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12. (Statistical Mechanics)

Consider a volume V containing N electrons of mass m which have no mutual interactions, other than
those associated with the Pauli exclusion principle. The spectrum of states available to each electron
contains a continuous part with energy E = p2

/2m for E > 0, and a bound state part with energy
E = �" and " > 0. The total number of bound states M available to the N electrons is assumed to be
larger than N . The parameters m, ", M are considered fixed throughout.

(a) Give the expressions for the number Nb of electrons in the bound states, and the number Nc of
electrons in the continuum, as a function of T , V and the chemical potential µ. Justify your answer.

(b) Obtain the relation between N and µ for given T , V .

(c) At low temperature kBT ⌧ ", most of the electrons occupy the bound states, and therefore few
occupy the continuum state. Using the approximation of the classical distribution for the occupation
number of states in the continuum spectrum, and in the limit kbT ⌧ ", evaluate Nc and µ as a
function of T , V .

(d) * The system is placed in a uniform external magnetic field B that splits each energy level into two
levels whose energies are shifted by +B and �B respectively, where  is the magnetic moment of
the electron. Work with the thermodynamic potential suitable for the independent variables T , V ,
µ, B. Define the magnetic susceptibility as the induced magnetic dipole moment per unit volume
per unit applied magnetic field B. Expressing the magnetic susceptibility at B = 0 in terms of the
thermodynamic potential in the absence of a magnetic field, obtain the magnetic susceptibility as
a function of T , V , N , using the results obtained in part (c).

*Note that part (d) is more di�cult than the first three parts of this problem.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

For this stat mech problem, we need to know about the occupation number formalism—

Occupation numbers:
When a statistical mechanics problem describes a system of bosons or fermions, you should con-
sider using occupation numbers.
Occupation numbers describe the average number of particles in each state.

For fermions (Fermi-Dirac statistics): n
FD(✏k, µ) =

1

e�(✏k�µ) + 1
(210)

For bosons (Bose-Einstein statistics): n
BE(✏k, µ) =

1

e�(✏k�µ) � 1
(211)

For classical particles (Maxwell-Boltzmann statistics): n
MB(✏k, µ) = e

��(✏k�µ) (212)

Here, ✏k is the energy of the state k, µ is the chemical potential, and � = 1/(kT ).

—as well as the density of states in phase space:

Phase space:
Consider a particle in d-dimensional space. The particle’s state can be defined by its position
x = (x1, . . . , xd), its momentum p = (p1, . . . , pd), and any internal degrees of freedom (e.g.
spin). Assume that there are g possible internal states for the particle.
The position and momentum of the particle constitute a point in 2d-dimensional phase space:
(x1, . . . , xd, p1, . . . , pd).
To solve problems, discretize phase space by dividing it into 2d-dimensional boxes. The volume
of each box is hd, where h is Planck’s constant (which has units of position times momentum).
The number of boxes in a phase-space volume d

d
p d

d
x is the total volume divided by the vol-

ume of each box, or d
d
p d

d
x

hd . Each box has g possible states, corresponding to the internal de-
grees of freedom of the particle. Therefore, the number of possible states in a phase-space vol-
ume d

d
p d

d
x is

Number of possible states in a phase-space volume d
d
p d

d
x = g

d
d
p d

d
x

hd
(213)

(a) Consider the kth bound state. When occupied, the energy of that state is ✏k = �". Therefore,
the average number of electrons in the kth bound state is given by the occupation number

n
FD

b
(✏k, µ) =

1

e�(✏k�µ) + 1
=

1

e�(�"�µ) + 1
(214)

There are M independent bound states, so the average number of electrons in all the bound
states is M times the average number electrons in one bound state:

Nb = Mn
FD

b
(✏k, µ) =

M
e�(�"�µ) + 1

(215)

Now consider the continuum state with position x and momentum p. When occupied, the

energy of that state is ✏k = p
2

2m
. Therefore, the average number of electrons in this continuum

state is given by the occupation number

n
FD

c
(✏k, µ) =

1

e�(✏k�µ) + 1
=

1

e�(p
2/(2m)�µ) + 1

(216)

