
UCLA Physics Fall 2011 Comprehensive Exam

9. (Statistical Mechanics)

A gas that deviates slightly from ideal behavior exhibits an equation of state given by

pν = RT − a

ν

where p is the pressure, T is the absolute temperature, R is the gas constant, “a” is a small constant
coefficient, and ν is the volume per unit mole, i.e., ν = V/Nm. The system consists of N particles
corresponding to Nm moles.

(a) Deduce the dependence of the partition function Z on volume for this gas.

(b) Use your knowledge of the perfect ideal gas to identify the fully normalized partition function for
this system. The answer should include the proper quantum normalization for phase-space and
account for indistinguishability. The particle mass is m.

(c) If the average energy for this system is given by E = 3
2NmRT + a

N3
m

V , find the specific heat at
constant pressure, i.e., cp. Give your answer in terms of T and ν.

The above expression for the average energy of the system is inconsistent with the equation of
state. The expression for the average energy of the system was probably meant to be given as

E = 3
2NmRT − a

N2
m

V .
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

(a) The equation of state relates the pressure of the gas p to the volume of the gas V , the number
of particles in the gas N , and the temperature of the gas T :

pν = RT − a

ν

p =
RT

ν
− a

ν2

p =
NmRT

V
− aN2

m

V 2
since ν ≡ V

Nm
(1)

We don’t know anything about the microstates of this non-ideal gas, so the typical definition
of the partition function Z =

∑
microstates r e

−βEr doesn’t work here. Instead, we need to relate
the partition function to a macroscopic quantity. The appropriate macroscopic quantity to use
is the free energy F , defined by

F = −kT lnZ (2)

How does the free energy relate pressure, volume, and temperature? To answer this question,
we need to find dF . Recall that by the first law of thermodynamics, the differential of the
energy E (in the canonical ensemble) is given by

dE = T dS − p dV (3)

To get from the energy E to the free energy F , we perform a Legendre transform to swap the
roles of the varables T and S:

dF = d(E − TS) = −S dT − p dV (4)

This equation tells us that F depends on T and V . For any function of T and V , we can break
up its differential into partial derivatives:

dF =
∂F

∂T

∣∣∣∣
V

dT +
∂F

∂V

∣∣∣∣
T

dV (5)

Comparing (4) with (5), we get

−S =
∂F

∂T

∣∣∣∣
V

and − p =
∂F

∂V

∣∣∣∣
T

(6)

The second equation here tells us that the pressure p, when expressed in terms of V and T , is
a partial derivative of the free energy. Using (1) to write p in terms of V and T , we can write
this partial differential equation as

∂F

∂V

∣∣∣∣
T

= −p = −NmRT
V

+
aN2

m

V 2
(7)

Taking the antiderivative with respect to V , we get that the free energy is

F (T, V ) = −NmRT lnV − aN2
m

V
+ f(T ) (8)

where f(T ) is a (possibly T -dependent) constant of integration. Using (2), we can find the
partition function from the free energy:

F = −kT lnZ =⇒ Z = e−F/(kT ) (9)
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Plugging in the free energy from (8), we can find Z:

Z = exp

[
− 1

kT

(
−NmRT lnV − aN2

m

V
+ f(T )

)]
(10)

Before simplifying further, we should take a moment to relate the Boltzmann constant k to the
ideal gas constant R. The ideal gas law is

pV = NkT = NmRT where Nm is the number of moles (11)

This implies that k = Nm

N R. The number of particles N is related to the number of moles by
Avogadro’s number NA, using the equation N = NANm. In other words,

k =
Nm
N

R =
R

NA
(12)

Plugging this into (10), we get

Z = exp

[
− 1

RT/NA

(
−NmRT lnV − aN2

m

V
+ f(T )

)]
= exp

[
NANm lnV +

aNAN
2
m

V RT
− NA
RT

f(T )

