
UCLA Physics Fall 2010 Comprehensive Exam

13. (Electromagnetism)

An isolated conducting sphere of radius a is placed inside a thin conducting spherical shell of radius b.
The centers of the two spheres are not coincident, but are instead displaced from each other by a small
distance δ, with δ � a, b. The total charge of the inner sphere is q, and the outer sphere is grounded.
Find the distribution of surface charge σ on the inner sphere and the force F acting on it, to first order
in δ.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

Here is a diagram of the setup.

These two spheres are conducting, so the surface charge on each sphere redistributes itself so that
the sphere is an equipotential. Let V be the electric potential of the inner sphere. The outer sphere
is grounded, so its electric potential is zero.

In order to find the surface charge distribution on the inner sphere, we need to find the electric
field between the spheres first. The discontinuity in the electric field at the inner sphere will tell us
about the surface charge density on the inner sphere, since by Gauss’s law,

E2,⊥ − E1,⊥ =
σ

ε0
at the interface between 1 and 2 (42)

To find the electric field between the spheres, use potential theory. Assuming that the volume charge
density between the spheres is zero, Laplace’s equation is satisfied between the spheres:

∇2V (r) = 0 for a < r < b (43)

We also know the boundary conditions: V (r) = V on the inner sphere and V (r) = 0 on the outer
sphere. Describing the inner sphere mathematically is straightforward: If the origin is placed at the
center of the inner sphere, then the surface of the inner sphere is described by r = a. However,
since the spheres are misaligned, we must do a calculation to describe the surface of the outer sphere.

Setting ẑ to point from the center of the inner sphere to the center of the outer sphere, we have that
the center of the outer sphere is located at δ ẑ. Therefore, if the vector r describes a point P on the
surface of the outer sphere, the vector from the center of the outer sphere to the point P is given
by r− δ ẑ. Point P is on the surface of the outer sphere if and only if the distance from the center
of the outer sphere to point P is equal to b. In other words, r describes a point P on the surface of
the outer sphere if and only if

b = |r− δ ẑ| (44)
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Using some vector algebra, we can derive a relation between b and r. Assuming r lies on the surface
of the outer sphere,

b2 = |r− δ ẑ|2

= (r− δ ẑ) · (r− δ ẑ)

= r2 − 2δ r · ẑ + δ2

b2 = r2 − 2δ r cos θ + δ2 since r · ẑ = r cos θ (45)

We want to find an equation of the form r = f(θ) that describes the surface of the outer sphere. To
find this equation, use the quadratic formula and expand to first order in δ:

0 = r2 − 2δ r cos θ + δ2 + (δ2 − b2)

=⇒ r =
1

2

(
2δ cos θ ±

√
(2δ cos θ)2 − 4(δ2 − b2)

)
= δ cos θ ±

√
δ2 cos2 θ − δ2 + b2

= δ cos θ ±
√
b2 − δ2 sin2 θ using the Pythagorean identity sin2 x+ cos2 x = 1

= δ cos θ ±
(
b− 1

2

δ2

b
sin2 θ

)
expanding the square root using

√
1 + x = 1− 1

2
x+ . . .

r = ±b+ δ cos θ +O(δ2) (46)

We should choose the positive answer since b � δ and we want to have r > 0. Therefore, the
condition for the surface of the outer sphere is

r = b+ δ cos θ +O(δ2) (47)

Thus, we have a full mathematical setup for a boundary value problem for the electric potential
V (r):

∇2V (r) = 0 for a < r < b (Laplace’s equation)

V (r) = V for r = a (boundary condition on inner sphere)

V (r) = 0 for r = b+ δ cos θ +O(δ2) (boundary condition on outer sphere) (48)

To solve this problem, use the general solution to Laplace’s equation in spherical coordinates with
azimuthal symmetry:

V (r) =

∞∑
`=0

(
A` r

` +
B`
r`+1

)
P`(cos θ) (49)

To simplify the algebra, note that

In potential theory problems, only the multipole moments in the setup will be present in the
solution.

