3. (Quantum Mechanics)

The purpose of this problem is to show that a spin zero particle with electric charge e in the presence of a certain radial magnetic field \mathbf{B} effectively behaves as a particle with spin $\frac{1}{2}$. The classical Lagrangian for the spin 0 particle is given by (here $\mathbf{v}=\dot{\mathbf{r}}$ and $r=|\mathbf{r}|$),

$$
L=\frac{1}{2} m \mathbf{v}^{2}+e \mathbf{A} \cdot \mathbf{v} \quad \mathbf{B}=\nabla \times \mathbf{A}=g \frac{\mathbf{r}}{r^{3}}
$$

where m is the mass of the particle and g is a real parameter.
(a) Compute the canonical momenta \mathbf{p} conjugate to the position variables \mathbf{r}.
(b) Write down the Euler-Lagrange equation for the system in terms of \mathbf{r} and \mathbf{v}.
(c) Using the results of (b) above, show that the combination $\mathbf{L}=\left(L_{x}, L_{y}, L_{z}\right)$ defined by

$$
\mathbf{L}=\mathbf{r} \times m \mathbf{v}-e g \frac{\mathbf{r}}{r}
$$

is time-independent.
(d) Compute the commutators $\left[L_{i}, r_{j}\right]$ (i.e. the commutators of the components of the vectors \mathbf{L} and \mathbf{r}). An analogous result-which you are not asked to derive - for $\left[L_{i}, p_{j}\right]$ establishes that \mathbf{L} represents angular momentum.
(e) Compute the quantum operator L_{z} in spherical coordinates r, θ, ϕ using the results of (a).
(f) Show that the eigenvalues of L_{z} are half-odd-integer multiples of \hbar when the electric charge e and the parameter g are related by $e g=\frac{\hbar}{2}$.
[Hint: In a convenient gauge, the vector potential \mathbf{A} for the field \mathbf{B} is given by $\mathbf{A}=g \mathbf{n}_{\phi}(1-\cos \theta) /(r \sin \theta)$ where \mathbf{n}_{ϕ} is the unit vector given by $\mathbf{n}_{\phi}=(-\sin \phi, \cos \phi, 0)$ in spherical coordinates where $x=$ $r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$.]

Solution:

This problem mixes classical and quantum mechanics. It attempts to walk you step-by-step through its solution. Since we are working with a fair amount of vector algebra and calculus, it is useful to rewrite the Lagrangian in Einstein summation notation (repeated indices summed over):

$$
\begin{equation*}
L=\frac{1}{2} m \dot{\mathbf{r}}^{2}+e \mathbf{A} \cdot \dot{\mathbf{r}}=\frac{1}{2} m \dot{r}_{i} \dot{r}_{i}+e A_{i} \dot{r}_{i} \tag{1}
\end{equation*}
$$

(a) The definition of the canonical momentum is

$$
\begin{equation*}
\mathbf{p}=\frac{\partial L}{\partial \dot{\mathbf{r}}} \quad \text { or } \quad p_{i}=\frac{\partial L}{\partial \dot{r}_{i}} \tag{2}
\end{equation*}
$$

Taking this partial derivative in (1), we get

$$
\begin{equation*}
\mathbf{p}=m \dot{\mathbf{r}}+e \mathbf{A} \quad \text { or } \quad p_{i}=m \dot{r}_{i}+e A_{i} \tag{3}
\end{equation*}
$$

Here, \mathbf{A} is the vector potential for the field \mathbf{B} given in the hint. In other words,

$$
\begin{equation*}
\mathbf{p}=m \mathbf{v}+e \mathbf{A} \tag{4}
\end{equation*}
$$

(b) The Euler-Lagrange equation for this system is just the Newton's second law equation for the system. This is just a particle of charge e in a magnetic field, so the Newton's second law equation is given by the Lorentz force law:

$$
\begin{equation*}
m \mathbf{a}=e \mathbf{v} \times \mathbf{B} \tag{5}
\end{equation*}
$$

If you (like the author) didn't think of this, you can derive this from the definition of the Euler-Lagrange equation:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{r}}}\right)-\frac{\partial L}{\partial \mathbf{r}}=0 \quad \text { or } \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}_{i}}\right)-\frac{\partial L}{\partial r_{i}}=0 \tag{6}
\end{equation*}
$$

