
UCLA Physics Fall 2013 Comprehensive Exam

10. (Statistical Mechanics)

A liquid is in equilibrium with its vapor at temperature and pressure: Tv; Pv. The surface between liquid
and vapor is flat. The temperature of the vapor is increased to Tv + ∆T while keeping its pressure fixed.
The liquid remains at temperature and pressure: Tv, Pv. Evaluate the net flux of gas to the liquid. You
may treat the vapor as an ideal noble gas with atoms of mass m.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

The logic in this problem requires several steps. We will therefore break the solution into subsec-
tions, identifiable by bolded headers.

Understanding the setup:
We ignore all interactions between the gas particles, and we ignore the effects of gravity. Here is a
diagram of the setup:

We are asked to find the net flux of gas to the liquid. The net flux of gas to the liquid is the
difference between the flux of gas to the liquid and the flux of liquid to the gas:

Net flux of gas to liquid

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

= Flux from gas to liquid

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

− Flux from liquid to gas

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

(65)

Here, the term “flux from A to B” means the number of particles crossing the boundary from A to
B per unit time per unit area of boundary, when the temperature and pressure of A are T and P ,
respectively.

Relating total flux to a differential element of flux:
We’ll get to the “flux from liquid to gas” term later on. First, let’s start by computing “flux from gas
to liquid

∣∣
gas at T,P

”. This flux is easier to compute because it is easier to do statistical mechanics

on a monatomic ideal gas than on a liquid.

Consider a patch of boundary between the gas and the liquid of surface area A, and consider a
period of time ∆t (to be more precise, these should be taken to be infinitesimal values). Then, by
the definition of flux mentioned above,

Flux from gas to liquid =
Ngas→liquid(A,∆t)

A∆t
(66)
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where Ngas→liquid(A,∆t)
∣∣
T,P

is the number of particles crossing from the gas to the liquid through

the patch of area A in the time period ∆t, when the temperature and pressure of the gas are T and
P respectively.

To determine Ngas→liquid(A,∆t), consider the column of gas just above the patch of boundary
of area A (blue rectangle in the diagram below). Then, consider a portion of this column a distance
z above the boundary and of infinitesimal height dz (red rectangle in diagram below). Note that
while we will call these “rectangles,” they are really rectangular prisms of cross-sectional area A.

Let dNgas→liquid(A,∆t, z) be the number of particles in the red rectangle, as measured at time t = 0,
that cross the boundary from gas to liquid in the time ∆t. Then, the number of particles in the
entire column of area A (blue rectangle), as measured at time t = 0, that cross the boundary from
gas to liquid in the time ∆t is equal to the integral of dN for all possible distances z:

N ′gas→liquid(A,∆t) =

∫ z=L

z=0

dNgas→liquid(A,∆t, z) (67)

It turns out that the following two quantities are equivalent:

• Ngas→liquid, the number of particles that cross from the gas to the liquid through the patch of
area A in the time ∆t (which is what we want to find), and

• N ′gas→liquid, the number of particles that start in the column of area A (blue rectangle) and
cross from the gas to the liquid in the time ∆t (which is what we calculated in (67)).

The reason for this is that the setup is assumed invariant under translations in the xy-plane. There-
fore, for every particle that starts inside the column of area A (blue rectangle) and crosses to the
liquid outside the patch of area A, there is another particle that starts outside the column of area
A (blue rectangle) and crosses to the liquid inside the patch of area A. Here is an example:
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In this diagram, particle 1 is counted in our calculation of N ′gas→liquid, since it starts inside the
column of area A (blue rectangle), but it is not counted in our calculation of Ngas→liquid, since it
does not cross to the liquid through the patch of area A. Similarly, particle 2 is counted in our
calculation of Ngas→liquid, since it crosses to the liquid through the patch of area A, but it is not
counted in our calculation of N ′gas→liquid, since it starts outside the column of area A.

