p

(4.1.2)

where p ∈ {A,B}.

(a) The H and V directions of each detector may be said to point along the x and y
axes of some coordinate systems that are fixed with respect to each detector. If Alice
or Bob decides to rotate their detector about the +z-axis through some angle θ, the
resulting measurement may be called Mp(θ). Find expressions for the following four
measurement operators in the H,V basis: MA(0),MA(π/4),MB(π/8),MB(3π/8).

(b) Find the expectation value of the following operator in the state |ψ〉:

Ŵ ≡2 · I−MA (0)MB

(π
8

)
+MA (0)MB

(
3π

8

)
+MA

(π
4

)
MB

(π
8

)
+MA

(π
4

)
MB

(
3π

8

)
,

(4.1.3)

where I is the identity matrix.

(c) The operator Ŵ is known as an entanglement witness; if 〈Ŵ 〉 ≤ 0, the state is incom-
patible with a local hidden variable theory. Now consider the effect of group velocity
birefringence in the optical fibers, which would lead to a polarization-dependent time-
delay. Consider the case where the photons emitted by the source (i.e. at some position
in space before they are collected by the fibers) are in Gaussian temporal wavepackets
of width τ given by

ψtemporal(t) =
1

(2πτ 2)1/4
e−

t2

4τ2 . (4.1.4)

Find the relative delay between H and V necessary to give 〈Ŵ 〉 > 0 for photons
created in the initial state |ψ〉. You should assume that the fibers (and therefore the
birefringence-induced delays) are identical for Alice and Bob. The following identity
may be useful:∫ ∞

−∞

dt

τ
√

2π
exp

[
− t2

4τ 2

]
exp

[
−(t+ T )2

4τ 2

]
= exp

[
− T

2

8τ 2

]
. (4.1.5)
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4.2 Part (a)

To compute Mp(θ), we need only compute6 Mp(θ) = R(θ)MpR
T (θ), where

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(4.2.1)

is the rotation matrix fora rotation by angle θ in the plane7. Actually performing this
computation,

Mp(θ) =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
. (4.2.2)

The task of computing the desired matrices is now a matter of rote8:

MA(0) =

(
1 0
0 −1

)
, MA

(π
4

)
=

(
0 1
1 0

)
,

MB

(π
8

)
=

1√
2

(
1 1
1 −1

)
, MB

(
3π

8

)
=

1√
2

(
−1 1
1 1

)
.

(4.2.3)

The subscripts A and B do not, of course, matter to the computation.

4.3 Part (b)

Though it is not indicated in the problem, we are supposed to interpret multiplications in
(4.1.3) as tensor products, not matrix multiplications. This is unfortunate notation, but
since the vector |ψ〉 given to us lives in a 4 dimensional space, we should be able to deduce
the correct interpretation by noticing that the matrices Mp(θ) only act on a 2 dimensional

space. One option for computing 〈ψ|Ŵ |ψ〉 would be to first compute the 4 × 4 matrix Ŵ
by carrying out the tensor products explicitly and then summing. However, this would be
an extensive computation to perform by hand, and would not only take time, but would
also increase the probability of error. A more efficient method would be to write the inner

6We can recall that the transposed rotation must go on the right since vectors v transform like Rv and
therefore RMpv = RMpR

TRv, which fixes the ordering, even if we are considering a passive as opposed to
active transformation of the vector space, which would swap which rotation gets the transpose.

7Some notes on how to remember this matrix: we know there is a minus sign on one of the two sines. To
figure out which one, we can always act the matrix on (1, 0), and know by drawing a picture that the result
should be (cos θ, sin θ), which fixes the sign.

8If the reader has access to Mathematica, I highly recommend making use of the TeXForm command for
procedurally generating the TeX code of matrices.
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product in terms of the H, V basis9:

〈ψ|Ŵ |ψ〉 =|a|2〈HA, HB|Ŵ |HA, HB〉+ |b|2〈VA, VB|Ŵ |VA, VB〉
+ a∗b〈HA, HB|Ŵ |VA, VB〉+ ab∗〈VA, VB|Ŵ |HA, HB〉.

(4.3.1)

With this, we need to compute four inner products, but we are now in a basis where we can
simply read off the values from the Mp(θ) matrices we computed above. The values are

〈HA, HB|Ŵ |HA, HB〉 = 2−
√

2,

〈VA, VB|Ŵ |VA, VB〉 = 2−
√

2,

〈HA, HB|Ŵ |VA, VB〉 =
√

2,

〈VA, VB|Ŵ |HA, HB〉 =
√

2.

(4.3.2)

So, the inner product of interest is now

〈ψ|Ŵ |ψ〉 = (2−
√

2)(|a|2 + |b|2) +
√

2(a∗b+ ab∗). (4.3.3)

If we assume the state to be normalized, we can reduce this further to

〈ψ|Ŵ |ψ〉 = 2 +
√

2(2<[a∗b]− 1). (4.3.4)

So, for our particular case in which a = 1/
√

2 and b = −1/
√

2,

〈ψ|Ŵ |ψ〉 = 2− 2
√

2 = 2(1−
√

2) < 0. (4.3.5)

4.4 Part (c)

From the question here, it is again not completely clear what we are supposed to do to model
the birefringence described in the problem. What we are supposed to figure our, however, is
that we should modify the problem, which we were not asked to do, to now write

|ψ〉 =
1√
2

(|HA, HB, 0〉 − |VA, VB, T 〉). (4.4.1)

That is, expand our Hilbert space by tensor producting a phase-delay vector into the space.
Though we have written |0〉 and |T 〉, the exact delay is not known. Instead, we assume

9To make the procedure more transparent, we write |ψ〉 = a|HA, HB〉+ b|VA, VB〉.
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these extra states to be normalized so 〈0|0〉 = 〈T |T 〉 = 1 and the overlap is given by
〈0|T 〉 = 〈T |0〉 = exp(−T 2/8τ 2).

With this, we should really redefine the Ŵ operator to now work on the correct space,
but instead the problem expects us to assume that the entanglement witness acts on the
new space like Ŵnew = Ŵ ⊗ 1. At the end of the day, the only thing to change in our
computations (4.3.2) is the computation of the off-diagonal elements, so

〈HA, HB, 0|Ŵ |HA, HB, 0〉 = 2−
√

2,

〈VA, VB, T |Ŵ |VA, VB, T 〉 = 2−
√

2,

〈HA, HB, 0|Ŵ |VA, VB, T 〉 =
√

2 exp

[
− T

2

8τ 2

]
,

〈VA, VB, T |Ŵ |HA, HB, 0〉 =
√

2 exp

[
− T

2

8τ 2

]
,

(4.4.2)

where we have dropped the subscript new everywhere. The inner product is now

〈ψ|Ŵ |ψ〉 = 2−
√

2

(
1 + exp

[
− T

2

8τ 2

])
. (4.4.3)

If we now impose the constraint 〈Ŵ 〉 > 0, this implies

T > 2τ

√
2 ln

(
1√

2− 1

)
. (4.4.4)

5 Problem 4: Quantum Mechanics

5.1 Problem Statement (Non-Local Theories)

We consider a one-dimensional system with Hamiltonian H = p2

2m
+V where the potential V

gives an effective description of the physical system, and V is non-local. The matrix elements
of V in the position basis |x〉, for real x, is given in terms of a real-valued square integrable
function u(x) which decreases to zero exponentially as |x| → ∞,

〈x|V |x′〉 =
~2

2m
u(x)u(x′). (5.1.1)
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(a) Derive the integro-differential equation obeyed by a wave function ψk(x) of energy E
given in terms of the wave number k by E = ~2k2/2m.