To connect the occupation number to the total number of particles, use the following relation:

Number of particles in a phase-space volume d
3
p d

3
x

=
�
Number of states in the phase-space volume d

3
p d

3
x
�
· (Average number of particles per state)
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(213) tells us that the number of states in the phase-space volume d
3
p d

3
x is g

d
3
p d

3
x

hd . Here,
g is the number of internal states for each electron. Since the electron is a spin-1/2 particle,
there are two internal states and so g = 2. The average number of particles per state is just
the occupation number nFD

c
(✏k, µ) found in (216). With that in mind, we get

Number of electrons in a phase-space volume d
3
p d

3
x = 2

d
3
p d

3
x

h3

1

e�(p
2/(2m)�µ) + 1

(217)

To find the total number of electrons in the continuum, integrate over phase space:

Nc = 2

Z
d
3
p d

3
x

h3

1

e�(p
2/(2m)�µ) + 1

The integral over d3x yields the volume of space:

Nc = 2V

Z
d
3
p

h3

1

e�(p
2/(2m)�µ) + 1

(218)

Summarizing our results, we have that the number of electrons in the bound states and in the
continuum are

Nb =
M

e�(�"�µ) + 1
and Nc =

2V

h3

Z
d
3
p

1

e�(p
2/(2m)�µ) + 1

where � =
1

kT
(219)

(b) The total number of electrons is equal to the number of electrons in the bound states, plus the
number of electrons in the continuum states:

N = Nb +Nc (220)

Plugging in our answers from part (a), we get

N =
M

e�(�"�µ) + 1
+

2V

h3

Z
d
3
p

1

e�(p
2/(2m)�µ) + 1

where � =
1

kT
(221)

(c) The problem hints that we should use the classical distribution for the occupation number of
states in the continuum spectrum. This means that we need to do the following:

Replace n
FD

c
(✏k, µ) =

1

e�(p
2/(2m)�µ) + 1

with n
MB

c
(✏k, µ) = e

��(✏k�µ) = e
��(p2

/(2m)�µ)

Once we make this approximation, we can simplify the integral for Nc in our part (b) answer:

Nc ⇡
2V

h3

Z
d
3
p e

��(p2
/(2m)�µ)

=
2V

h3

Z 1

0

�
dp · 4⇡p2

�
e
��(p2

/(2m)�µ) converting to spherical coordinates

=
8⇡V

h3
e
�µ

Z 1

0

dp p
2
e
��p

2
/(2m) (222)

This is a Gaussian integral, which we can solve by hand. Define A ⌘ �/(2m). Then

Z 1

0

dp p
2
e
��p

2
/(2m) =

Z 1

0

dp p
2
e
�Ap

2

=
1

2

Z 1

�1
dp p

2
e
�Ap

2
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In the last step, we have used the fact that the integrand is even to change the lower limit to
�1. The trick now is to simplify this integral into the standard Gaussian integral by means
of a derivative in A:

Z 1

0

dp p
2
e
��p

2
/(2m) =

1

2

Z 1

�1
dp p

2
e
�Ap

2

= �1

2

d

dA

Z 1

�1
dp e

�Ap
2

�

The standard Gaussian integral is solvable using a change of variables x ⌘
p
Ap and the resultR1

�1 dx e
�x

2

=
p
⇡:

Z 1

�1
dp e

�Ap
2

=
1

(A)1/2

Z 1

�1
dx e

�x
2

=
⇣
⇡

A

⌘1/2

Taking the derivative of this with respect to A, we get

Z 1

0

dp p
2
e
��p

2
/(2m) = �1

2

d

dA

Z 1

�1
dp e

�Ap
2

�
=

1

4

⇡
1/2

A3/2

Plugging in the definition of A, A ⌘ �/(2m) = 1/(2mkT ), we get

Z 1

0

dp p
2
e
��p

2
/(2m) =

⇡
1/2

4
(2mkT )3/2

Plugging this into (222), we get

Nc ⇡
8⇡V

h3
e
�µ


⇡
1/2

4
(2mkT )3/2

�
= 2V e

�µ

✓
2⇡mkT

h2

◆3/2

(223)