In this setup, the only multipole moments that are present are ` = 0 (the spherically symmetric
moment) and ` = 1 (the moment that goes like cos θ, which comes from the expression for the
surface of the outer sphere (47)). For that reason, we will take only the ` = 0 and ` = 1 terms of
this general setup as our ansatz:

V (r) =

(
A0 +

B0

r

)
+

(
A1r +

B1

r2

)
cos θ to order δ (50)

By the uniqueness theorem, if we can find a solution for V (r) that satisfies the boundary condition
using this ansatz, that solution will be the only possible solution for the electric potential between
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the spheres.

To work to first order in δ consistently, we should try to figure out what order the A’s and B’s
are in terms of δ. If δ = 0, then the spheres are completely concentric, so the setup is spherically
symmetric. This means that only the zeroeth multipole moment is present, so if δ = 0, A0 and B0

are the only nonzero coefficients. We can use this information to write the order of A0, B0, A1, and
B1:

A0 and B0 are of order O(1) since they are nonzero even when δ = 0

A1 and B1 are of order at least O(δ) since they are zero when δ = 0 (51)

We can now impose the boundary condition on the inner sphere, V (r) = V for r = a. Since
V is constant and the Legendre polynomials are orthogonal, the only nonzero contribution to the
electric potential at r = a comes from the zeroeth Legendre polynomial, which is the constant one:
P0(cos θ) = 1. This implies that

V = A0 +
B0

a
(52)

0 = A1 a+
B1

a2
(53)

This gets us a relation between A` and B` for each value of `. To get a second relation, we need to
impose the boundary condition on the inner sphere, V (r) = 0 for r = b+ δ cos θ +O(δ2):

0 = V (r)
∣∣
r=b+δ cos θ+O(δ2)

0 =

(
A0 +

B0

b+ δ cos θ +O(δ2)

)
+

(
A1

(
b+ δ cos θ +O(δ2)

)
+

B1

(b+ δ cos θ +O(δ2))
2

)
cos θ (54)

Expanding each term to first order in δ, using the Taylor expansion (1 + x)n = 1 + nx+O(x2), we
get

B0

b+ δ cos θ +O(δ2)
=
B0

b

(
1

1 + δ
b cos θ +O(δ2)

)

=
B0

b

(
1− δ

b
cos θ +O(δ2)

)
since B0 is of order O(1) (55)

A1

(
b+ δ cos θ +O(δ2)

)
= A1b+O(δ2) since A1 is of order O(δ) (56)

B1

(b+ δ cos θ +O(δ2))
2 =

B1

b2 + 2bδ cos θ +O(δ2)

=
B1

b2
since B1 is of order O(δ) (57)

Plugging back into (54), we get

0 =

(
A0 +

B0

b

(
1− δ

b
cos θ

))
+

(
A1b+

B1

b2

)
cos θ +O(δ2)

0 =

(
A0 +

B0

b

)
+

(
−B0

δ

b2
+A1b+

B1

b2

)
cos θ +O(δ2) (58)

This is true for all θ, so the constant term and the θ-dependent term must both identically vanish.
This gives us

A0 +
B0

b
= 0 (59)

−B0
δ

b2
+A1b+

B1

b2
= 0 (60)
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Equations (52), (53), (59), and (60) are four linear equations for the four unknowns A0, B0, A1, and
B1:

V = A0 +
B0

a
A0 +

B0

b
= 0

0 = A1 a+
B1

a2
−B0

δ

b2
+A1b+

B1

b2
= 0

The top two equations can be used to solve for A0 and B0:

V = A0 +
B0

a
(61)

= −B0

b
+
B0

a
since A0 +

B0

b
= 0

V = B0

(
1

a
− 1

b

)
=⇒ B0 =

V
1
a −

1
b

= V
ab

b− a
(62)

A0 = −B0

b
since A0 +

B0

b
= 0

= −1

b

(
V

ab

b− a

)
by (62)

A0 = −V a

b− a
(63)

Before moving on to A1 and B1, note that the A0 and B0 terms in the electric potential give a
complete expression for V (r) to zeroeth order in δ:

V (r) = A0 +
B0

r
+O(δ)

= −V a

b− a
+ V

ab

b− a
1

r
+O(δ)

V (r) = −V a

b− a

(
1− b

r

)
+O(δ) (64)

You can check that this satisfies the order O(1) version of the boundary conditions: V (r) = V for
r = a and V (r) = 0 for r = b +O(δ). In other words, it is the solution to this setup if the spheres
were concentric (δ = 0).