Even though Ngas→liquid and N ′gas→liquid count different particles, the number of particles counted
is the same for both (particles 1 and 2 together contribute one particle to both quantities, though
the particle counted is different). We can therefore use (67) as a formula for Ngas→liquid:

Ngas→liquid(A,∆t) =

∫ z=L

z=0

dNgas→liquid(A,∆t, z) (68)

Plugging this into our formula for the flux (66), we get

Flux from gas to liquid
∣∣
gas at T,P

=

∫ z=L
z=0

dNgas→liquid(A,∆t, z)
∣∣
T,P

A∆t
(69)

Relating the differential element of flux to the Maxwell velocity distribution:
Now we need to find dNgas→liquid, which is the number of particles in the red rectangle, as measured
at time t = 0, that cross the boundary from gas to liquid in the time ∆t. A particle in the red
rectangle will cross the boundary from gas to liquid in the time ∆t if the z-component of its velocity
at time t = 0 is in the range −∞ < vz < −z/∆t. In other words, the farther away the gas particle
starts from the boundary, the faster it must be traveling to cross the boundary to the liquid in the
time ∆t. (The minus signs in the inequality occur because the boundary is in the −ẑ direction from
the gas.)

We can write dNgas→liquid in terms of the probability distribution for the z-components of the
velocity of a particle. Let p(vz)dvz be the probability of a gas particle’s having velocity between vz
and vz + dvz, and let dN be the number of gas particles in the red rectangle at t = 0. From this,
we can write

dNgas→liquid(A,∆t, z)︸ ︷︷ ︸
number of particles in red rectangle

crossing boundary in time ∆t

= dN︸︷︷︸
number of particles

in red rectangle

·
∫ vz=−z/∆t

vz=−∞
dvz p(vz)︸ ︷︷ ︸

probability of each particle
crossing boundary in time ∆t

(70)

To calculate dN , we assume that the gas is of uniform density. Therefore,

dN =
Adz

V
N (71)

30 Last revised August 29, 2022



UCLA Physics Fall 2013 Comprehensive Exam

where Adz is the volume of the red rectangle, V is the volume of the entire gas, and N is the number
of gas particles in the entire gas. Using the ideal gas law PV = NkT , we can rewrite this in terms
of the temperature T and pressure P of the gas:

dN = Adz
P

kT
(72)

Plugging this into (70), we get

dNgas→liquid(A,∆t, z) = Adz
P

kT

∫ vz=−z/∆t

vz=−∞
dvz p(vz) (73)

Finding the Maxwell velocity distribution—setup:
Now, we need to calculate dvz p(vz), the probability of a gas particle’s having velocity between vz
and vz + dvz. For this, we need to use the partition function. Recall that in the classical canonical
distribution, the probability of the system being in a microstate r with energy Er is weighted by
the Boltzmann factor e−βEr , where β ≡ 1/(kT ). The normalization factor for this probability
distribution is equal to 1/Z, where Z is the partition function consisting of the sum of all these
Boltzmann factors Z ≡

∑
r e
−βEr . Thus, the probability of the system being in a microstate r is

pr =
e−βEr∑
r e
−βEr

=
1

Z
e−βEr (74)

Now, let S be a set consisting of a number of microstates. The probability of the system’s microstate
being in set S is

p(r ∈ S) =
∑
r∈S

pr =
1

Z

∑
r∈S

e−βEr (75)

In this case, we have a continuum of energy levels for the ideal gas, but the logic is the same:
The set S is the set of all microstates with z-component of velocity between vz and vz + dvz, and
the partition function we need is the partition function for a single particle of a monatomic ideal gas.

We will need to use the phase-space formalism to ensure that we count everything correctly in
the continuum limit:

Phase space:
Consider a particle in d-dimensional space. The particle’s state can be defined by its position
x = (x1, . . . , xd), its momentum p = (p1, . . . , pd), and any internal degrees of freedom (e.g.
spin). Assume that there are g possible internal states for the particle.
The position and momentum of the particle constitute a point in 2d-dimensional phase space:
(x1, . . . , xd, p1, . . . , pd).
To solve problems, discretize phase space by dividing it into 2d-dimensional boxes. The volume
of each box is hd, where h is Planck’s constant (which has units of position times momentum).
The number of boxes in a phase-space volume ddp ddx is the total volume divided by the volume

of each box, or ddp ddx
hd . Each box has g possible states, corresponding to the internal degrees

of freedom of the particle. Therefore, the number of possible states in a phase-space volume
ddp ddx is