The first term is equal to $\frac{d \mathbf{p}}{d t}$. Using (3) and taking a total time derivative (applying the chain rule to the vector potential $\mathbf{A}(\mathbf{r})$), we get

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}_{i}}\right) & =\frac{d}{d t}\left(m \dot{r}_{i}+e A_{i}\right) \\
& =m \ddot{r}_{i}+e\left(\partial_{j} A_{i}\right) \dot{r}_{j} \tag{7}
\end{align*}
$$

The other term in the Euler-Lagrange equation is given by

$$
\begin{equation*}
\frac{\partial L}{\partial r_{i}}=e\left(\partial_{i} A_{j}\right) \dot{r}_{j} \tag{8}
\end{equation*}
$$

Thus, the Euler-Lagrange equation is

$$
\begin{align*}
0 & =m \ddot{r}_{i}+e\left(\partial_{j} A_{i}\right) \dot{r}_{j}-e\left(\partial_{i} A_{j}\right) \dot{r}_{j} \\
& \Longrightarrow m \ddot{r}_{i}=e\left[\left(\partial_{i} A_{j}\right) \dot{r}_{j}-\left(\partial_{j} A_{i}\right) \dot{r}_{j}\right] \tag{9}
\end{align*}
$$

The quantity in brackets might remind you of the right-hand side of the BAC-CAB identity:

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b}) \quad \text { or } \quad(\mathbf{a} \times(\mathbf{b} \times \mathbf{c}))_{i}=b_{i} a_{j} c_{j}-c_{i} a_{j} b_{j}
$$

Pattern-matching to (9), and noting that $\partial_{i} \dot{r}_{j}=0$, we can identify $a_{i} \longleftrightarrow \dot{r}_{i}, b_{i} \longleftrightarrow \partial_{i}$, and $c_{i} \longleftrightarrow A_{i}$. This means that (9) becomes

$$
\begin{equation*}
m \ddot{r}_{i}=e\left[\dot{\mathbf{r}}_{i} \times(\nabla \times \mathbf{A})\right]_{i} \tag{10}
\end{equation*}
$$

Since $\ddot{\mathbf{r}}=\mathbf{a}$ (acceleration), $\dot{\mathbf{r}}=\mathbf{v}$ (velocity), and $\nabla \times \mathbf{A}=\mathbf{B}$, this becomes

$$
\begin{equation*}
m \mathbf{a}=e \mathbf{v} \times \mathbf{B} \tag{11}
\end{equation*}
$$

In this problem, $\mathbf{B}=g \frac{\mathbf{r}}{r^{3}}$. In terms of \mathbf{r} and \mathbf{b}, the Euler-Lagrange equation boils down to

$$
\begin{equation*}
m \dot{\mathbf{v}}=e g \mathbf{v} \times \frac{\mathbf{r}}{r^{3}} \tag{12}
\end{equation*}
$$

(c) To show that \mathbf{L} is time-independent, we need only show that its total time derivative is zero. Using the product and chain rules, we get

$$
\begin{align*}
\frac{d \mathbf{L}}{d t} & =\frac{d}{d t}\left(\mathbf{r} \times m \mathbf{v}-e g \frac{\mathbf{r}}{r}\right) \\
& =\frac{d \mathbf{r}}{d t} \times m \mathbf{v}+\mathbf{r} \times m \frac{d \mathbf{v}}{d t}-e g \frac{1}{r} \frac{d \mathbf{r}}{d t}-e g \mathbf{r} \frac{d}{d t}\left(\frac{1}{r}\right) \\
& =\mathbf{v} \times m \mathbf{v}+\mathbf{r} \times m \dot{\mathbf{v}}-e g \frac{\mathbf{v}}{r}+e g \frac{\mathbf{r}}{r^{2}} \frac{d r}{d t} \\
\frac{d \mathbf{L}}{d t} & =\mathbf{r} \times m \dot{\mathbf{v}}-e g \frac{\mathbf{v}}{r}+e g \frac{\mathbf{r}}{r^{2}} \frac{d r}{d t} \quad \text { since } \mathbf{v} \times \mathbf{v}=0 \tag{13}
\end{align*}
$$