]
= exp

[
NANm lnV +

aNANm
νRT

− NA
RT

f(T )

]
since N = NANm

= exp

[
N lnV +

aN

νRT
− NA
RT

f(T )

]
since ν ≡ V

Nm

= V N exp

(
aN

νRT

)
exp

(
−NA
RT

f(T )

)
Z = g(T )V N exp

(
aN

νRT

)
where g(T ) ≡ exp

(
−NA
RT

f(T )

)
(13)

Therefore, the volume dependence of the partition function for this gas is

Z = g(T )V N exp

(
aN

νRT

)
(14)

where g(T ) is a function of T , NA is Avogadro’s number, and ν ≡ V
Nm

.

(b) We will assume that the gas is made of classical point particles, since we are not given an
information about its quantum statistics or any extra degrees of freedom. When a = 0, the
equation of state for this gas is just pV = NmRT , meaning that this is an ideal monatomic
classical gas.

Using the phase-space formalism for classical noninteracting point particles, the partition func-
tion for a single particle in a monatomic ideal gas is

Z1 =

∫
d3p d3x

h3
e−βE where β ≡ 1

kT
(15)

The energy of a single particle is its nonrelativistic kinetic energy:

E =
p2

2m
(16)
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Plugging this in and carrying out the spatial integral for the partition function, we get

Z1 =

∫
d3p d3x

h3
e
−β

(
p2

2m

)

=

∫
d3p d3x

h3
e−βp

2/(2m)

=
V

h3

∫
d3p e−βp

2/(2m) since

∫
d3x = V

=
V

h3

∫ ∞
−∞

dpx

∫ ∞
−∞

dpy

∫ ∞
−∞

dpz e
−β(p2x+p

2
y+p

2
z)/(2m)]

=
V

h3

[∫ ∞
−∞

dpx e
−βp2x/(2m)

] [∫ ∞
−∞

dpy e
−βp2y/(2m)

] [∫ ∞
−∞

dpz e
−βp2z/(2m)

]
(17)

Each of these three integrals is the same Gaussian integral, which can be calculated by a change

of coordinates u ≡ (β/(2m))
1/2

p = (2mkT )
−1/2

p:∫ ∞
−∞

dp e−βp
2/(2m) = (2mkT )1/2

∫ ∞
−∞

du e−u
2

= (2πmkT )1/2 using the result

∫ ∞
−∞

du e−u
2

= π1/2 (18)

Plugging this back into (17), we get

Z1 =
V

h3
(2mkT )

3/2

= V

(
2πmkT

h2

)3/2

Z1 =
V

λ3
for λ ≡

(
h2

2πmkT

)1/2

(19)

The quantity λ is called the thermal wavelength.

The partition function Z for a set of N noninteracting, indistinguishable classical particles
can be derived from the partition function for a single particle Z1 using the formula

Z =
ZN1
N !

(20)

The extra factor of 1/N ! is to account for the indistinguishability of the particles. In this case,
we therefore have

Zideal gas =
1

N !

V N

λ3N
for λ ≡

(
h2

2πmkT

)1/2

(21)

Our answer from part (a) (14) must reduce to the partition function for an ideal gas, Zideal gas,
when a = 0:

Z|a=0 = g(T )V N exp

(
aN

νRT

) ∣∣∣∣
a=0

= g(T )V N (22)

Comparing to (21), we get that

g(T ) =
1

N !

1

λ3N
for λ ≡

(
h2

2πmkT

)1/2

(23)

Plugging this in, we get the full partition function

Z =
1

N !