Number of possible states in a phase-space volume ddp ddx = g
ddp ddx

hd
(76)

Finding the Maxwell velocity distribution—calculating the ideal gas partition function:
Using the phase-space formalism for classical noninteracting point particles, the partition function
for a single particle in a monatomic ideal gas is

Z1 =

∫
d3p d3x

h3
e−βE where β ≡ 1

kT
(77)
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The energy of a single particle is its nonrelativistic kinetic energy:

E =
p2

2m
(78)

Plugging this in and carrying out the spatial integral for the partition function, we get

Z1 =

∫
d3p d3x

h3
e
−β

(
p2

2m

)

=

∫
d3p d3x

h3
e−βp

2/(2m)

=
V

h3

∫
d3p e−βp

2/(2m) since

∫
d3x = V

=
V

h3

∫ ∞
−∞

dpx

∫ ∞
−∞

dpy

∫ ∞
−∞

dpz e
−β(p2x+p2y+p2z)/(2m)]

=
V

h3

[∫ ∞
−∞

dpx e
−βp2x/(2m)

] [∫ ∞
−∞

dpy e
−βp2y/(2m)

] [∫ ∞
−∞

dpz e
−βp2z/(2m)

]
(79)

Each of these three integrals is the same Gaussian integral, which can be calculated by a change of

coordinates u ≡ (β/(2m))
1/2

p = (2mkT )
−1/2

p:∫ ∞
−∞

dp e−βp
2/(2m) = (2mkT )1/2

∫ ∞
−∞

du e−u
2

= (2πmkT )1/2 using the result

∫ ∞
−∞

du e−u
2

= π1/2 (80)

Plugging this back into (79), we get

Z1 =
V

h3
(2mkT )

3/2

= V

(
2πmkT

h2

)3/2

Z1 =
V

λ3
for λ ≡

(
h2

2πmkT

)1/2

(81)

The quantity λ is called the thermal wavelength.

Finding the Maxwell velocity distribution—calculating the probability:
Now, we are ready to find the equivalent of (75) for the case at hand. Remember that S is the
set of all microstates with z-component of velocity between vz and vz + dvz. Therefore, using the
phase-space formalism, the equivalent of the sum (75) for the continuous case is

∑
r∈S

e−βEr ≈ dpz
∫
dpx dpy d

3x

h3
e−βE (82)

Notice that we are taking the integral of dpx, dpy, and d3x, since the x- and y-components of the
momentum and the position of the particle are independent of the z-component of the particle. (The
integral is analogous to the sum in the discrete case. We need to integrate over momentum rather
than velocity because the phase-space boxes of volume h3 are in units of momentum, not velocity.)
Therefore, dividing by the partition function for a single particle of the ideal gas Z1, the probability
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distribution we need is given by the equivalent of (75), which is

p(vz) dvz =
1

Z1
dpz

∫
dpx dpy d

3x

h3
e−βE

=
1

Z1
mdvz

∫
dpx dpy d

3x

h3
e−βE since dpi = mdvi

=
1

Z1
mdvz

∫
dpx dpy d

3x

h3
e−β(p2x+p2y+p2z)/(2m) since E =

p2

2m

=
1

Z1

mV

h3
dvz

∫ ∞
−∞

dpx

∫ ∞
−∞

dpy e
−β(p2x+p2y+p2z)/(2m) taking the integral

∫
d3x = V

=
1

Z1

mV

h3
e−βp

2
z/(2m)dvz

[∫ ∞
−∞

dpx e
−βp2x/(2m)

] [∫ ∞
−∞

dpy e
−βp2y/(2m)

]
(83)

These Gaussian integrals are the same as those in (80). We can plug in the result for the Gaussian
integral and simplify to get our answer in terms of the thermal wavelength λ:

p(vz) dvz =
1

Z1

mV

h3
e−βp

2
z/(2m) dvz (2πmkT )

=
1

Z1

mV

h

(
2πmkT

h2

)
e−βp

2
z/(2m) dvz

=
1

Z1

mV

h

1

λ2
e−βp

2
z/(2m) dvz for λ ≡

(
h2

2πmkT

)1/2

=
1

Z1

mV

h

1

λ2
e−mv

2
z/(2kT ) dvz using pz = mvz and β = 1/(kT ) (84)

