
UCLA Physics Fall 2019 Comprehensive Exam

9. (Electromagnetism)

Consider a dielectric slab waveguide, i.e. a dielectric volume of index of refraction n1 delimited by two
planes ´a § x § a and infinitely wide in the other two directions, surrounded by dielectric of index of
refraction n2 pµ1 “ µ2 “ µ0q. Study the propagation of transverse electric (TE) waves in the z-direction
in this system (i.e. assume ~Epx, z, tq “ Epxqeiphz´!tq

ŷ).

(a) Write down the wave equation for Epxq in each region of the slab.

(b) Look for even solutions (invariant for x Ñ ´x) with fields decaying outside the guide. Apply the
boundary conditions at the interfaces to obtain expressions for electric and magnetic fields in the
guide.

(c) Calculate the cut-o↵ frequencies in this guide (i.e. the frequencies for which the wave is no longer
guided by the dielectric slab). What is the lowest frequency that can propagate in this guide?
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

(a) The three-dimensional wave equation for the electric field is

r2
E ´ 1

v2

B2
E

Bt2 “ 0 for v ” c

n
(26)

From the problem statement, we have that

Epx, z, tq “ Epxqeiphz´!tq
ŷ (27)

Then

r2
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E
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and
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2
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ŷ

Plugging into the wave equation (26), we get that
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which implies that
d
2
E

dx2
`

ˆ
n
2
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2

c2
´ h

2

˙
Epxq “ 0 (30)

This equation holds in each region of the waveguide. This implies that

d
2
E

dx2
` �

2
1Epxq “ 0 for |x| † a

d
2
E

dx2
` �

2
2Epxq “ 0 for |x| ° a (31)

where

�
2
i

“ n
2
i
!
2

c2
´ h

2 for i P t1, 2u (32)

(b) The ordinary di↵erential equation

d
2
f

dx2
` �

2
fpxq “ 0 (33)

has the general solutions

fpxq “ A sinp�xq ` B cosp�xq if �
2 ° 0 (34)

fpxq “ Ae
`|�|x ` Be

´|�|x if �
2 † 0 (35)

Let’s start outside the waveguide, in the region x ° a. We want the electric field to decay
outside the waveguide, so we want the exponential solution that decays as x Ñ 8 in this
region. In other words, we need to require that

�
2
2 “ n

2
2!

2

c2
´ h

2 † 0 (36)
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and we ought to set as our ansatz

Epxq “ Eoute
´|�2|x for x ° a (37)

where Eout is a parameter to be determined by the boundary conditions. Since Epxq is supposed
to be even (invariant under x Ñ ´x), we can immediately write the solution for x † ´a:

Epxq “ Eoute
`|�2|x for x † ´a (38)

Inside the waveguide, we need to guess that the solution is a sine or cosine, and not an exponen-
tial. This is based on our understanding that guided waves should be based on superpositions
of propagating plane waves, not evanescent waves. (If you are skeptical of this logic, please see
the note at the end of the problem.) Therefore, we need to require that

�
2
1 “ n

2
1!

2

c2
´ h

2 ° 0 (39)

We are interested in even solutions (invariant for x Ñ ´x), so we should select the cosine
solution for our ansatz:

Epxq “ Ein cosp�1xq for ´ a † x † a (40)

where Ein is a parameter to be determined by the boundary conditions. Therefore, we have a
complete ansatz for E:

Epx, z, tq “

$
’&

’%

Eoute
´|�2|x

ŷ e
iphz´!tq for x ° a

Ein cosp�1xq ŷeiphz´!tq for ´ a † x † a

Eoute
`|�2|x

ŷe
iphz´!tq for x † ´a

(41)

We can find the magnetic field using Faraday’s law:

r ˆ E “ ´BB
Bt (42)

Here,

r ˆ E “
ˆ
x̂

B
Bx ` ŷ

B
By ` ẑ

B
Bz

˙
ˆ Epxqeiphz´!tq

ŷ

“
ˆ
dE

dx
ẑ ´ ihEpxqx̂

˙
e
iphz´!tq

“

$
’&

’%

Eout p´|�2|ẑ ´ ihx̂q e´|�2|x
e
iphz´!tq for x ° a

Ein p´�1 sinp�1xqẑ ´ ih cosp�1xqx̂q e
iphz´!tq for ´ a † x † a

Eout p|�2|ẑ ´ ihx̂q e`|�2|x
e
iphz´!tq for x † ´a

(43)

We may now use Faraday’s law, undoing the time derivative (and ignoring any static fields) to
get

Bpx, z, tq “

$
’&

’%

Eout
i!

p´|�2|ẑ ´ ihx̂q e´|�2|x
e
iphz´!tq for x ° a

Ein
i!

p´�1 sinp�1xqẑ ´ ih cosp�1xqx̂q e
iphz´!tq for ´ a † x † a

Eout
i!

p|�2|ẑ ´ ihx̂q e`|�2|x
e
iphz´!tq for x † ´a

(44)

This tells us that inside the slab (´a § x § aq, the electric and magnetic fields are given by

Epx, z, tq “ Ein cosp�1xqŷeiphz´!tq (45)

Bpx, z, tq “ Ein

i!
p´�1 sinp�1xqẑ ´ ih cosp�1xqx̂q e

iphz´!tq (46)

where Ein is a constant and �1 “ n
2
1!