The problem asks us to use our answer from part (b). Using (12) and substituting for $m \dot{\mathbf{v}}$, we get

$$
\begin{align*}
\frac{d \mathbf{L}}{d t} & =\mathbf{r} \times\left(e g \mathbf{v} \times \frac{\mathbf{r}}{r^{3}}\right)-e g \frac{\mathbf{v}}{r}+e g \frac{\mathbf{r}}{r^{2}} \frac{d r}{d t} \\
& =e g\left[\frac{1}{r^{3}} \mathbf{r} \times(\mathbf{v} \times \mathbf{r})-\frac{\mathbf{v}}{r}+\frac{\mathbf{r}}{r^{2}} \frac{d r}{d t}\right] \tag{14}
\end{align*}
$$

The triple product $\mathbf{r} \times(\mathbf{v} \times \mathbf{r})$ can be simplified using the BAC-CAB rule:

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b})
$$

This gets us

$$
\begin{align*}
\mathbf{r} \times(\mathbf{v} \times \mathbf{r}) & =\mathbf{v}(\mathbf{r} \cdot \mathbf{r})-\mathbf{r}(\mathbf{r} \cdot \mathbf{v}) \\
& =r^{2} \mathbf{v}-\mathbf{r}(\mathbf{r} \cdot \mathbf{v}) \tag{15}
\end{align*}
$$

Plugging this back into (14), we get

$$
\begin{align*}
\frac{d \mathbf{L}}{d t} & =e g\left[\frac{1}{r^{3}}\left(r^{2} \mathbf{v}-\mathbf{r}(\mathbf{r} \cdot \mathbf{v})\right)-\frac{\mathbf{v}}{r}+\frac{\mathbf{r}}{r^{2}} \frac{d r}{d t}\right] \\
& =e g\left[\frac{\mathbf{v}}{r}-\frac{\mathbf{r}}{r^{3}}(\mathbf{r} \cdot \mathbf{v})-\frac{\mathbf{v}}{r}+\frac{\mathbf{r}}{r^{2}} \frac{d r}{d t}\right] \\
& =e g\left[-\frac{\mathbf{r}}{r^{3}}(\mathbf{r} \cdot \mathbf{v})+\frac{\mathbf{r}}{r^{2}} \frac{d r}{d t}\right] \tag{16}
\end{align*}
$$

One way to show that the term in brackets vanishes is to remember that the radial component of the velocity vector is the change in the radius:

$$
\begin{equation*}
\hat{\mathbf{r}} \cdot \mathbf{v}=\frac{d r}{d t} \tag{17}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\frac{\mathbf{r}}{r^{2}} \frac{d r}{d t}=\frac{\mathbf{r}}{r^{2}}(\hat{\mathbf{r}} \cdot \mathbf{v})=\frac{\mathbf{r}}{r^{3}}(\mathbf{r} \cdot \mathbf{v}) \tag{18}
\end{equation*}
$$

Another way to show that the term in brackets vanishes is to take the antiderivative of $\mathbf{r} \cdot \mathbf{v}$:

$$
\begin{align*}
\frac{\mathbf{r}}{r^{3}}(\mathbf{r} \cdot \mathbf{v}) & =\frac{\mathbf{r}}{r^{3}}\left(\mathbf{r} \cdot \frac{d \mathbf{r}}{d t}\right) \\
& =\frac{\mathbf{r}}{r^{3}}\left(\frac{1}{2} \frac{d}{d t}(\mathbf{r} \cdot \mathbf{r})\right) \\
& =\frac{\mathbf{r}}{r^{3}}\left(\frac{1}{2} \frac{d}{d t}\left(r^{2}\right)\right) \\
& =\frac{\mathbf{r}}{r^{3}}\left(r \frac{d r}{d t}\right) \\
& =\frac{\mathbf{r}}{r^{2}} \frac{d r}{d t} \tag{19}
\end{align*}
$$

Either way, we get that $\frac{\mathbf{r}}{r^{3}}(\mathbf{r} \cdot \mathbf{v})=\frac{\mathbf{r}}{r^{2}} \frac{d r}{d t}$, so $-\frac{\mathbf{r}}{r^{3}}(\mathbf{r} \cdot \mathbf{v})+\frac{\mathbf{r}}{r^{2}} \frac{d r}{d t}=0$. Plugging this result into (16), we establish the result

$$
\begin{equation*}
\frac{d \mathbf{L}}{d t}=0 \tag{20}
\end{equation*}
$$

so \mathbf{L} is time-independent.
(d) To calculate the commutators $\left[L_{i}, r_{j}\right]$, we need to use the canonical commutation relations

$$
\begin{equation*}
\left[r_{i}, r_{j}\right]=0 \quad \text { and } \quad\left[r_{i}, p_{j}\right]=i \hbar \delta_{i j} \tag{21}
\end{equation*}
$$