This isn’t quite what we’re looking for, since it depends on the chemical potential µ. We want
our answer as a function of T and V . Even though the problem doesn’t explicitly state this,
we should also expect our answer to be in terms of N (part (b), in which we got N in terms of
µ, slightly hints at this). Therefore, we should consider our part (b) answer for N in terms of
Nb and Nc:

N = Nb +Nc

N ⇡ M
e�(�"�µ) + 1

+ 2V e
�µ

✓
2⇡mkT

h2

◆3/2

(classical distribution for continuum) (224)

We have not yet used two of the approximations in the problem: “few electrons occupy the
continuum state” (which means Nc ⌧ Nb), and kT ⌧ " (which means �" � 1). Since
Nc / (kT )3/2, the second approximation implies the first. To use the approximation Nc ⌧ Nb,
we can simply drop the Nc term in the equation N = Nb +Nc:

N ⇡ Nb =
M

e�(�"�µ) + 1
(225)

We can solve this equation for µ in terms of T and N :

N

⇣
e
�(�"�µ) + 1

⌘
⇡ M

e
�(�"�µ) ⇡ M�N

N

� (�"� µ) ⇡ ln

✓
M�N

N

◆

µ ⇡ �"� 1

�
ln

✓
M�N

N

◆
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Since � ⌘ 1/(kT ), the chemical potential can be approximated by

µ ⇡ �"� kT ln

✓
M�N

N

◆
(226)

We can now plug this result back into our earlier equation for Nc in terms of T , V , and µ. We
have

e
�µ ⇡ e

��" · N

M�N
(227)

so by (222)

Nc ⇡ 2V e
�µ

✓
2⇡mkT

h2

◆3/2

⇡ 2V e
��" · N

M�N

✓
2⇡mkT

h2

◆3/2

(228)

This part has illustrated an important fact about solving stat mech problems with chemical
potentials:

In problems with Fermi-Dirac or Bose-Einstein statistics, to find the chemical potential µ,
first write the number of particles N in terms of µ and then solve for µ.

(d) This part deals with a phenomenon called “Pauli paramagnetism.” Broadly speaking, the only
way to know how to solve this problem is to have seen it before. However, the problem does
give a few hints. First among them is to “work with the thermodynamic potential suitable for
the independent variables T , V , µ, B.”

Ignoring the magnetic field for a moment, you are probably most used to thermodynamic
potentials that are in terms of N , not V . For example, the energy is written in terms of S, V ,
and N , as we can see from its di↵erential:

dE = T dS � P dV + µdN (229)

Recall that the free energy F swaps S for T by means of a Legendre transform (F ⌘ E � TS),
so F is written in terms of T , V , and N :

F ⌘ E � TS and dF = �S dT � P dV + µdN (230)

To get a thermodynamic potential in terms of T , V , and µ, we should do another Legendre
transform to get a new potential ⌦, which is called the “grand potential.”

⌦ ⌘ F � µN and d⌦ = �S dT � P dV �N dµ (231)

Given a system in the canonical ensemble, we can find its free energy using the partition function
Z:

Z(�) ⌘
X

microstates r

e
��Er and F = �kT lnZ (232)

Analogously, for a system in the grand canonical ensemble, we can find the grand potential
using the grand partition function Z:

Z(T, µ) ⌘
X

microstates r

e
��(Er�µNr) and ⌦ = �kT lnZ (233)

The second hint the problem gives us is to “define the magnetic susceptibility as the induced
magnetic dipole moment per unit volume per unit applied magnetic field B.” Suppose we have
a system where each microstate is identified by a magnetic moment m and a set of other
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independent quantum numbers r. Then, we introduce a magnetic field B, as stated in the
problem, taking Er ! Er � mB. (The minus sign in the energy comes from the fact that it
is energetically favorable for a magnetic dipole to align with an external magnetic field, so the
energy is lower when m and B have the same sign.) Then, by definition, the grand partition
function for this system will be

Z(T, µ,B) =
X

m,r

e
��(Er�mB�µNr) (234)