V N

λ3N
exp

(
aN

νRT

)
for λ ≡

(
h2

2πmkT

)1/2

(24)
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(c) To begin, note the definition of the heat capacity for a constant variable X

CX ≡
d̄Q

dT

∣∣∣∣
X

= T
∂S

∂T

∣∣∣∣
X

(25)

The problem gives us the energy, so to get closer to this formula, let’s write dS in terms of dE
and dV . Starting with the first law of thermodynamics, we get

dE = T dS − p dV =⇒ dS =
1

T
dE +

p

T
dV (26)

We need to find the heat capacity at constant pressure

Cp ≡ T
∂S

∂T

∣∣∣∣
p

(27)

First, we need to find a general expression for Cp. There are two equivalent ways to do this,
and we will present both:

Finding the heat capacity using energy:
We are given an expression for E in terms of T and V , so we should expand dE in terms of dT
and dV .

dE =
∂E

∂T

∣∣∣∣
V

dT +
∂E

∂V

∣∣∣∣
T

dV (28)

Plugging into (26), we get

dS =
1

T

(
∂E

∂T

∣∣∣∣
V

dT +
∂E

∂V

∣∣∣∣
T

dV

)
+
p

T
dV

dS =
1

T

∂E

∂T

∣∣∣∣
V

dT +
1

T

(
∂E

∂V

∣∣∣∣
T

+ p

)
dV (29)

To find the heat capacity at constant pressure, we need to first find ∂S
∂T

∣∣
p
. This means we want

to find dS in terms of dT and dp. The equation of state relates V to T and p, so we can use it
to write dV in terms of dT and dp:

dV =
∂V

∂T

∣∣∣∣
p

dT +
∂V

∂p

∣∣∣∣
T

dp (30)

Plugging this into (29), we get

dS =
1

T

∂E

∂T

∣∣∣∣
V

dT +
1

T

(
∂E

∂V

∣∣∣∣
T

+ p

)(
∂V

∂T

∣∣∣∣
p

dT +
∂V

∂p

∣∣∣∣
T

dp

)

dS =
1

T

[
∂E

∂T

∣∣∣∣
V

+

(
∂E

∂V

∣∣∣∣
T

+ p

)
∂V

∂T

∣∣∣∣
p

]
dT + [. . .] dp (31)

We have written the second term of dS with ellipses because this term isn’t important for our
purposes. What we want is ∂S

∂T

∣∣
p
, which is given by the first term:

∂S

∂T

∣∣∣∣
p

=
1

T

[
∂E

∂T

∣∣∣∣
V

+

(
∂E

∂V

∣∣∣∣
T

+ p

)
∂V

∂T

∣∣∣∣
p

]
(32)

Therefore, the heat capacity at constant pressure is

Cp = T
∂S

∂T

∣∣∣∣
p

Cp =
∂E

∂T

∣∣∣∣
V

+

(
∂E

∂V

∣∣∣∣
T

+ p

)
∂V

∂T

∣∣∣∣
p

(33)
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We have a closed-form expression for E in terms of T and V (the internal energy given in part
(c)), as well as a closed-form expression for p in terms of T and V (the equation of state).
But we don’t have a nice closed-form expression for V in terms of p and T , since the equation
of state is quadratic in V . Therefore, it would be nice to rewrite ∂V

∂T

∣∣
p

in terms of derivatives of p.

We can do this by using a standard stat mech trick for finding the chain rule for partial
derivatives (sometimes called a “cyclic relation”). Writing p in terms of T and V , we have

dp =
∂p

∂T

∣∣∣∣
V

dT +
∂p

∂V

∣∣∣∣
T

dV (34)

If p is constant, dp = 0 and we can solve for ∂V
∂T :

0 =
∂p

∂T

∣∣∣∣
V

dT +
∂p

∂V

∣∣∣∣
T

dV if p is constant

∂p

∂V

∣∣∣∣
T

dV = − ∂p
∂T

∣∣∣∣
V

dT if p is constant

=⇒ ∂V

∂T

∣∣∣∣
p

= −
∂p/∂T

∣∣
V

∂p/∂V
∣∣
T

(35)

Plugging this into (33), we get

Cp =
∂E

∂T

∣∣∣∣
V

−
(
∂E

∂V

∣∣∣∣
T

+ p

)
∂p/∂T

∣∣
V

∂p/∂V
∣∣
T

(36)