(b) Establish the solution to the equation obtained in part (a) above for the scattering of an
incoming plane wave of wave-number k and unit amplitude in terms of a suitable Green
function G(x, x′; k). (The resulting solution is usually referred to as the Lippmann-
Schwinger equation).

(c) Compute the reflection and transmission coefficients, respectively rk,tk as functions of
the Fourier transform of u(x).

(d) Verify that probability is conserved during the process so that r2
k + t2k = 1.

5.2 Part (a)

In its coordinate-free representation, the equation of motion for a wave function is given by

i~
∂

∂t
|ψ〉 = H|ψ〉. (5.2.1)

If we now compute the overlap of this vector with 〈x| and insert a complete set of states,
we find

i~
∂

∂t
〈x|ψ〉 =

∫
dx′〈x|H|x′〉〈x′|ψ〉. (5.2.2)

Using the representation (5.1.1), this may be written

i~
∂

∂t
ψ(x, t) = − ~2

2m

∂2

∂x2
ψ(x, t) +

~2

2m

∫
dx′u(x)u(x′)ψ(x′, t). (5.2.3)

If we are instead interested in the time-independent equation, as we are in this problem, we
do the same for E|ψ〉 = H|ψ〉, so

∂2

∂x2
ψ(x) + k2ψ(x) =

∫
dx′u(x)u(x′)ψ(x′). (5.2.4)

5.3 Part (b)

This part of the question is a bit misleading because we are not, in fact, supposed to find
the inverse to the operator ∂2 + k2− u(x)

∫
dx′u(x′). Instead, we use a dirty trick and write
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(5.2.4) in the form (∂2 + k2)ψ = J(x) for some function J(x) which we will treat as a source
for what is now the Klein-Gordon equation.

If we now define G(x, x′; k) to be the Green’s function for the Klein-Gordon equation,(
∂2

∂x2
+ k2

)
G(x, x′; k) = δ(x− x′), (5.3.1)

then by letting10 y = x−x′ and writing the Green’s function in terms of its Fourier transform,
G(y; k) =

∫
dω
2π
eiωyG̃(ω; k), the Klein-Gordon equation becomes∫

dω

2π
eiωy(−ω2 + k2)G̃(ω; k) =

∫
dω

2π
eiωy, (5.3.2)

where we have used the Fourier representation of the delta function, δ(y) =
∫

dω
2π
eiωy. Since

the Fourier complex exponentials form a good basis, the integrands themselves must be
equals, so

G̃(ω; k) =
−1

ω2 − k2
. (5.3.3)

Hence, if we can compute the inverse Fourier transform of G̃, we would have our Green’s
function. There is, however, as is usually the issue with this Green’s function, there are a
pair of poles on the real axis. So, we have to use the standard trick of introducing a positive
quantity ε to push the poles off the real axis for the integration, and then take the limit
ε→ 0 when we are done. Essentially, we write

G̃(ω; k) =
−1

(ω + i(ik ± ε))(ω − i(ik ± ε))
, (5.3.4)

so the poles are at ωR = k ± iε and ωL = −k ∓ iε (labeled left and right). We note that
there is an ambiguity in whether we add or subtract ε from ik, corresponding to which of the
two poles is moved into the upper half-plane and which is moved into the lower half-plane.

The Fourier transform we now need to compute is

G±(y; k) =

∫
dω

2π

−eiωy

(ω − ωL)(ω − ωR)
. (5.3.5)

In order to evaluate this integral, we will need to use the Cauchy integral formula,

2πif(a) =

∮
C

dz
f(z)

z − a
(5.3.6)

10Strictly speaking, we should first Fourier transform x and x′ separately and then deduce from the Fourier
transform of the delta function that G depends only on the difference, but since this is typically the case,
we simply assume this result.
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where C is a simple, closed, counter-clockwise oriented curve whose interior contains a and
no poles of f(z). However, to use the Cauchy formula, we will need to transform our Fourier
integral into an integral over a closed contour. What we can do is consider the semicircle
of radius a which runs along the real axis and then into the upper or lower complex plane.
If we suppose that y > 0, then <[iωy] = −y<[ω] is a negative quantity for ω in the upper
half-plane. This means that as we let a→∞ on our contour, the contribution to the integral
due to the arc will vanish and the value of the contour integral will be exactly the Fourier
integral we are interested in. In exactly the same way, if y < 0 we need to close choose the
semicircle to close in the lower half-plane, but we do need to be careful that here the contour
is taken in the clockwise direction, which will result in an overall negative sign.

Let us first suppose that y > 0 so we are able to use the contour in the upper half-plane.
To use the Cauchy integral formula, we then need to know which pole is located in the
upper half-plane. If we take the negative sign for our additions of ε, there will be a pole at
ωL = −k + iε, so we write

G−(y > 0; k) =
−1

2π

∮
C

eiωy

(ω−ωR)

ω − ωL
= −ie

−iky−yε

−2k
= −e

−iky

2ik
, (5.3.7)

where we have passed the limit ε→ 0. In much the same way, we find

G−(y < 0; k) =
1

2π

∮
C

eiωy

(ω−ωL)

ω − ωR
= i

eiky+yε

2k
= −e

iky

2ik
. (5.3.8)

Hence,

G−(|x− x′|; k) = −e
−ik|x−x′|

2ik
. (5.3.9)

If we were instead to take the plus sign on the additional factors of ε, we would have found

G+(|x− x′|; k) =
eik|x−x

′|

2ik
. (5.3.10)

Now that we have the Green’s function for the inhomogeneous Klein-Gordon equation,
we are free to write the solution ψk(x) = eikx +

∫
dx′G+(|x− x′|; k)J(x′), which is a solution

to the homogeneous problem plus the particular solution to the inhomogeneous problem
given by the Green’s function. We note that the most general solution to the problem at
hand would involve both Green’s functions and both plane waves, e±ikx. However, we are
only interested in scattering of an incoming wave. It is typical to interpret the positive sign
in the complex exponential as indicating an “incoming” wave, which is why we have selected
eikx for our homogeneous solution and G+ as our Green’s function.
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This is where we come to the dirty trick alluded to earlier. Recall that the source term
J(x) =

∫
dx′′u(x)u(x′′)ψk(x

′′) is dependent on the wave function our Green’s function was
supposed to find for us. We may write

ψk(x) = eikx +

∫
dx′G+(x, x′; k)u(x′)

∫
dx′′u(x′′)ψk(x

′′). (5.3.11)

Let us now apply the operator
∫

dxu(x) to both sides of the above equation and liberally
relabel dummy variables to find∫

dxu(x)ψk(x) =

∫
dxu(x)eikx +

(∫
dxu(x)ψk(x)

)∫
dx′dx′′G+(x′, x′′; k)u(x′)u(x′′).