2

c2
´ h

2.
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(c) Given that there is neither free charge or free current at the interface, there are four boundary
conditions at the interface x “ a (for which the vector normal to the interface is x̂):

D
K
xÑa´ “ D

K
xÑa` ùñ ✏1E

K
xÑa´ “ ✏2E

K
xÑa` (47)

E
k
xÑa´ “ E

k
xÑa` (48)

B
K
xÑa´ “ B

K
xÑa` (49)

H
k
xÑa´ “ H

k
xÑa` ùñ 1

µ1
B

k
xÑa´ “ 1

µ2
B

k
xÑa` (50)

Equation (47) is automatically satisfied here because E is in the ŷ direction, which is parallel
to the interface. Plugging equations (43) and (44) into boundary conditions (48), (49), and
(50), and using the fact (given in the problem) that µ1 “ µ2 “ µ0, we get the following:

Ein cosp�1aq “ Eoute
´|�2|a (51)

Ein

i!
p´ihq cosp�1aq “ Eout

i!
p´ihqe´|�2|a (52)

Ein

i!
p´�1 sinp�1aqq “ Eout

i!
p´|�2|qe´|�2|a (53)

The first two of these equations are redundant. We can simplify the non-redundant equations
to get

Ein cosp�1aq “ Eoute
´|�2|a and Ein�1 sinp�1aq “ Eout|�2|e´|�2|a (54)

These two equations impose two constraints. One constraint relates Ein to Eout. The other
constraint gives a relationship between �1 and �2. �1 and �2 give us the wave number h in
terms of ni, !, and c. Therefore, the latter constraint tells us, given a frequency, which wave
numbers (modes) can propagate in the waveguide. The highest frequency for which no wave
numbers can propagate in the waveguide for a given mode is the cuto↵ frequency that we are
looking for in this problem.

The wave is only guided by the dielectric slab when �
2
2 † 0 (when �

2
2 reaches zero, the electric

field outside switches from an exponentially decaying evanescent wave to a sinusoidal wave that
carries energy away from the waveguide). Setting |�2| “ 0 in the second equation of (54), we
get

sinp�1aq|!“!c,m “ 0 ùñ �1 “ m⇡

a
for m “ 0, 1, 2, 3, . . . (55)

where !c,m is the cuto↵ frequency for a particular mode m. We may now use the structural
dispersion relations (32) to get that

m
2
⇡
2

a2
“ �

2
1 “ n

2
1!

2
c,m

c2
´ h

2 (56)

0 “ �
2
2 “ n

2
2!

2
c,m

c2
´ h

2 (57)

We now want to solve for the cuto↵ frequency !c,m. Subtracting equation (57) from equation
(56) to eliminate the wave number h2, we get that

m
2
⇡
2

a2
“ pn2

1 ´ n
2
2q!2

c,m

c2
ùñ !c,m “ m⇡c

a

1a
n
2
1 ´ n

2
2

for m “ 0, 1, 2, 3, . . . (58)

The lowest (m “ 0) mode can propagate at arbitrarily low frequency.
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Two more notes about this problem:

Why sinusoidal waves?
Earlier, we presented a semi-intuitive argument for why we ought to set

0 † �
2
1 ” n

2
1!

2

c2
´ h

2 (59)

to get sinusoidal solutions inside the waveguide. If you want a more rigorous argument, assume that
�
2
1 † 0. Then, the even solution that decays outside the waveguide would be given by the ansatz

Epx, z, tq “

$
’&

’%

Eoute
´|�2|x

ŷ e
iphz´!tq for x ° a

Ein coshp|�1|xq ŷeiphz´!tq for ´ a † x † a

Eoute
`|�2|x

ŷe
iphz´!tq for x † ´a

(60)

where

|�1| ”
c
h2 ´ n

2
1!

2

c2
° 0 and |�2| ”

c
h2 ´ n

2
2!

2

c2
° 0 (61)

As an exercise, go through equations (44) through (54) with this ansatz. What you should get is

Ein coshp|�1|aq “ Eoute
´|�2|a and Ein|�1| sinhp|�1|aq “ ´Eout|�2|e´|�2|a (62)

Divide these equations by one another and simplify to get

tanhp|�1|aq “ ´|�1|
|�2| (63)

The left-hand side of this equation is positive, while the right-hand side of this equation is negative.
Therefore, this solution is impossible, and so we must have �

2
1 ° 0.

Total internal reflection
We can think of the wave inside a dielectric slab waveguide as being an incident plane wave propa-
gating at an angle of incidence ✓ and reflecting o↵ the slabs:

EI “ EIe
ik¨r´!t for k “ ẑ k sin ✓1 ` x̂ k cos ✓1 (64)

By inspection, the parameter we called h is the z-component of the incident wave vector:

h “ k sin ✓1 “ n1!

c
sin ✓1 (65)

where we used the dispersion relation for a plane wave, ! “ ck

n
. Equation (57) tells us that at the

cuto↵ frequency,
n
2
2!

2
c,m

c2
“ h

2 “ n
2
1!

2
c,m

c2
sin2 ✓1 (66)

Simplifying, we get that

n
2
2 “ n

2
1 sin

2
✓1 ùñ sin ✓1 “ n2

n1
(67)

But this is just the condition for total internal reflection: By Snell’s law

n1 sin ✓1 “ n2 sin ✓2 (68)

where ✓2 is the angle of the transmitted wave. But for waves confined to the waveguide, there ought
not to be any transmitted wave. This is accomplished if so sin ✓2 ° 1, since in that case we cannot
find a real angle of transmission ✓2. The condition sin ✓2 ° 1 gives us

n1 sin ✓1 ° n2 ùñ sin ✓1 ° n2

n1
(69)
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