Finding the heat capacity using entropy and a Maxwell relation:
An alternative method for finding a general expression for the heat capacity at constant pressure
starts with the differential entropy, not the energy, in terms of T and V :

dS =
∂S

∂T

∣∣∣∣
V

dT +
∂S

∂V

∣∣∣∣
T

dV (37)

As before, we want to find ∂S
∂T

∣∣
p
. The first step is to expand dV in terms of dp and dT :

dV =
∂V

∂T

∣∣∣∣
p

dT +
∂V

∂p

∣∣∣∣
T

dp (38)

Plugging this into (37), we get

dS =
∂S

∂T

∣∣∣∣
V

dT +
∂S

∂V

∣∣∣∣
T

[
∂V

∂T

∣∣∣∣
p

dT +
∂V

∂p

∣∣∣∣
T

dp

]

=

[
∂S

∂T

∣∣∣∣
V

+
∂S

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
p

]
dT + [. . .] dp (39)

We have written the second term of dS with ellipses because this term isn’t important for our
purposes. What we want is ∂S

∂T

∣∣
p
, which is given by the first term:

∂S

∂T

∣∣∣∣
p

=
∂S

∂T

∣∣∣∣
V

+
∂S

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
p

(40)

We have a closed-form expression for E in terms of T and V (the internal energy given in part
(c)), as well as a closed-form expression for p in terms of T and V (the equation of state). But
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we don’t have any expression for the entropy S. And we also don’t have a nice closed-form
expression for the volume V in terms of p and T , since the equation of state is quadratic in V .

To find ∂S
∂T

∣∣
V

, you might already know that the heat capacity at constant volume is given
by

CV = T
∂S

∂T

∣∣∣∣
V

=
∂E

∂T

∣∣∣∣
V

(41)

Therefore,
∂S

∂T

∣∣∣∣
V

=
1

T

∂E

∂T

∣∣∣∣
V

(42)

(If this isn’t convincing, you can rigorously derive this using the same chain of reasoning that
led to (29).)

To find ∂S
∂V

∣∣
T

, we need to use a Maxwell relation. The Maxwell relations come from the
second derivatives of the energy functionals. In this case, we want to use the energy functional
that is written in terms of T and V , which is the free energy F given by (4):

dF = −S dT − p dV (43)

We can take the second derivative of F in one of two ways:

∂2F

∂T∂V
=

∂

∂T

∣∣∣∣
V

[
∂F

∂V

∣∣∣∣
T

]
= − ∂p

∂T

∣∣∣∣
V

(44)

∂2F

∂V ∂T
=

∂

∂V

∣∣∣∣
T

[
∂F

∂T

∣∣∣∣
V

]
= − ∂S

∂V

∣∣∣∣
T

(45)

The second derivative of F doesn’t depend on which order the derivatives are taken. Therefore,
we can set (44) equal to (45):

∂S

∂V

∣∣∣∣
T

=
∂p

∂T

∣∣∣∣
V

(46)

To find ∂V
∂T

∣∣
p
, we can use a standard stat mech trick for finding the chain rule for partial

derivatives (sometimes called a “cyclic relation”). Writing p in terms of T and V , we have

dp =
∂p

∂T

∣∣∣∣
V

dT +
∂p

∂V

∣∣∣∣
T

dV (47)

If p is constant, dp = 0 and we can solve for ∂V
∂T :

0 =
∂p

∂T

∣∣∣∣
V

dT +
∂p

∂V

∣∣∣∣
T

dV if p is constant

∂p

∂V

∣∣∣∣
T

dV = − ∂p
∂T

∣∣∣∣
V

dT if p is constant

=⇒ ∂V

∂T

∣∣∣∣
p

= −
∂p/∂T

∣∣
V

∂p/∂V
∣∣
T

(48)