(5.3.12)
The interesting thing about this particular equation, is that it allows us to solve for the

quantity ak =
∫

dxu(x)ψk(x) by writing

ak =
ũ∗(k)

1−K
, K =

∫
dx′dx′′G+(x′, x′′; k)u(x′)u(x′′), (5.3.13)

where ũ∗(k) =
∫

dxeikxu(x) is the conjugate of the Fourier transform of u(x), using that
u(x) is a real-valued function. We note that K depends only on the Green’s function and
the function u(x), not the wave function. So, we are now free to write the solution to the
problem at hand as

ψk(x) = eikx +
ũ∗(k)

1−K

∫
dx′G+(|x− x′|; k)u(x′), (5.3.14)

which is now a properly explicit solution: the solution is no longer implicitly defined by an
integral equation.

Needless to say, this problem is unreasonable for allotted 45 minutes, and we are only
half-way through it.

5.4 Part (c)

For this, we must remember that

rk ≡ lim
x→−∞

ψk(x)

e−ikx
, tk ≡ lim

x→∞

ψk(x)

eikx
. (5.4.1)

If we look to calculate the reflection coefficient first, we have11

rk =
ũ∗(k)

1−K

∫
dx′

u(x′)

2ik
lim

x→−∞
exp (ik(|x− x′|+ x)) . (5.4.2)

11We note that all Fourier transforms are technically defined with limε→0+ e
−ikx−ε|x| implicit, so in the

limit x→ ±∞ of e±ikx vanishes.
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But, |x − x′| =
√

(x− x′)2 = |x|
√

1− 2xx′/|x|2 + x′ 2/x2, so the expansion for large |x| is
then |x− x′| ≈ |x| (1− xx′/|x|2) = |x| − sgn(x)x′. Thus,

lim
x→−∞

|x− x′|+ x = lim
x→−∞

−x+ x′ + x = x′. (5.4.3)

It now follows that the reflection coefficient is given by

rk =
1

2ik

ũ∗(k)

1−K

∫
dx′eikx

′
u(x′) =

ũ∗(k)

2ik

ũ∗(k)

1−K
. (5.4.4)

The transmission coefficient follows by similar arguments, and is given by

tk = 1 +
1

2ik

|ũ(k)|2

1−K
. (5.4.5)

5.5 Part (d)

Lastly, we must check that |rk|2 + |tk|2 = 1. Expanding these terms, we find

|rk|2 =
|ũ(k)|4

4k2|1−K|2
, |tk|2 = 1 +

|ũ(k)|2

2ik

K −K∗

|1−K|2
+

|ũ(k)|4

4k2|1−K|2
. (5.5.1)

So, to satisfy the condition |rk|2 + |tk|2 = 1, it is both necessary and sufficient that

K −K∗ =
|ũ(k)|2

ik
. (5.5.2)

So, we want to compute

K −K∗ =
1

2ik

∫
dxdx′u(x′)

[
eik|x−x

′| + e−ik|x−x
′|
]
u(x). (5.5.3)

The absolute values in this expression make things look hopeless, but fortunately, we know
the result is relatively simple. The trick of the matter is to notice that we are free to represent
the absolute values in terms of theta functions by

eik|x−x
′| = θ(x− x′)eik(x−x′) + θ(x′ − x)e−ik(x−x′). (5.5.4)
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With this, we may write the sum of exponentials in the integrand of (5.5.3) as

eik|x−x
′| + e−ik|x−x

′| =θ(x− x′)eik(x−x′) + θ(x′ − x)e−ik(x−x′)

+θ(x− x′)e−ik(x−x′) + θ(x′ − x)eik(x−x′),
(5.5.5)

which we may now regroup terms to write

eik|x−x
′| + e−ik|x−x

′| = [θ(x− x′) + θ(x′ − x)] eik(x−x′)

+ [θ(x− x′) + θ(x′ − x)] e−ik(x−x′)

= eik(x−x′) + e−ik(x−x′).

(5.5.6)

Hence,

K −K∗ =
1

2ik

∫
dxdx′u(x′)

[
eik(x−x′) + e−ik(x−x′)

]
u(x)

=
1

2ik
[ũ(k)ũ∗(k) + ũ∗(k)ũ(k)] =

|u(k)|2

ik
,

(5.5.7)

exactly as required for |rk|2 + |tk|2 = 1, which completes the proof.

6 Problem 5: Quantum Mechanics

6.1 Problem Statement (Variational Method)

Confinement of a quark anti-quark pair with masses much larger than the typical confinement
scale may be described by a non-relativistic Hamiltonian with an attractive potential which
is linear in the distance between the quarks, and given by,

H =
p2

2µ
+

~2a3

2µ
|r|, (6.1.1)

where µ is the reduced mass, and a > 0 is a constant related to the confinement scale.

(a) Estimate the ground state energy by using the variational method and a family of trial
wave functions depending on one parameter λ > 0,

ψλ(r) =

{
(λ2 − r2), |r| < λ.
0, |r| > λ.

(6.1.2)

(b) How can the variational method be used to estimate the energy of the first excited
state with zero orbital angular momentum as well? Please give a careful explanation,
but there is no need to perform any calculations.
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6.2 Part (a)

The variational method more or less goes as follows: suppose the ground state of a system is
unknown to us, but we do have some parametrized model which we expect to approximate the
ground state wave function well. This approximation is then a function of the parameters,
so our guess may be written ψλ(r), using the notation of the problem statement. Then
since we have an explicit expression for ψλ(r), we are free to compute directly the energy
Eλ = 〈ψλ|H|ψλ〉/〈ψλ|ψλ〉. The parameter value λ which causes ψλ to best approximate the
ground state energy is therefore also the value of λ which minimizes Eλ, since the ground
state has the minimum energy. There are some issues with this technique, but we will save
a discussion of these issues for the solution to part (b), since it is more relevant there.

We will first compute the normalization,

〈ψλ|ψλ〉 =

∫ λ

0

4πr2d(λ2 − r2)2 =
32π

105
λ7. (6.2.1)

The numerical prefactors in these variational method problems tend to get out of hand. For
the sake of completeness, we will carry through the exact numerical prefactors here, but it
is recommended on an exam that the reader simply define constant variables to encapsulate
the prefactors, rather than risk making some numerical error in simplifying fractions.

Next, we need to compute 〈ψλ|H|ψλ〉. Since the Hamiltonian may be written

H = − ~2

2µ
∇2 +

~2a3

2µ
|r| (6.2.2)

in the position basis, it follows from the identity ∇2r2 = 6 that

Hψλ = 6
~2

2µ
+

~2a3

2µ
|r|(λ2 − r2). (6.2.3)

Hence,

〈ψλ|H|ψλ〉 =
4π~2

2µ

∫ λ

0

r2dr(λ2 − r2)(6 + a3r(λ2 − r2)) =
2π~2

µ

(
4

5
λ5 +

a3

24
λ8

)
. (6.2.4)

From here it follows that the energy is given by

Eλ =
7~2

128µ

(
96λ−2 + 5a3λ

)
. (6.2.5)

To minimize this, we take impose dEλ
dλ

= 0, so

0 =
7~2

128µ

(
−192λ−3 + 5a3

)
, (6.2.6)
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which admits the real solution

λ =
4

a

(
3

5

)1/3

. (6.2.7)

Our estimate of the ground state energy is now

E =
7 3
√

75

64

(1 + 2a2)~2

µ
. (6.2.8)

6.3 Part (b)

In the beginning of part (a), we mentioned that there are some issues with the variational
method. Essentially, if our guess for the approximate form turns out to be orthogonal to
the true ground state, then the minimum energy we will compute will actually be a better
approximation of the lowest excited state non-orthogonal to our guess – the variational
method only guarantees that the energy we find will be bounded below by the true ground
state energy.