This means that we need to write \mathbf{L} in terms of \mathbf{r} and \mathbf{p}. Since all components of \mathbf{r} commute with each other, any terms in \mathbf{L} that are independent of \mathbf{p} commute with \mathbf{r} automatically. From part (a), $\mathbf{p}=m \mathbf{v}+e \mathbf{A}$, and \mathbf{A} depends only on \mathbf{r}, so

$$
\begin{align*}
\mathbf{L} & =\mathbf{r} \times m \mathbf{v}-e g \frac{\mathbf{r}}{r} \\
& =\mathbf{r} \times(\mathbf{p}-e \mathbf{A})-e g \frac{\mathbf{r}}{r} \\
& =\mathbf{r} \times \mathbf{p}-e \mathbf{r} \times \mathbf{A}-e g \frac{\mathbf{r}}{r} \tag{22}
\end{align*}
$$

In components, this becomes

$$
\begin{equation*}
L_{i}=\epsilon_{i j k} r_{j} p_{k}+f_{i}(\mathbf{r}) \tag{23}
\end{equation*}
$$

where $\epsilon_{i j k}$ is the Levi-Civita symbol and $f_{i}(\mathbf{r})$ is a function of \mathbf{r}. Since f_{i} is only a function of \mathbf{r}, this term commutes with all components of \mathbf{r}. Therefore, applying the commutation rules and relations, we get

$$
\begin{align*}
{\left[L_{i}, r_{j}\right] } & =\left[\epsilon_{i k \ell} r_{k} p_{\ell}, r_{j}\right]+\left[f_{i}(\mathbf{r}), r_{j}\right] \\
& =\left[\epsilon_{i k \ell} r_{k} p_{\ell}, r_{j}\right] \quad \text { since }\left[r_{i}, r_{j}\right]=0 \\
& =\epsilon_{i k \ell} r_{k}\left[p_{\ell}, r_{j}\right]+\epsilon_{i k \ell}\left[r_{k}, r_{j}\right] p_{k} \quad \text { as }[A B, C]=A[B, C]+[A, C] B \\
& =\epsilon_{i k \ell} r_{k}\left[p_{\ell}, r_{j}\right] \quad \text { since }\left[r_{i}, r_{j}\right]=0 \\
& =-\epsilon_{i k \ell} r_{k}\left[r_{j}, p_{\ell}\right] \quad \text { since }[A, B]=-[B, A] \\
& =-\epsilon_{i k \ell} r_{k}\left(i \hbar \delta_{j \ell}\right) \quad \text { since }\left[r_{i}, p_{j}\right]=i \hbar \delta_{i j} \\
& =-i \hbar \epsilon_{i k j} r_{k} \\
& =i \hbar \epsilon_{i j k} r_{k} \quad \text { since } \epsilon_{i j k}=-\epsilon_{i j k} \tag{24}
\end{align*}
$$

We have found that

$$
\begin{equation*}
\left[L_{i}, r_{j}\right]=i \hbar \epsilon_{i j k} r_{k} \tag{25}
\end{equation*}
$$

(e) To write the quantum operators in spherical coordinates, we need to use the canonical quantization prescription

$$
\begin{equation*}
p_{x}=\frac{\hbar}{i} \frac{\partial}{\partial x} \quad \text { and } \quad p_{y}=\frac{\hbar}{i} \frac{\partial}{\partial y} \tag{26}
\end{equation*}
$$

From (22), we can write L_{z} in terms of x, y, p_{x}, and p_{y} :

$$
\begin{align*}
L_{z} & =(\mathbf{r} \times \mathbf{p})_{z}-e(\mathbf{r} \times \mathbf{A})_{z}-e g\left(\frac{\mathbf{r}}{r}\right)_{z} \\
& =\left(x p_{y}-y p_{x}\right)-e\left(x A_{y}-y A_{x}\right)-e g \frac{z}{r} \tag{27}
\end{align*}
$$

Canonically quantizing the first term, we get

$$
\begin{equation*}
x p_{y}-y p_{x}=\frac{\hbar}{i}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \tag{28}
\end{equation*}
$$