We are now ready to use the bottom two equations to solve for A1 and B1:

0 = A1a+
B1

a2

=⇒ A1 = −B1

a3
(65)

0 = −B0
δ

b2
+A1b+

B1

b2

0 = −
(
V

ab

b− a

)
δ

b2
+

(
−B1

a3

)
b+

B1

b2
plugging in (62) and (65)

0 = −V a

b− a
δ

b
+

B1

a3b2
(
a3 − b3

)
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B1
b3 − a3

a3b2
= −V a

b− a
δ

b

=⇒ B1 = −V a

b− a
δ

b

a3b2

b3 − a3

B1 = −δ V a4b

(b− a)(b3 − a3)
(66)

A1 = −B1

a3
by (65)

= − 1

a3

(
−δ V a4b

(b− a)(b3 − a3)

)
A1 = δ V

ab

(b− a)(b3 − a3)
(67)

Plugging this into (50), we get that the term in V (r) at first order in δ is(
A1r +

B1

r2

)
cos θ =

(
δ V

ab

(b− a)(b3 − a3)
r − δ V a4b

(b− a)(b3 − a3)

1

r2

)
cos θ

= δ V
ab

(b− a)(b3 − a3)

(
r − a3

r2

)
cos θ (68)

Combining (64) and (68), we get our final answer for V (r) to first order in δ:

V (r) = −V a

b− a︸ ︷︷ ︸
A0

(
1− b

r

)
+ δ V

ab

(b− a)(b3 − a3)︸ ︷︷ ︸
A1

(
r − a3

r2

)
cos θ +O(δ2) for a < r < b (69)

Now, we must find the electric field between the spheres. Actually, we only need the radial component
of the electric field, since only the discontinuity of the electric field perpendicular to the inner sphere
is related to the surface charge density on the inner sphere. Using the gradient operator in polar
coordinates

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
(70)

and the equation E = −∇V (r), we get

Er = −∂V
∂r

= − ∂

∂r

(
A0

(
1− b

r

)
+A1

(
r − a3

r2

)
cos θ +O(δ2)

)
by (69)

= −
(
A0

b

r2
+A1

(
1 + 2

a3

r3

)
cos θ +O(δ2)

)
Er = −A0

b

r2
−A1

(
1 + 2

a3

r3

)
cos θ +O(δ2) for a < r < b (71)

Taking the limit of this expression as we approach the inner sphere, r → a+, we get

Er|r→a+ = −A0
b

a2
−A1

(
1 + 2

a3

a3

)
cos θ +O(δ2)

Er|r→a+ = −A0
b

a2
− 3A1 cos θ +O(δ2) (72)
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Inside the inner sphere, V (r) = V everywhere (by the uniqueness theorem), so E = 0 inside the
inner sphere. Therefore, the surface charge density on the inner sphere is given by the equation

σ

ε0
= Er|r→a+ − Er|r→a−

σ

ε0
= Er|r→a+ since E = 0 inside the sphere

σ(θ) = ε0Er|r→a+ (73)

Plugging in the value for the radial electric field just outside the inner sphere (72), we get

σ(θ) = ε0

(
−A0

b

a2
− 3A1 cos θ +O(δ2)

)
= ε0

[
−
(
−V a

b− a

)
b

a2
− 3

(
δ V

ab

(b− a)(b3 − a3)
cos θ +O(δ2)

)]
plugging in values from (69)

σ(θ) = ε0V
ab

b− a

(
1

a2
− 3δ

1

b3 − a3
cos θ +O(δ2)