This may, however, be turned into an advantage for us if our goal is to compute excited
state energies. For example, if we knew that the first excited state was parity odd while the
ground state was parity even, then by choosing a trial function which is guaranteed to be
parity odd, we know that the energy we find will be bounded below by the energy of the
lowest non-orthogonal state, which we hope will be the lowest parity odd state, which would
be the first excited state that we are interested in.

7 Problem 6: Quantum Mechanics

7.1 Problem Statement (Constrained Systems/Time Dependent
Perturbation Theory)

A particle of mass m is constrained to move on a ring of radius R lying in the xy-plane. The
system is in its ground state. A time-dependent potential is applied to the particle of the
form

V (y, t) =

{
0, t < 0.
yV0e

−t/τ , t > 0.
(7.1.1)
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At long times t/τ � 1, the system is observed. Find the probability of finding it in each of
the excited states of the unperturbed Hamiltonian.

You may assume that V0 is sufficiently small that only first-order perturbation theory is
necessary.

7.2 Solution

The first step of this problem is to determine the Hamiltonian of this constrained system.
To find this, we will first write the Lagrangian in appropriate coordinates, from which we
will compute the Hamiltonian. Once we have our Hamiltonian in hand, we will quantize the
system, which we will find to be fairly simple since there is only two terms and all factors
in the terms commute as operators. Taking the coordinate transformation x = R cosφ, y =
R sinφ, we compute ẋ2 + ẏ2 = R2φ̇2, so the Lagrangian is

L =
1

2
mR2φ̇2 − θ(t)V0R sinφe−t/τ , (7.2.1)

where θ(t) is the Heaviside theta. We immediately find that the conjugate momenta to the
angular variable is Lz = mR2φ̇. The Hamiltonian is therefore

H = Lzφ̇− L =
L2
z

2mR2
+ θ(t)V0R sinφe−t/τ . (7.2.2)

Alternatively, we could have just guessed that the kinetic term would be of the form L2
z/2I

where I = mR2 is the moment of intertia. It is convenient that this Hamiltonian factors
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cleanly into two parts, H = H0 + V . As promised, the two terms are composed only of
factors that commute, so there are no issues just replacing φ and Lz by operators φ̂ and L̂z.

Before launching into the perturbation calculation, we review how the perturbation for-
mula is derives, which will hopefully give us a way to help recall the formula itself. We
begin by defining the operator U(t, t0) to be the operator which evolves a state in the
Schrödinger picture from a time t0 to a time t. With this, we are free to define the operator
UI(t, t0) = eiH0t/~U(t, t0)e−iH0t0/~. We note that this is the operator U evolved backwards in
time by the operator H0. Furthermore, we will let {|n〉} be the eigenbasis of the operator
H0 such that H0|n〉 = En|n〉.

We note that the transition amplitude may be written

〈n|U(t, t0)|i〉 = 〈n|e−iH0t/~UI(t, t0)eiH0t0/~|i〉 = e−i(Ent−Eit0)/~〈n|UI(t, t0)|i〉. (7.2.3)

It therefore follows that

|〈n|U(t, t0)|i〉|2 = |〈n|UI(t, t0)|i〉|2, (7.2.4)

so the transition probability may be calculated as a matrix element of U in the H0 eigenbasis
just as well as the matrix element of UI . However, it is important to note that this only
works when we are asking for the probability of transition between eigenstates of H0. If we
interested in the transition probability between two arbitrary states, we would need to be
careful to track the energy phases that appear in (7.2.3).

This is all well and good, but it is only useful if we have some means of calculating the
operator UI . Since the operator U is necessarily generated by the full Hamiltonian H, it
follows that i~ ∂

∂t
U(t, t0) = HU(t, t0) = (H0 + V )U(t, t0). Therefore,

i~
∂

∂t
UI(t, t0) = −H0UI + eiH0t/~∂U

∂t
e−iH0t0/~

= −H0UI +H0UI + eiH0t/~V (t)U(t, t0)e−iH0t~

= eiH0t/~V (t)e−iH0t/~UI(t, t0)

≡ VI(t)UI(t, t0).

(7.2.5)

This differential equation along with the initial condition UI(t, t0)|t=t0 = 1 allows us to
integrate the equation to find

UI(t, t0) = 1 +
−i
~

∫ t

t0

dt′VI(t
′)UI(t, t0)

= 1 +
−i
~

∫ t

t0

dt′VI(t
′) +

(
−i
~2

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′VI(t
′)VI(t

′′) + · · · ,
(7.2.6)
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where in the final line we have iterated on the integro-equation to form the Dyson series
solution. However, it would be extremely rare for more than the first order correction to be
necessary on this exam. Indeed, we are told in the problem statement above to only use the
first order correction. If we were to take the matrix element of this solution, keeping only to
first order then,

〈m|UI(t, t0)|n〉 = δmn +
−i
~

∫ t

t0

dt′〈m|V (t′)|n〉e−i(En−Em)t′/~. (7.2.7)

We can remember this formula by remembering that the prefactor comes from iterating
on a formula with 1

i~ , and we can remember the order of the energies in the exponential by
noticing that they are actually the same as those time-independent perturbation theory –
The state of interest (in this case, meaning the state on the RHS) comes first. In fact, we
can easily obtain the first order time-independent state correction from the time-dependent
perturbation theory by inserting a complete basis of |m〉 states between V and the left hand
exponential factor and performing the integral – pull out the assumed time independent
matrix element from the integral, and perform the integral directly.

So, back to the problem at hand, we see that we will need the energies and eigenstates

of the operator H0 = L̂2
z

2I
. If we suppose that |ψ〉 is an angle basis state, then we are free

to make use of the representation L̂z = −i~ ∂
∂φ

. The eigenvalue equation for the angle-basis
wave function is therefore

∂2

∂φ2
ψ(φ) = −2IE

~2
ψ(φ), (7.2.8)

which admits solutions12

ψ(φ) =
1√
2π
e−iωφ, ω2 =

2IE

~2
. (7.2.9)

However, we do have a boundary condition to impose, which is ψ(2π) = ψ(0), which
then requires 2πω = 2πm. Hence, we find that ω ∈ Z. It now makes sense to label the
states by the particular integer m, so we have frequencies ωm = m which imply states
〈φ|m〉 = ψm(φ) = e−imφ/

√
2π and energies Em = m2~

2I
. The ground state of this system is

therefore E0 = 0.
The problem asks us to compute the probability of transitioning from the ground state

to any excited state with the approximation t = ∞. By our above general discussion, this

12The factor of 1/
√

2π is present only for normalization. Alternatively, we could have defined the measure
on the space of φ to be dφ/2π, in which case we would not have the 1/

√
2π in the definition of the wave

function.
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means we need to compute the modulus squared of 〈m|U(∞, 0)|0〉. For this, we first need
to compute the matrix element 〈m|V |0〉, which we may write in the |φ〉 basis as

〈m|V |0〉 = θ(t)V0Re
−t/τ

∫ 2π

0

dφψm(ψ) sinφψ0(φ)

= θ(t)V0Re
−t/τ

∫ 2π

0

dφ

4πi
e−imφ

(
eiφ − e−iφ

)
= θ(t)V0Re

−t/τ 1

2i
(δm,1 − δm,−1) .