The best way to convert this to spherical coordinates is to guess (from previous experience) that the partial derivative $\frac{\partial}{\partial \varphi}$ is involved. In spherical coordinates, we have

$$
\begin{equation*}
x=r \sin \theta \cos \varphi \quad \text { and } \quad y=r \sin \theta \sin \varphi \tag{29}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\frac{\partial}{\partial \varphi} & =\frac{\partial x}{\partial \varphi} \frac{\partial}{\partial x}+\frac{\partial y}{\partial \varphi} \frac{\partial}{\partial y} \\
& =-r \sin \theta \sin \varphi \frac{\partial}{\partial x}+r \sin \theta \cos \varphi \frac{\partial}{\partial y} \\
& =-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y} \tag{30}
\end{align*}
$$

Therefore, plugging into (28), we get

$$
\begin{equation*}
x p_{y}-y p_{x}=\frac{\hbar}{i}\left(\frac{\partial}{\partial \varphi}\right)=-i \hbar \frac{\partial}{\partial \varphi} \tag{31}
\end{equation*}
$$

For the second term in (27), we need to use the vector potential given in the hint:

$$
\begin{align*}
\mathbf{A} & =g \hat{\varphi} \frac{1-\cos \theta}{r \sin \theta} \\
& =g(-\sin \varphi \hat{\mathbf{x}}+\cos \varphi \hat{\mathbf{y}}) \frac{1-\cos \theta}{r \sin \theta} \tag{32}
\end{align*}
$$

Therefore, in spherical coordinates, the second term in (27) simplifies to

$$
\begin{align*}
-e\left(x A_{y}-y A_{x}\right) & =-e\left[(r \sin \theta \cos \varphi)\left(g \cos \varphi \frac{1-\cos \theta}{r \sin \theta}\right)-(r \sin \theta \sin \varphi)\left(-g \sin \varphi \frac{1-\cos \theta}{r \sin \theta}\right)\right] \\
& =-e g r \sin \theta \frac{1-\cos \theta}{r \sin \theta}\left[\cos ^{2} \varphi+\sin ^{2} \varphi\right] \\
& =-e g(1-\cos \theta) \tag{33}
\end{align*}
$$

The last term in (27) simplifies to

$$
\begin{align*}
-e g \frac{z}{r} & =-e g \frac{r \cos \theta}{r} \\
& =-e g \cos \theta \tag{34}
\end{align*}
$$

Putting all three terms together using (31), (33), and (34), we get

$$
\begin{gather*}
L_{z}=-i \hbar \frac{\partial}{\partial \varphi}-e g(1-\cos \theta)-e g \cos \theta \\
L_{z}=-i \hbar \frac{\partial}{\partial \varphi}-e g \tag{35}
\end{gather*}
$$

(f) If $e g=\frac{\hbar}{2}$, then

$$
\begin{equation*}
L_{z}=\hbar\left(-i \frac{\partial}{\partial \varphi}-\frac{1}{2}\right) \tag{36}
\end{equation*}
$$

To find the eigenvalues of this operator, note that any wave function must be single-valued upon taking $\varphi \longrightarrow \varphi+2 \pi$. Therefore, by Fourier analysis, any wave function must be a linear combination of functions of the form $e^{i n \varphi}$, where n is an integer. Applying the operator L_{z} to such a function, we get

$$
\begin{align*}
L_{z} e^{i n \varphi} & =\hbar\left(-i \frac{\partial}{\partial \varphi}-\frac{1}{2}\right) e^{i n \varphi} \\
& =\hbar\left(-i(i n)-\frac{1}{2}\right) e^{i n \varphi} \\
& =\hbar\left(n-\frac{1}{2}\right) e^{i n \varphi} \\
& =\hbar \underbrace{\left(\frac{2 n-1}{2}\right)}_{\text {half odd-integer }} e^{i n \varphi} \tag{37}
\end{align*}
$$

This means that $e^{i n \varphi}$ is an eigenfunction of L_{z} with eigenvalue $\hbar\left(\frac{2 n-1}{2}\right)$. Thus, when $e g=\frac{\hbar}{2}$, the eigenvalues of L_{z} are half-odd-integer multiples of \hbar.

This result implies that in the presence of this magnetic field, this spin-zero particle acts like a spin- $\frac{1}{2}$ particle, in that its L_{z} angular momentum eigenvalues are half-odd-integer multiples of \hbar.