Plugging (42), (46), and (48) into (40), we get

∂S

∂T

∣∣∣∣
p

=
1

T

∂E

∂T

∣∣∣∣
V

−
(
∂p/∂T

∣∣
V

)2
∂p/∂V

∣∣
T

(49)
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Therefore,

Cp = T
∂S

∂T

∣∣∣∣
p

Cp =
∂E

∂T

∣∣∣∣
V

− T
(
∂p/∂T

∣∣
V

)2
∂p/∂V

∣∣
T

(50)

We now have two equivalent general formulas for the heat capacity at constant pressure

Cp =
∂E

∂T

∣∣∣∣
V

−
(
∂E

∂V

∣∣∣∣
T

+ p

)
∂p/∂T

∣∣
V

∂p/∂V
∣∣
T

(51)

Cp =
∂E

∂T

∣∣∣∣
V

− T
(
∂p/∂T

∣∣
V

)2
∂p/∂V

∣∣
T

(52)

We also have a closed-form expression for E terms of T and V , given by the problem (note that
we are using the corrected expression for E):

E =
3

2
NmRT −

aN2
m

V

From the equation of state, we also have a closed-form expression for p in terms of T and V
(1):

p =
NmRT

V
− aN2

m

V 2

From these two closed-form expressions, we can write all the partial derivatives we need:

∂E

∂T

∣∣∣∣
V

=
3

2
NmR (53)

∂E

∂V

∣∣∣∣
T

=
aN2

m

V 2
(54)

∂p

∂T

∣∣∣∣
V

=
NmR

V
(55)

∂p

∂V

∣∣∣∣
T

= −NmRT
V 2

+
2aN2

m

V 3
(56)

Using (51), we get

Cp =
∂E

∂T

∣∣∣∣
V

−
(
∂E

∂V

∣∣∣∣
T

+ p

)
∂p/∂T

∣∣
V

∂p/∂V
∣∣
T

=
3

2
NmR−

(
aN2

m

V 2
+
NmRT

V
− aN2

m

V 2

) NmR
V

−NmRT
V 2 +

2aN2
m

V 3

=
3

2
NmR−

NmRT

V

NmR
V

−NmRT
V 2 +

2aN2
m

V 3

=
3

2
NmR−

NmRT

V

NmR
V

−NmRTV+2aN2
m

V 3

=
3

2
NmR−

NmR
2TV

−RTV + 2aNm

= NmR

[
3

2
+

RTV

RTV − 2aNm

]
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Cp = NmR

[
3

2
+

1

1− 2aNm

RTV

]
(57)

Alternatively, using equivalent equation (52), we get

Cp =
∂E

∂T

∣∣∣∣
V

− T
(
∂p/∂T

∣∣
V

)2
∂p/∂V

∣∣
T

=
3

2
NmR− T

(
NmR
V

)2
−NmRT

V 2 +
2aN2

m

V 3

=
3

2
NmR− T

(
NmR
V

)2
−NmRTV+2aN2

m

V 3

=
3

2
NmR−

NmR
2TV

−RTV + 2aNm

= NmR

[
3

2
+

RTV

RTV − 2aNm

]

Cp = NmR

[
3

2
+

1

1− 2aNm

RTV

]
(58)

The problem asks for the specific heat cp in terms of T and ν = V/Nm. It won’t be possible to
write this answer in terms of these quantities alone, since there is a prefactor of Nm standing
alone. For that reason, we should interpret the specific heat as the heat capacity per mole,
which allows us to divide by the number of moles to get

cp =
Cp
Nm

= R

[
3

2
+

1

1− 2aNm

RTV

]
(59)

Using the relation ν = V
Nm

, we get our final answer

cp = R

[
3

2
+

1

1− 2a
RTν

]
(60)

The model used in this problem is a simplified version of the Van der Waals gas, in which the volume
occupied by a mole of gas particles b is set equal to zero.

25 Last revised August 31, 2022


