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3. (Quantum Mechanics)

The purpose of this problem is to show that a spin zero particle with electric charge e in the presence of
a certain radial magnetic field B e↵ectively behaves as a particle with spin 1

2
. The classical Lagrangian

for the spin 0 particle is given by (here v = ṙ and r = |r|),

L =
1

2
mv2 + eA · v B = r⇥A = g

r

r3

where m is the mass of the particle and g is a real parameter.

(a) Compute the canonical momenta p conjugate to the position variables r.

(b) Write down the Euler-Lagrange equation for the system in terms of r and v.

(c) Using the results of (b) above, show that the combination L = (Lx, Ly, Lz) defined by

L = r⇥mv � eg
r

r

is time-independent.

(d) Compute the commutators [Li, rj ] (i.e. the commutators of the components of the vectors L and r).
An analogous result—which you are not asked to derive—for [Li, pj ] establishes that L represents
angular momentum.

(e) Compute the quantum operator Lz in spherical coordinates r, ✓, � using the results of (a).

(f) Show that the eigenvalues of Lz are half-odd-integer multiples of ~ when the electric charge e and
the parameter g are related by eg = ~

2
.

[Hint: In a convenient gauge, the vector potentialA for the fieldB is given byA = gn�(1�cos ✓)/(r sin ✓)
where n� is the unit vector given by n� = (� sin�, cos�, 0) in spherical coordinates where x =
r sin ✓ cos�, y = r sin ✓ sin�, z = r cos ✓.]
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

This problem mixes classical and quantum mechanics. It attempts to walk you step-by-step through
its solution. Since we are working with a fair amount of vector algebra and calculus, it is useful to
rewrite the Lagrangian in Einstein summation notation (repeated indices summed over):

L =
1

2
mṙ2 + eA · ṙ =

1

2
mṙiṙi + eAiṙi (1)

(a) The definition of the canonical momentum is

p =
@L

@ṙ
or pi =

@L

@ṙi
(2)

Taking this partial derivative in (1), we get

p = mṙ+ eA or pi = mṙi + eAi (3)

Here, A is the vector potential for the field B given in the hint. In other words,

p = mv + eA (4)

(b) The Euler-Lagrange equation for this system is just the Newton’s second law equation for the
system. This is just a particle of charge e in a magnetic field, so the Newton’s second law
equation is given by the Lorentz force law:

ma = ev ⇥B (5)

If you (like the author) didn’t think of this, you can derive this from the definition of the
Euler-Lagrange equation:

d

dt

✓
@L

@ṙ

◆
� @L

@r
= 0 or

d

dt

✓
@L

@ṙi

◆
� @L

@ri
= 0 (6)

The first term is equal to dp
dt
. Using (3) and taking a total time derivative (applying the chain

rule to the vector potential A(r)), we get

d

dt

✓
@L

@ṙi

◆
=

d

dt
(mṙi + eAi)

= mr̈i + e (@jAi) ṙj (7)

The other term in the Euler-Lagrange equation is given by

@L

@ri
= e (@iAj) ṙj (8)

Thus, the Euler-Lagrange equation is

0 = mr̈i + e (@jAi) ṙj � e (@iAj) ṙj

=) mr̈i = e [(@iAj) ṙj � (@jAi) ṙj ] (9)

The quantity in brackets might remind you of the right-hand side of the BAC-CAB identity:

a⇥ (b⇥ c) = b (a · c)� c (a · b) or (a⇥ (b⇥ c))
i
= biajcj � ciajbj

Pattern-matching to (9), and noting that @iṙj = 0, we can identify ai  ! ṙi, bi  ! @i, and
ci  ! Ai. This means that (9) becomes

mr̈i = e [ṙi ⇥ (r⇥A)]
i

(10)
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Since r̈ = a (acceleration), ṙ = v (velocity), and r⇥A = B, this becomes

ma = ev ⇥B (11)

In this problem, B = g
r
r3
. In terms of r and b, the Euler-Lagrange equation boils down to

mv̇ = eg v ⇥ r

r3
(12)

(c) To show that L is time-independent, we need only show that its total time derivative is zero.
Using the product and chain rules, we get

dL

dt
=

d

dt

⇣
r⇥mv � eg

r

r

⌘

=
dr

dt
⇥mv + r⇥m

dv

dt
� eg

1

r

dr

dt
� egr

d

dt

✓
1

r

◆

= v ⇥mv + r⇥mv̇ � eg
v

r
+ eg

r

r2

dr

dt

dL

dt
= r⇥mv̇ � eg

v

r
+ eg

r

r2

dr

dt
since v ⇥ v = 0 (13)

The problem asks us to use our answer from part (b). Using (12) and substituting for mv̇, we
get

dL

dt
= r⇥

⇣
eg v ⇥ r

r3

⌘
� eg

v

r
+ eg

r

r2

dr

dt

= eg


1

r3
r⇥ (v ⇥ r)� v

r
+

r

r2

dr

dt

�
(14)

The triple product r⇥ (v ⇥ r) can be simplified using the BAC-CAB rule:

a⇥ (b⇥ c) = b (a · c)� c (a · b)

This gets us

r⇥ (v ⇥ r) = v (r · r)� r (r · v)
= r

2 v � r (r · v) (15)

Plugging this back into (14), we get

dL

dt
= eg


1

r3

�
r
2 v � r (r · v)

�
� v

r
+

r

r2

dr

dt

�

= eg


v

r
� r

r3
(r · v)� v

r
+

r

r2

dr

dt

�

= eg


� r

r3
(r · v) + r

r2

dr

dt

�
(16)