Plugging in our result for the partition function (81), we get

p(vz) dvz =
λ3

V

mV

h

1

λ2
e−mv

2
z/(2kT ) dvz

=
λm

h
e−mv

2
z/(2kT ) dvz

=
( m

2πkT

)1/2

e−mv
2
z/(2kT ) dvz since λ ≡

(
h2

2πmkT

)1/2

(85)

Evaluating the flux integral:
We now have all the ingredients we need to explicitly set up the flux integral given in (69):

Flux from gas to liquid
∣∣
T,P

=

∫ z=L
z=0

dNgas→liquid(A,∆t, z)
∣∣
T,P

A∆t

=

∫ z=L
z=0

Adz P
kT

∫ vz=−z/∆t
vz=−∞ dvz p(vz)

A∆t
by (73)

=
1

∆t

P

kT

∫ z=L

z=0

dz

∫ vz=−z/∆t

vz=−∞
dvz p(vz)

=
1

∆t

P

kT

( m

2πkT

)1/2
∫ z=L

z=0

dz

∫ vz=−z/∆t

vz=−∞
dvz e

−mv2z/(2kT ) by (85)

(86)

The vz integral is not analytically solvable, since its upper limit is −z/∆t (and not 0 or ∞). The
good news is that the set of both integrals is analytically solvable via integration by parts. Define

I(z) ≡
∫ vz=−z/∆t

vz=−∞
dvz e

−mv2z/(2kT ) (87)
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Then, the integral that we are interested in is∫ z=L

z=0

dz

∫ vz=−z/∆t

vz=−∞
dvz e

−mv2z/(2kT ) =

∫ z=L

z=0

dz I(z)

Using integration by parts to simplify, we get∫ z=L

z=0

dz

∫ vz=−z/∆t

vz=−∞
dvz e

−mv2z/(2kT ) =

∫ z=L

z=0

dz
[
(zI(z))′ − zI ′(z)

]
= [zI(z)]

z=L
z=0 −

∫ z=L

z=0

dz z I ′(z) (88)

First, let’s evaluate the boundary term [zI(z)]
z=L
z=0 :

[zI(z)]
z=L
z=0 = L · I(L)− 0 · I(0)

= L

∫ vz=−L/∆t

vz=−∞
dvz e

−mv2z/(2kT )

Recall that L is the total height of the gas. We will now assume that the gas is large enough that we
can take L→∞. This is justified because as the distance z from the liquid-gas boundary increases,
the probability that a particle has enough velocity to cross the boundary within a time ∆t drops
precipitously. As L → ∞, the expression above for [zI(z)]

z=L
z=0 goes to zero, so the boundary term

cancels. That leaves us with the second term in (88), which is (taking L→∞ here too)∫ z=L

z=0

dz

∫ vz=−z/∆t

vz=−∞
dvz e

−mv2z/(2kT ) ≈ −
∫ z=∞

z=0

dz z I ′(z) (89)

By the second fundamental theorem of calculus and the chain rule, the derivative I ′(z) is equal to

I ′(z) =
d

dz

(∫ vz=−z/∆t

vz=−∞
dvz e

−mv2z/(2kT )

)

= − 1

∆t

[
e−mv

2
z/(2kT )

]
vz=−z/∆t

= − 1

∆t
exp

(
− mz2

2kT (∆t)2

)
(90)

Plugging this into (89), we find that we can now evaluate the remaining integral:∫ z=L

z=0

dz

∫ vz=−z/∆t

vz=−∞
dvz e

−mv2z/(2kT ) ≈ − 1

∆t

∫ z=∞

z=0

dz z exp

(
− mz2

2kT (∆t)2

)
=

1

∆t

(
kT (∆t)2

m

)∫ u=∞

u=0

du e−u using u ≡
(

m

2kT (∆t)2

)
z2

=
1

∆t

(
kT (∆t)2

m

)[
−e−u

]u=∞
u=0

=
kT∆t

m
(91)

Plugging this back into (86), we get our final answer for the flux from the gas to the liquid:

Flux from gas to liquid
∣∣
gas at T,P

=
1

∆t

P

kT

( m

2πkT

)1/2
(
kT∆t

m

)
=

P

(2πmkT )
1/2

(92)
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Solving for the net flux—detailed balance:
Recall our first equation for the net flux from the gas to the liquid (??):

Net flux of gas to liquid

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

= Flux from gas to liquid

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

− Flux from liquid to gas

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

We have already solved for the first term on the right side, the flux from the gas to the liquid:

Flux from gas to liquid

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

=
Pv

(2πmk(Tv + ∆T ))
1/2

(93)

But what about the second term, the flux from the liquid to the gas? We don’t know enough about
liquids to calculate it directly. Instead, we need to use the property of “detailed balance”:

Detailed balance:
Consider two systems, labeled 1 and 2, and suppose that particles can move between the two
systems. Consider a microscopic process by which a particle moves from system 1 to system 2.
Then, if systems 1 and 2 are in equilibrium, the rates of the forward and reverse versions of this
microscopic process are equal.

Note that in the setup of this problem, the liquid and the gas are not in equilibrium. If they were,
then there would be no net flux of particles from the gas to the liquid. Despite this, we can calculate
the flux from the liquid to the gas by relating this setup to a different setup, in which the liquid and
the gas are at equilibrium.

The flux of particles from the liquid to the gas depends only on the properties of the liquid (because
this quantity depends only on how many liquid particles cross the boundary to the gas in a period
of time). Therefore,

Flux from liquid to gas

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

= Flux from liquid to gas

∣∣∣∣gas at Tv, Pv

liquid at Tv, Pv

The right-hand side of this equation represents a setup in which the liquid and gas are at equilibrium
(same temperature and pressure). Therefore, we can apply detailed balance: The rate of the process
“a particle moves from the liquid to the gas” is equal to the rate of the process “a particle moves
from the gas to the liquid.” This implies that

Flux from liquid to gas

∣∣∣∣gas at Tv, Pv

liquid at Tv, Pv

= Flux from gas to liquid

∣∣∣∣gas at Tv, Pv

liquid at Tv, Pv

But we have already calculated this flux in (??):

Flux from gas to liquid

∣∣∣∣gas at Tv, Pv

liquid at Tv, Pv

=
Pv

(2πmkTv)
1/2

Putting the last three equations together, we get our answer for the flux from the liquid to the gas:

Flux from liquid to gas

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

=
Pv

(2πmkTv)
1/2

(94)
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Putting together (93) and (94), we get our final expression for the net flux from the gas to the liquid
in the non-equilibrium setup of the problem:

Net flux of gas to liquid

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

=
Pv

(2πmk(Tv + ∆T ))
1/2
− Pv

(2πmkTv)
1/2

=
Pv

(2πmkTv)1/2

[
T

1/2
v

(Tv + ∆T )
1/2
− 1

]

Net flux of gas to liquid

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

=
Pv

(2πmkTv)1/2

[(
1 +

(
∆T

Tv

))−1/2

− 1

]
(95)

If we further assume that ∆T � Tv, we can take a lowest-order Taylor expansion of this result:

Net flux of gas to liquid

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

=
Pv

(2πmkTv)1/2

[(
1− 1

2

∆T

Tv
+ . . .

)
− 1

]

Net flux of gas to liquid

∣∣∣∣gas at Tv+∆T, Pv

liquid at Tv, Pv

= −1

2

Pv
(2πmkTv)1/2

∆T

Tv
for ∆T � Tv (96)

Note that, somewhat counterintuitively, increasing the temperature of the gas makes particles flow
from the liquid to the gas (net flux of gas to liquid is negative), rather than the other way round.
The reason for this is that the temperature increase is done at constant pressure. Since pressure and
temperature are related by PV = NkT , increasing the temperature at constant pressure necessarily
decreases the density of the gas N/V . This causes the the net flux to be from the liquid to the gas,
rather than from the gas to the liquid.

Phew! This problem of finding the flux of a gas through a hole is called the “effusion problem.”
It is somewhat amazing that, just using microscopic information about the canonical ensemble, we
can calculate quite a bit of macroscopic information about fluxes. If you want another example of
an effusion problem, look at 2013 Q8.
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