(7.2.10)

We now compute the integral (7.2.7) for n = 0 for m 6= 0 so we may ignore the Kronecker
delta13. We find

〈m|UI(∞, 0)|0〉 = −V0R

2~
(δm,1 − δm,−1)

∫ ∞
0

dt′ exp

[
−
(

1

τ
+ iω0m

)
t′
]

=
V0R

2~
(δm,1 − δm,−1)

τ

1 + iω0mτ
,

(7.2.11)

where we have define ωnm = (En−Em)/~ for brevity. Since we know m = ±1, however, we
are free to write ω0,±1 = − ~

2I
. This now allows us to write

〈±1|UI(∞, 0)|0〉 =
V0R

2~
(δm,1 − δm,−1)

2Iτ

2I − iτ~
. (7.2.12)

Thus we find,

P (0→ ±1) =

(
V0R

~

)2
I2τ 2

4I2 + τ 2~2
(7.2.13)

for the transition probabilities. All other transition probabilities are zero to within order
V 2

0 .

13Note that it is not meaningful to try checking that probabilities sum to unity since we are computing
these amplitudes in perturbation theory, which is not constructed to be unitary at every orders. I also
conjecture that that these “transition probabilities” are likely better interpreted as integrated transition
rates. If we adopt this view, then it is immediately clear from the theory of continuous time Markov chains
that the transition rates integrated to finite order should not be expected to conserve probability unless we
are dealing with an exceptionally boring process. This is, however, outside the generally accepted cannon,
the knowledge of which this exam is supposed to test.

27



8 Problem 7: Quantum Mechanics

8.1 Problem Statement (Quantization of Constrained Systems/Commutator
Algebras)

Consider a particle of charge e and mass m0 which is constrained to move on the surface of
a sphere of radius R (we do not consider spin in this problem). There is a uniform magnetic
field B.

(a) Write the Hamiltonian in terms of the momentum and angular momentum operators,
neglecting terms of second order in the field.

(b) Find the energy levels of the system.

(Hint: work in the gauge A = 1
2
B× r).

8.2 Part (a)

Though the easiest way to deal with constrained system is to do as we did in the previous
problem and start from an appropriate classical Lagrangian, this is not always a feasible
strategy on a timed exam. For this problem, it will be far simpler to start with the Hamilto-
nian for a free particle coupled to a magnetic field, and look to convert it directly to spherical
coordinates with the constraint r = R is constant14.

The Hamiltonian for the unconstrained system would be

H =
1

2m0

|p− eA|2 ≈ 1

2m0

p2 − e

2m0

(p ·A + A · p), (8.2.1)

where we have neglected the term which is second order in the vector potential. Now, we are
free to write p2 = p2

r + 1
r2
L2 for the momentum in spherical coordinates. But, as mentioned

above, we take r = R to be constant, so pr = 0 and the momentum is just p2 = 1
R2L

2.
Next, choosing the suggested gauge, we are free to write

pnA
n =

1

2
pnε

nmkBmxk =
1

2
Bmε

mkn(xkpn − i~δkn) =
1

2
B · (r× p) =

1

2
B · L. (8.2.2)

By a nearly identical argument, we also find A · p = 1
2
B · L. It now follows that the

Hamiltonian may be written

H =
1

2m0R2
L2 − e

2m0

B · L. (8.2.3)

14I do not believe this strategy works in general. The general theory for quantization of constrained
systems was worked out by Dirac and, though I am not familiar with all the details thereof, I am aware that
it is a touch more complicated in general.
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8.3 Part (b)

Now that we have a Hamiltonian written in terms of the angular momentum operator, we
are free to choose, without loss of generality, the magnetic field to point in the z-direction
so the Hamiltonian becomes

H =
1

2m0R2
L2 − eBz

2m0

Lz. (8.3.1)

It should be clear at this point that the eigenvectors of our Hamiltonian are the angular
momentum vectors, |`,m〉 with L2|`,m〉 = ~2`(` + 1)|`,m〉 and Lz|`,m〉 = m~|`,m〉. Thus,
the energies are also labeled by ` and m, and may be written

E`m =
`(`+ 1)~2

2m0R2
− em~Bz

2m0

. (8.3.2)

9 Problem 8: Statistical Mechanics

9.1 Problem Statement (Molecular Zipper)

A molecular zipper. Consider the following simple model for the melting of DNA. Two
unbreakable molecular strands are coupled by N links. See the figure below. Each link can
be in one of G + 1 states. Of these states, G are unbound (open) and have energy ε, and
one is bound (closed) and has energy 0. You must assume that links unbind sequentially. In
other words, the only states of the system with finite energy are those in which all links to
the right of a given link are unbound. Let n ≤ N − 1 be the number of unbound links.
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(a) Find the partition function of the system.

(b) Find the mean fraction of unbound links χ = 〈n〉
N

at temperature T in the thermo-
dynamic limit N → ∞. Show that there is a critical temperature where this mean
fraction changes in the thermodynamic limit.

(c) Compute the fraction of completely unzipped (n = N − 1) zippers in a noninteracting
solution of these molecules as a function of temperature T .

9.2 Part (a)

For this problem, it is not possible to use the usual trick for non-interacting systems of
computing the single-particle partition function and then raising it to a power. If we were to
attempt this trick here, we would find that it does not prohibit states with non-sequential
zippering.

Instead, we note that the energy of the system is uniquely identified by the number of
unbound links15. If the number of open links is n, then the energy of the system is necessarily
nε. If we know that n links are open, then each link may be in one of G states. We do not
place any restriction on which of the G states each of the links must be in once we know
that the link is open, so each of the links may have its particular state chosen independently
from the G possibilities. This means that there are Gn possible specific states for the system
to be in when n links are open.

Since the partition function is simply the sum over states, it follows that16

Z =
N−1∑
n=0

Gne−βnε =
N−1∑
n=0

xn =
∞∑
n=0

xn −
∞∑
n=N

xn =
1− xN

1− x
, (9.2.1)

where x ≡ Ge−βε and we have rederived the formula for the finite geometric sum from the
infinite geometric sum because I can never remember the finite version.

15A good general strategy for dealing with with sample space restrictions like in this problem is to first
find a way of uniquely indexing the energies, then counting the degeneracy of a given energy.

16A key step in all physics problems of these exams is to ignore questions of convergence. Indeed, if we
look carefully, we will see that the critical temperature in part (b) is the temperature at which the geometric
sum no longer converges for N →∞.
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9.3 Part (b)

For this part, we just need to compute directly,

〈n〉 =
N−1∑
n=0

n
xn

Z
=

∂

∂x
lnZ =

x

1− x
− (N + 1)xN

1− xN
, (9.3.1)

for arbitrary N . For the large N limit, we write

lim
N→∞

〈n〉
N

= lim
N→∞

1

1− x−N
=

{
1, x > 1.
0, x < 1.

(9.3.2)

That is, in the N → ∞ limit, the average fraction converges to either 100% or 0% linked.
The condition for the critical condition is therefore x = 1, which implies

Tc =
kε

lnG
(9.3.3)

is the critical temperature for the transition.