One way to show that the term in brackets vanishes is to remember that the radial component
of the velocity vector is the change in the radius:

r̂ · v =
dr

dt
(17)

Then,
r

r2

dr

dt
=

r

r2
(r̂ · v) = r

r3
(r · v) (18)
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Another way to show that the term in brackets vanishes is to take the antiderivative of r · v:

r

r3
(r · v) = r

r3

✓
r · dr

dt

◆

=
r

r3

✓
1

2

d

dt
(r · r)

◆

=
r

r3

✓
1

2

d

dt

�
r
2
�◆

=
r

r3

✓
r
dr

dt

◆

=
r

r2

dr

dt
(19)

Either way, we get that r
r3

(r · v) = r
r2

dr

dt
, so � r

r3
(r · v) + r

r2
dr

dt
= 0. Plugging this result into

(16), we establish the result
dL

dt
= 0 (20)

so L is time-independent.

(d) To calculate the commutators [Li, rj ], we need to use the canonical commutation relations

[ri, rj ] = 0 and [ri, pj ] = i~ �ij (21)

This means that we need to write L in terms of r and p. Since all components of r commute
with each other, any terms in L that are independent of p commute with r automatically. From
part (a), p = mv + eA, and A depends only on r, so

L = r⇥mv � eg
r

r

= r⇥ (p� eA)� eg
r

r

= r⇥ p� e r⇥A� eg
r

r
(22)

In components, this becomes
Li = ✏ijk rjpk + fi(r) (23)

where ✏ijk is the Levi-Civita symbol and fi(r) is a function of r. Since fi is only a function of
r, this term commutes with all components of r. Therefore, applying the commutation rules
and relations, we get

[Li, rj ] = [✏ik` rkp`, rj ] + [fi(r), rj ]

= [✏ik` rkp`, rj ] since [ri, rj ] = 0

= ✏ik`rk [p`, rj ] + ✏ik` [rk, rj ] pk as [AB,C] = A[B,C] + [A,C]B

= ✏ik`rk [p`, rj ] since [ri, rj ] = 0

= �✏ik`rk [rj , p`] since [A,B] = �[B,A]

= �✏ik`rk (i~�j`) since [ri, pj ] = i~�ij
= �i~ ✏ikjrk
= i~ ✏ijkrk since ✏ijk = �✏ijk (24)

We have found that
[Li, rj ] = i~ ✏ijkrk (25)
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(e) To write the quantum operators in spherical coordinates, we need to use the canonical quanti-
zation prescription

px =
~
i

@

@x
and py =

~
i

@

@y
(26)

From (22), we can write Lz in terms of x, y, px, and py:

Lz = (r⇥ p)
z
� e (r⇥A)

z
� eg

⇣r
r

⌘

z

= (xpy � ypx)� e (xAy � yAx)� eg
z

r
(27)

Canonically quantizing the first term, we get

xpy � ypx =
~
i

✓
x
@

@y
� y

@

@x

◆
(28)

The best way to convert this to spherical coordinates is to guess (from previous experience)
that the partial derivative @

@'
is involved. In spherical coordinates, we have

x = r sin ✓ cos' and y = r sin ✓ sin' (29)

Thus,

@

@'
=

@x

@'

@

@x
+

@y

@'

@

@y

= �r sin ✓ sin' @

@x
+ r sin ✓ cos'

@

@y

= �y @

@x
+ x

@

@y
(30)

Therefore, plugging into (28), we get

xpy � ypx =
~
i

✓
@

@'

◆
= �i~ @

@'
(31)

For the second term in (27), we need to use the vector potential given in the hint:

A = g'̂
1� cos ✓

r sin ✓

= g (� sin' x̂+ cos' ŷ)
1� cos ✓

r sin ✓
(32)

Therefore, in spherical coordinates, the second term in (27) simplifies to

�e (xAy � yAx) = �e

(r sin ✓ cos')

✓
g cos'

1� cos ✓

r sin ✓

◆
� (r sin ✓ sin')

✓
�g sin'1� cos ✓

r sin ✓

◆�

= �eg r sin ✓ 1� cos ✓

r sin ✓

⇥
cos2 '+ sin2 '

⇤

= �eg(1� cos ✓) (33)

The last term in (27) simplifies to

�eg z
r
= �eg r cos ✓

r

= �eg cos ✓ (34)
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Putting all three terms together using (31), (33), and (34), we get

Lz = �i~ @

@'
� eg(1� cos ✓)� eg cos ✓

Lz = �i~ @

@'
� eg (35)

(f) If eg = ~
2
, then

Lz = ~
✓
�i @

@'
� 1

2

◆
(36)

To find the eigenvalues of this operator, note that any wave function must be single-valued
upon taking ' �! '+ 2⇡. Therefore, by Fourier analysis, any wave function must be a linear
combination of functions of the form e

in', where n is an integer. Applying the operator Lz to
such a function, we get

Lz e
in' = ~

✓
�i @

@'
� 1

2

◆
e
in'

= ~
✓
�i (in)� 1

2

◆
e
in'

= ~
✓
n� 1

2

◆
e
in'

= ~
✓
2n� 1

2

◆

| {z }
half odd-integer

e
in' (37)

This means that ein' is an eigenfunction of Lz with eigenvalue ~
�
2n�1

2

�
. Thus, when eg = ~

2
,

the eigenvalues of Lz are half-odd-integer multiples of ~.

This result implies that in the presence of this magnetic field, this spin-zero particle acts like a
spin- 1

2
particle, in that its Lz angular momentum eigenvalues are half-odd-integer multiples of

~.
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