The average magnetic dipole moment of the system is then equal to the expectation value of
the magnetic dipole moment m in the grand canonical ensemble, or

hmi = 1

Z
X

m,r

me
��(Er�mB�µNr)

=
1

Z

"
1

�

@

@B

 
X

m,r

e
��(Er�mB�µNr)

!#

=
1

�
· 1

Z
@Z
@B

= kT
@(lnZ)

@B

= � @⌦

@B
(235)

To get the magnetic susceptibility, divide the average magnetic dipole moment by the volume
and take another derivative in the applied magnetic field B, as suggested by the problem
statement:

�m =
1

V

@ hmi
@B

= � 1

V

@
2⌦

@B2
(236)

Hint number three is to “express the magnetic susceptibility at B = 0 in terms of the thermo-
dynamic potential in the absence of a magnetic field.” Here, the thermodynamic potential we’re
working with is the grand potential, and we need to di↵erentiate the grand potential twice to
get the magnetic susceptibility. Therefore, to follow the hint, we should write the grand poten-
tial for B 6= 0 in terms of the grand potential for B = 0. Since the grand potential comes from
the grand partition function, we should start by writing the grand partition function for B 6= 0
in terms of the grand partition function for B = 0.

Since we are working with fermions, the only way to incorporate the Fermi-Dirac statistics
is by considering single-particle states. Usually, we don’t worry too much about spin when
talking about single-particle states. But for this part of the problem, the spin of the particle
changes the energy level, so we must pay close attention.

Let’s start by talking about what how we would calculate the grand partition function in
parts (a)-(c) of this problem. Consider a single-particle state for an electron. Whether it is a
bound state or a continuum state, this state is identified by two quantum numbers:

• the spin of the electron s, where we can take s = +1 for spin up and s = �1 for spin
down, and

• all other quantum numbers, which we will call r.

By the Pauli exclusion principle, there can be at most one electron in this state. Assuming
B = 0, the energy of filling this state with a single electron ✏r depends only on r, not on the
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electron spin s. By definition of the grand partition function, the grand partition function for
this single-particle state with B = 0 is

Z0,r(T, µ) = 1 + e
��(✏r�µ) for B = 0 (237)

The “1” term corresponds to the state being empty, while the e
��(✏r�µ) term corresponds to

the state being filled with one electron. Note that the two-argument form of Z0(T, µ) will be
used to indicate the grand partition function with B = 0.

We can get the grand potential from this grand partition function. Since the single-particle
states are independent in the grand canonical ensemble, the grand partition function of the
entire system is the product of the grand partition functions of each single-particle state:

Z0(T, µ) =
Y

r,s

Z0,r(T, µ) for B = 0 (238)

To get the grand potential of the system with no magnetic field, take the logarithm:

⌦0(T, µ) = �kT lnZ0(T, µ)

= �kT ln

"
Y

r,s

Z0,r(T, µ)

#

= �kT

X

r,s

ln [Z0,r(T, µ)] by log rules

= �kT

X

r

(ln [Z0,r(T, µ)] + ln [Z0,r(T, µ)]) since s = ±1

=) ⌦0(T, µ) = �2kT
X

r

ln [Z0,r(T, µ)] for B = 0 (239)

Notice that the spin degeneracy prefactor of 2 has entered the grand potential.

Now suppose we add in the contribution of the magnetic field. The grand partition func-
tion for this single-particle state now depends on the spin s = ±1. The magnetic moment of
the electron is m = s, so if the state is filled, the energy is now ✏r � mB = ✏r � sB. The
grand partition function for this state is now

Zr,s(T, µ,B) = 1 + e
��(✏r�sB�µ) (240)

Now for the key trick: writing the grand partition function for B 6= 0 in terms of the grand
partition function for B = 0, i.e., writing (240) in terms of (237). By inspection, we can fold
the energy shift �sB into a change in the chemical potential:

Zr,s(T, µ,B) = Z0,r(T, µ+ sB) (241)

We are ready to carry this relation between partition functions through to a relation between
grand potentials. Since the single-particle states are independent in the grand canonical en-
semble, the grand partition function of the entire system is the product of the grand partition
functions of each single-particle state:

Z(T, µ,B) =
Y

r,s

Zr,s(T, µ,B) (242)

Applying (241), this gives us

Z(T, µ,B) =
Y

r,s

Z0,r(T, µ+ sB) (243)
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We can take the logarithm of this relation to derive a relation between grand potentials:

⌦(T, µ,B) = �kT lnZ(T, µ,B)

= �kT ln

"
Y

r,s

Z0,r(T, µ+ sB)

#

= �kT

X

r,s

ln [Z0,r(T, µ+ sB)]

= �kT ln [Z0,r(T, µ+ B)]� kT ln [Z0,r(T, µ� B)] since s = ±1

⌦(T, µ,B) =
1

2
[⌦0(T, µ+ B) + ⌦0(T, µ� B)] comparing with (239) (244)

The factor of 1/2 is needed to make this equation self-consistent when B = 0.

We can plug this equation into (236) to get an expression for the magnetic susceptibility in
terms of the grand potential for B = 0:

�m = � 1

V

@
2⌦

@B2

= � 1

2V



2
@
2⌦0

@µ2
+ (�)2

@
2⌦0

@µ2

�
using the chain rule on (244)

�m = �
2

V

@
2⌦0

@µ2
(245)

Finally, hint number 4 is to “use the results obtained in part (c).” We did not calculate the
grand potential in part (c). However, we did find an closed-form expression for the number of
particles in the continuum Nc in terms of T , V , and µ, assuming B = 0. We already had an
expression for the number of particles in the bound states Nb in terms of T , V , and µ, assuming
B = 0. So we have a closed-form expression for the total number of particles in the system N .

Noticing that the grand potential ⌦0 is also in terms of T , V , and µ, we might try to re-
late ⌦0 to N . For a general system (with or without spin), the average number of particles in
that system is the expectation value of N :

hNi = 1

Z
X

r

Nre
��(Er�µNr) (246)

=
1

Z

"
� 1

�

@

@µ

 
X

r

e
��(Er�µNr)

!#

=
1

Z


1

�

@Z
@µ

�

=
1

�

@ lnZ
@µ

= �@(�kT lnZ)

@µ

hNi = �@⌦

@µ
(247)

Substituting this in (245), we get an expression for the magnetic susceptibility in terms of the
number of electrons in the system when B = 0, which we calculated in part (c):

�m =

2

V

@N

@µ
(248)
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From part (c) (see (223)), we have an approximation for the number of electrons in the system,
in terms of T , V , and µ:

N0 = Nb +Nc ⇡
M

e�(�"�µ) + 1
+ 2V e

�µ

✓
2⇡mkT

h2

◆3/2

(249)

Taking the derivative with respect to µ, we get

@N

@µ
⇡ M�e

�(�"�µ)

�
e�(�"�µ) + 1

�2 + 2�V e
�µ

✓
2⇡mkT

h2

◆3/2

By (227),

e
�µ ⇡ e

��" · N

M�N

Plugging this in, we get

@N

@µ
⇡

M�
�M�N

N

�
��M�N

N

�
+ 1
�2 + 2�V e

��" · N

M�N

✓
2⇡mkT

h2

◆3/2

The first term can be simplified:

M�
�M�N

N

�
��M�N

N

�
+ 1
�2 =

M
kT

M�N

N��M�N

N

�
+ 1
�2

=
M
kT

M�N

N

M2

N2

=
N

kT

M�N

M

This gets us

@N

@µ
⇡ N

kT

✓
M�N

M

◆
+

N

kT

 
2V e

��"

✓
2⇡mkT

h2

◆3/2 1

M�N

!
(250)

Plugging this into (248), we get a result for the magnetic susceptibility

�m ⇡ N
2

V kT

 
M�N

M +
2V

M�N
e
��"

✓
2⇡mkT

h2

◆3/2
!

where � = 1/(kT ) (251)

Since we are assuming low temperature, �" � 1 and so the second term is subleading compared
to the first. In fact, we could have ignored the second term altogether in this part, on the
grounds that Nc ⌧ Nb at low temperature.
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