9.4 Part (c)

By the law of the unconscious statistician, we expect that if we draw a large number of
samples from our distribution, the fraction drawn with probability P will converge to the
value of that probability17. Therefore, what we are asked to compute is actually,

P (n = N − 1) =
xN−1

Z
=

1− x
1− xN

xN−1. (9.4.1)

And that’s it.

10 Problem 9: Statistical Mechanics

10.1 Problem Statement (Stephan-Boltzmann Law)

You have 3 concentric spheres with radii R1 < R2 < R3. The sphere at R1 is maintained
at temperature T1 and the sphere at R3 is maintained at temperature T3. Assume that the
spheres are black and that the only heat transport occurs via photons.

17We should always remember that nearly all physicists are frequentists.
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(a) Draw a diagram (or two) and label it with the variables you will use to solve the
problem.

(b) Find the stead-state temperature T2 of the sphere at R2.

(c) Evaluate the interesting limiting cases of your result from (b).

10.2 Parts (a)-(c)

So first of all, we will point out that the color of the spheres being black tells us nothing
about the problem. We should, however, interpret this to mean we are supposed to treat
the spheres as black-body radiators. Since heat transport only occurs via this radiation, we
know that we will need to use the Stephan-Boltzmann law to determine the radiated powers.
First, however, we are supposed to draw a diagram. Strictly speaking, the correct way to
draw a diagram which includes only that which will be useful for solving the problem is to
solve the problem and then draw a diagram labeled with those things which proved to be
useful. However, we shouldn’t complain too much, because if we didn’t know how to actually
solve the problem, we might hope to get some partial credit by guessing the perhaps-obvious
things, the temperatures, radii, and maybe the surface areas.

(10.2.1)

So, here’s the idea. If the entire system is in a steady-state configuration, then the middle
sphere must be radiating power equal to the power it is absorbing. We know that the power
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radiated by the center sphere is given by the Stephan-Boltzmann law, P2 = σ(2A2)T 4
2 for

some material-dependent σ, the area being doubled because we are radiating from both sides
of the surface.

The other two surfaces radiate the same, but we have to be careful that we only count
the radiated power absorbed by the middle sphere. For this power radiated by the inner
sphere, everything radiated on the R2 side is also absorbed by the middle sphere. So, the
power absorbed from the inner-most sphere is just P1 = σA1T

4
1 . When we look at the outer

sphere, however, some of the radiated power can miss. That is, if we imagine the power
radiated from a particular point on the outer sphere, the power is radiated evenly across all
solid angles, and the cross-section of the middle sphere only occupies a portion of the full
solid angle. At the end of the day, due to the spherical symmetry of the system, the power
absorbed from the outer sphere is P3 = σA2T

4
3 .

The same issue that happens for the power radiated from the outer to the middle happens
when radiating from the middle to the inner. Since all power from the middle not absorbed
by the inner is reabsorbed by the middle, the actual power emitted by the middle and not
reabsorbed is P2 = σ(A2 + A1)T 4

2 . Since P2 = P1 + P3, it follows that

T 4
2 =

R2
1T

4
1 +R2

2T
4
3

R2
1 +R2

2

. (10.2.2)

For the final part we are supposed to evaluate “interesting” limiting cases. Unfortunately,
I do not know what the author of this question, nor the grader, might find interesting, so we
will instead just look at some random limiting cases. For example, we could take R1 = R2

and find that T 4
2 = 1

2
(T 4

1 +T 4
3 ), so the temperature to the fourth is just the average of the two

temperatures to the fourth. If R1 = 0, then there isn’t an inner sphere, and the temperature
of the middle sphere is just equal to the temperature of the background radiation, which
since the formula we found does not depend on R3, might as well be the temperature at
infinity.

11 Problem 10: Statistical Mechanics

11.1 Problem Statement (Bose-Einstein Condensation)

(a) Find the temperature dependence of the heat capacity at constant volume (CV ) for an
ideal Bose gas below the BE condensation temperature.

(b) Give an expression for the condensation temperature T0 in terms of N, V . Definite
integrals which are just numerical factors may be left indicated as such.
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11.2 Part (a)

Before launching into the calculation, we first review the relevant points of Bose-Einstein
condensation. The simple most important quantity at our disposal is the occupation number,

n(ε) =
1

eβ(ε−µ) + a
, (11.2.1)

where a = −1 for Bosons, a = +1 for Fermions, and a = 0 for classical Maxwell-Boltzmann
systems. Though we only require the Bose case for this problem, it is helpful to remember
all three together. This is because we can remember that Bosons get a minus sign because
they correspond to commutators, which have a minus sign, while Fermions get a plus sign
because they correspond to anticommutators, which have a plus sign. The classical Maxwell-
Boltzmann particles correspond to neither, so they get a zero. The Maxwell-Boltzmann case
then further fixes the sign in the exponential, since we know nMB(ε) ∝ e−β(ε−µ), which is just
the Boltzmann factor. So, keeping all three together in our minds in this way, all relevant
signs are fixed uniquely by surrounding knowledge.

Next, we know that the sum of the occupation numbers must be the expected number of
particles, so

N =
∑
ε

n(ε) =
∑
ε

1

eβ(ε−µ) − 1
, (11.2.2)

where the summation is taken over the collection of discrete energy states of the system.
For large systems, however, we would like to approximate this summation by an integral.
The correct way to make this approximation is rather involved, so instead we will just point
out that in the case µ = 0, the ε = 0 term in the above summation goes to infinity. This is
the source of Bose-Einstein condensation, but for the moment is just something our integral
approximation will not handle very well, so we will just agree to pull out the ε = 0 term
ahead of time and write18

N =
1

z−1 − 1
+
∑
ε6=0

1

eβ(ε−µ) − 1
≈ z

1− z
+

∫
d3xd3p

(2π~)3

1

eβ(ε(p)−µ) − 1
(11.2.3)

where z ≡ eβµ. It is fairly standard to instead state the integral above as an integral over
the energies by using ε = 1

2m
p2 to change variables, However, though it may be standard, it is

18In this expression and for the remainder of the problem, we write the energy as a function of only
the momenta. Generally speaking, it is free to be a function of both the position and momenta, but this
is almost never the case in examples of interest. No steps in this general discussion assume the energy is
position independent, we only even keep the momenta dependence to remind the reader that this is a function
we are integrating over, not a parameter which N depends on, as is the case for the occupation numbers,
n(ε).
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almost never a useful form for the integral, and indeed as soon as we attempt to modify the
system from the free-particle case in any way, becomes false. Furthermore, I think (11.2.3)
is easier to remember since the measure is exactly the same as the measure for the partition
function. If necessary, the appropriate change of variables may be made quickly enough.

It is also standard to write N0 ≡ z
1−z , so we have

N −N0 =

∫
d3xd3p

(2π~)3

1

eβ(ε(p)−µ) − 1
≡ Ne (11.2.4)

to express the number of particles which are not condensed.
Now that we have an expression for the number of particles in excited states for a Bose-

Einstein gas, we are in a position to discuss condensation. The typical language used to
describe condensation makes it sound as though, at some critical temperature, the system
undergoes some kind of a phase transition and suddenly Ne → 0 while N0 → ∞. While
the process of condensation could be viewed as a type of phase transition, the rest of the
statement just given is nonsense. There is no discrete or sudden change.

Instead, the idea of Bose-Einstein condensation properly stems from the observation that
Ne, when viewed as a function of z = eβµ is a monotonically increasing function which takes
a maxima at z = 1 (which is the maximum allowable value for z in a Bose-Einstein system
anyway). More than being monotonically increasing, it is bounded19. To show this, we need
only compute

∂Ne

∂z
=

∫
d3xd3p

(2π~)3

eβε(p)

(eβε(p) − z)2
. (11.2.5)

The integrand is manifestly positive for all 0 ≤ z ≤ 1, so we know the integral, and hence
∂Ne
∂z
≥ 0 for all z of interest. Indeed, since the integrand is also never zero, the inequality is

strict, so ∂Ne
∂z

> 0. Thus, the function Ne(z) is strictly monotonically increasing on 0 ≤ z ≤ 1,
and as mentioned before, we assume Ne(1) to exist.

Now that we know Ne is bounded above by some number, we are free to ask what happens
if N > max{Ne(z)|z ∈ [0, 1]}. By the pigeon-hole principle, it would follow that N0 6= 0, so
there must be a non-negligible number of particles exactly in the ground state. This is what
we define to be Bose-Einstein condensation. If we accept this definition, then the condition

N =

∫
d3xd3p

(2π~)3

1

eβε(p) − 1
= Ne(1) (11.2.6)

defines the critical number of particles at which the maximum of Ne is attainable. Clearly,
if the number of particles are increased beyond this number, we are guaranteed that some
will be in exactly the ground state.

19This last point is really a matter of assuming that ε(p) is such that Ne(z = 1) converges to a finite value,
as is the case for the free particle case.
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Another, and more common, way of looking at the condition (11.2.6) is that we could
control N and increase the number of particles till we meet the critical number beyond which
particles are forced into the ground state, or we could notice that the critical number Ne(1)
depends on the temperature and fix the number of particles N in order to determine a critical
temperature. This is what is usually done.

Now, there is a fine point which we must point out now. Generally speaking µ = µ(T ) –
the chemical potential is not an independent parameter of the system which we are allowed
to tune. In particular, the above arguments imply that if Tc is the critical temperature
satisfying (11.2.6), then µ(Tc) = 0. The situation seems to be fairly complicated, and I
am not, at the time of writing, aware of general arguments about the temperature behavior
of µ and such. However, for the sake of this document, we will satisfy ourselves with the
knowledge that, both empirically and in the free particle case, z is a monotonically decreasing
function of the temperature. This means that for T < Tc, we have z ≈ 1, and so in the same
region, βµ(T ) ≈ 0, which implies that, at low temperatures, µ(0) = ∂µ

∂T
|0 = 0, so µ ≈ 0 to

order O(T/Tc)
2. Since we know µ(Tc) = 0, it would be nice to expand about T = Tc, but

the apparent approximate discontinuity in the first derivative of z makes it seem unlikely
that such an expansion would do us much good.

If we accept these arguments, then it follows that condensation occurs for temperatures
T < Tc. For temperatures T > Tc, we note that the arguments above only state that the
critical condition implies condensation occurs beyond the critical point, which we argued
means a temperatures below Tc. The above arguments do not, however, imply that conden-
sation cannot occur at higher temperatures as well. Indeed, unless z = 0 exactly for T > Tc,
N0 6= 0, which implies that there is some condensation. However, even for z = 0.99, we still
only have N0 ≈ 100. One hundred particles is a fairly small number for most purposes, so
we approximate N0 as being negligible until condensation, so for T > Tc, N ≈ Ne. Now,
obviously, these are weak arguments which it likely would not be too difficult to find counter
examples to. However, they are roughly true for the free particle, which is the only case
anyone ever talks about. So, feel free to treat this last paragraph as a description to com-
mon arguments which need not be generally true, but are good enough for the most common
example.

The description given above should be good enough to actually solve the problem now.
Since we are assumed to be in the regime T < Tc, we are free to take µ = 0 and z = 1. Since
the particles in the ground state have zero energy, we are free to exclude these particles from
our energy calculation. Hence,

〈E〉 =

∫
d3xd3p

(2π~)3

ε(p)

eβε(p) − 1
. (11.2.7)
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Since we are dealing with an ideal Bose gas, we have ε(p) = p2

2m
. The integrand does not

depend on the position, so we can immediately compute the spatial integrals, and are just
left with the momenta integrals. But the integrand also only depends on the magnitude
of the momenta, not the angle, so we convert to spherical coordinates, and immediately
compute the integral over the solid angle to find

〈E〉 =
4πV

(2π~)3

∫ ∞
0

p2dp
ε(p)

eβε(p) − 1
. (11.2.8)

But now dε = p
m

dp and p = (2mε)1/2, so dε =
√

2ε
m

dp. Therefore,

〈E〉 =
4πV

(2π~)3

√
2m3

∫ ∞
0

dε
ε3/2

eβε − 1
=

4πV

(2π~)3

√
2m3

β5/2

∫ ∞
0

dx
x3/2

ex − 1
, (11.2.9)

where now
∫∞

0
dx x3/2

ex−1
≡ A3 is some constant whose value, A3 = 3

4

√
πζ(5/2), is completely

irrelevant.
Now that we have the expected energy, we may compute the heat capacity by CV =

∂〈E〉
∂T
|V . Therefore,

CV =
4πV

(2π~)3

√
2m3A3k

5/2∂T
5/2

∂T
=

10πV

(2π~)3

√
2m3A3k

5/2T 3/2 ∝ T 3/2. (11.2.10)

11.3 Part (b)

We now need to impose the condition (11.2.6) discussed earlier, and solve for the temperature
Tc. We again change variables as before, and find

N =
4πV

(2π~)3

√
2m3

∫ ∞
0

dε
ε1/2

eβcε − 1
=

4πV

(2π~)3

√
2m3

β
3/2
c

A1, (11.3.1)

where A1 =
∫∞

0
dε x

1/2

ex−1
is again some constant whose value, A1 =

√
π

2
ζ(3/2), is completely

irrelevant. It follows that

Tc =

[
N

k3/2

(2π~)3

4πV

1√
2m3A1

]2/3

, (11.3.2)

which can almost certainly be made neater, but who cares.
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12 Problem 11: Electromagnetism

12.1 Problem Statement (Electrostatic Calculation)

A thin spherical shell of radius R is uniformly charged so that the charge per unit area on
the surface is σ. You take a sword and chop off the very top of the sphere, so that there is
a hole in the apex with polar opening angle α, as shown below.

(a) If the angle α is small (so that the diameter of the opening is much smaller than the
radius of the sphere), what is the electric field at the center of the sphere (magnitude
and direction)?

(b) What is the electric field at point P in the diagram (in the opening, at the location
where the apex of the sphere used to be before I sliced off the top)?

12.2 Part (a)

This exact problem also appeared on as problem 7 on the 2018 exam. Since I have already
written a detailed solution for this problem in the 2018 entry, this entry will instead be
dedicated to using a quicker approximation.

In the 2018 solution, we approximated the field as a completed sphere, which contributes
no field in the interior region, plus a disk whose charge density negates that of the completed
sphere at the hole. There, the approximation was to treat the curved section of surface as a
flat disk. Here, however, since the hole is so small, we could also approximate that disk as a
point charge of the same total charge. The total charge needed in the hole is approximately
q = −πσ(αR)2.
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The electric field of such a point particle when evaluated at the center of the sphere is
then

E = −πσ(αR)2

4πε0R2
(−ẑ) =

σ

4ε0
α2ẑ, (12.2.1)

which is the same result we found from the disk solution by only keeping to lowest order in
α.

12.3 Part (b)

The field at the point P can be imagined as the sum of the field due to a completed sphere
plus the field due to an infinite plane with charge surface density −σ. Again, we know that
the field inside the sphere is zero, so on that side of the imaginary situation, we have

E =
−σ
2ε0

(−ẑ) =
σ

2ε0
ẑ. (12.3.1)

In case we were worried that we might have made a mistake somewhere along the way, we
can check to make sure our result is continuous at P , which we know it should be since the
charge density there is supposed to be zero. So, if we considered the field just on the outside
of the imaginary sphere, we would have

E =
−σ
2ε0

ẑ +
σ

ε0
ẑ =

σ

2ε0
ẑ, (12.3.2)

which matches what we found before and what was found in the 2018 solution.

13 Problem 12: Electromagnetism

13.1 Problem Statement (Magnetostatic Calculation in Matter)

A permanent magnet is created from a hollow cylindrical piece of magnetic material with
inner radius a, outer radius b, and length L. It is given magnetization

M =
M0ρ

a
φ̂, (13.1.1)

where ρ is the distance from the axis of the hollow cylinder and φ̂ is the azimuthal unit
vector.
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(a) Where are the bound currents in this magnet and what are their values?

(b) What is the magnetic field produced by this magnet?

Useful formulas:

∇ψ = e1
∂ψ

∂ρ
+ e2

1

ρ

∂ψ

∂φ
+ e3

∂ψ

∂z

∇ ·A =
1

ρ

ρA1

∂ρ
+

1

ρ

∂A2

∂φ
+
∂A3

∂z

(13.1.2)

∇×A = e1

(
1

ρ

∂A3

∂φ
− ∂A2

∂z

)
+

(
∂A1

∂z
− ∂A3

∂ρ

)
+ e3

1

ρ

(
∂ρA2

∂ρ
− ∂A1

∂φ

)
(13.1.3)

13.2 Part (a)

For this, we just need to remember that Jb = ∇×M and K = M × n̂ for the bound bulk
and surface current densities. So, the bulk density is just

Jb = ρ̂

(
−∂Mφ

∂z

)
+ ẑ

1

ρ

(
∂ρMφ

∂ρ

)
=

2M0

a
ẑ (13.2.1)

within the magnet and zero everywhere else. For the surface current densities,

Kb = M× ρ̂ = −M0b

a
ẑ,

Ka = M× (−ρ̂) = M0ẑ,

K± = M× (±ẑ) = ±M0ρ

a
ρ̂,

(13.2.2)

where K± is the surface current density on the two caps. So, there is a current which
circulates along the surfaces of the magnet, lengthwise.

As a final note, we point out that the intended problem statement was M = M0a
ρ
φ̂ so

Jb = 0. Fortunately, this error in problem statement does not actually change anything
about the next part of the problem.
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13.3 Part (b)

Since the electric fields are not important in this problem, we really only need to solve
∇ · B = 0 and ∇ × B = µ0Jf + µ0∇ ×M. But since there are no free currents, we may
rewrite this as ∇ × (B/µ0 −M) = ∇ ×H = 0. Furthermore, ∇ ·H = −∇ ·M = 0. So,
both the curl and divergence of H vanish. This combined with the requirement that the
field strength be zero at infinity implies H = 0 everywhere. It then follows that B = µ0M,
which is only non-zero within the magnet.

14 Problem 13: Electromagnetism

14.1 Problem Statement (Radiation Pressure)

A plane wave with intensity 〈S〉J/m2 · s is incident on a totally reflecting, plane surface at
an angle θ, where θ is measured relative to the plane normal.

(a) Find the radiation pressure normal to the surface.

(b) Find the total radiation force produced by this plane wave when incident on a perfectly
reflecting sphere of radius R.

(c) Find the total radiation force produced by this plane wave when incident on a perfectly
absorbing sphere of radius R, and compare with the results of (b).

14.2 Parts (a)-(c)

Recalling that the Poynting vector itself has the units of energy per area per second, dimen-
sional analysis fixes P = 〈S〉/c as the radiation pressure. Obviously this is not a derivation
of the fact, but a helpful way of remember the formula.

Now, if the light impacts at an angle θ as described, then the portion of area exposed to
the light is less than the total by a factor of cos θ. Furthermore, since we are only interested
in the component of the Poynting vector which is normal to the surface, we obtain another
factor of cos θ. There is also an overall factor of 2 to account for the re-emitted photons.
So,

P = 2
〈S〉
c

cos2 θ. (14.2.1)

Now that we have found the pressure normal to the surface. Here, we are interested in
computing the force aligned with the propagation direction of the radiation – we know by
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symmetry that all other forces will cancel. However, there is yet another cosine associated
with picking out this component of the force. So,

F =

∫
dAP cos θ =

2〈S〉
c

2πR2

∫ 1

0

cos3 θd(cos θ) =
πR2〈S〉

c
. (14.2.2)

Finally, we mumble something about the cross-section being πR2 and that, since the
sphere is perfectly absorbing, the force must just be F = PA = πR2 〈S〉

c
where we have left

out the two we originally point in by hand to account for reflections.
I am not a fan of this problem.

15 Problem 14: Electromagnetism

15.1 Problem Statement (Classical Mechanics and Larmor Radi-
ation)

Find the total energy radiated in the head-on collision of a non-relativistic particle of charge
q, velocity v0 against a fixed target of charge Q (qQ > 0). Write your result in terms of q,Q,
and v0.

15.2 Solution

There is a very important additional assumption we must make to solve this problem: we
must assume that the particle is not self-interacting. The self-interaction force would be given
by the Abraham-Lorentz force and is proportional to the jerk of the particle. This is likely
not a very good assumption, but if we do not make this assumption, we would be left with
an integrao-differential equation to solve. On these exams, it is extremely important that
all unstated assumptions necessary to solve the problem must be made. This assumption
translates into the statement that

1

2
mv2

0 =
1

2
mv2(r) +

qQ

4πε0r
(15.2.1)

holds for all r.
This also means that the energy radiated away as the particle is incoming is equal to the

power radiated as it leaves. Hence, if P is the power radiated, then the radiated energy is

E = 2

∫ ∞
tclose

Pdt = 2

∫ ∞
R

P
dt

dr
dr, (15.2.2)
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where R is the radius of closest approach and dt
dr

= 1
v(r)

. The velocity as a function of the

radial distance is then given by (15.2.1). The radiated power is then given by the Larmor
formula,

P =
q2a2

6πε0c3
. (15.2.3)

So, we will also need to compute a = d
dt
v = dr

dt
d
dr
v = 1

2
d
dr
v2(r). With this, we find

E = 2
q2

6πε0c3

(
qQ

4πε0m

)2 ∫ ∞
R

dr

r3

1√
r
(
v2

0r −
qQ

2πmε0

) . (15.2.4)

This is a disgusting integral, but it can be evaluated by the substitution y = 1
2
mv2

0 −
Qq

4πε0r
.
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