)
(74)

The problem wants σ to be given in terms of the total charge of the inner sphere q. To get this
charge, just integrate σ(θ) over the surface of the inner sphere:

q =

∫
σ(θ)dA

= ε0V
ab

b− a

(∫
1

a2
dA−

∫
3δ

1

b3 − a3
cos θ dA+O(δ2)

)
= ε0V

ab

b− a

(
(4πa2)

1

a2
− 3δ

1

b3 − a3

∫ cos θ=+1

cos θ=−1
d(cos θ)2πa2 cos θ +O(δ2)

)
In the last step, we used the fact that the surface area of the inner sphere is 4πa2, and that for
the inner sphere, dA = a2dΩ = 2πa2d(cos θ) if the integrand does not depend on ϕ. Since the only
remaining integral is odd in its integration variable (cos θ), it vanishes, and we get

q = ε0V
ab

b− a

(
(4πa2)

1

a2

)
+O(δ2)

= 4πε0V
ab

b− a
+O(δ2)

Therefore, we have a relation between q and V :

V =
q

4πε0

b− a
ab

+O(δ2) (75)

(Note that this is the same relation as would exist if the spheres were concentric: q = CV for the
capacitance of two spheres C = 4πεab

b−a .) Plugging this back into (74), we get

σ(θ) = ε0

(
q

4πε0

b− a
ab

)
ab

b− a

(
1

a2
− 3δ

1

b3 − a3
cos θ +O(δ2)

)

σ(θ) =
q

4π

(
1

a2
− 3δ

1

b3 − a3
cos θ +O(δ2)

)
(76)

Now, we need to find the force on the inner sphere. The force density on a patch of surface with
charge dq is given by averaging the electric fields on both sides of the surface, E1 and E2, and
multiplying by the charge dq:

dF = dq
E1 + E2

2
= σ dA

E1 + E2

2
(77)
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In this case, the electric field inside the inner sphere is zero, as previously mentioned. The tangential
component of the electric field is always continuous across a surface (assuming a static situation),
so the electric field just outside the inner sphere is solely in the radial direction:

E|r→a− = 0 and E|r→a+ = r̂Er|r→a+

E|r→a+ = r̂
σ(θ)

ε0
by (73) (78)

Therefore, the force on a small portion of the inner sphere is

dF = σ(θ) dA
E|r→a− + Er→a+

2

= r̂ dA
(σ(θ))2

2ε0

= r̂ dA
1

2ε0

[
q

4π

(
1

a2
− 3δ

1

b3 − a3
cos θ +O(δ2)

)]2
plugging in (76)

= r̂ dA
1

2ε0

q2

(4π)2

[
1

a4
− 6δ

1

a2(b3 − a3)
cos θ +O(δ2)

]
dF = r̂ dA

q2

32π2ε0a2

[
1

a2
− 6δ

1

b3 − a3
cos θ +O(δ2)

]
(79)

This force consists of two term: a constant term and a θ-dependent term. The integral of the radial
unit vector r̂ over a sphere is zero, so the constant term vanishes upon integration:

F =

∫
r̂ dA

q2

32π2ε0a2

[
−6δ

1

b3 − a3
cos θ +O(δ2)

]
ignoring the constant term

= − 3q2

16π2ε0a2
δ

(b3 − a3)

∫
r̂ dA cos θ +O(δ2)

= − 3q2

16π2ε0a2
δ

(b3 − a3)

∫ 2π

0

dϕ

∫ cos θ=+1

cos θ=−1
d(cos θ)a2r̂ cos θ +O(δ2)

F = − 3q2

16π2ε0

δ

(b3 − a3)

∫ 2π

0

dϕ

∫ cos θ=+1

cos θ=−1
d(cos θ)r̂ cos θ +O(δ2) (80)

In the last two lines, we used the area element dA = a2d(cos θ)dϕ. We can now split the unit vector
r̂ up into ẑ and another component, which we will call ŝ:

r̂ = (x̂ cosϕ+ ŷ sinϕ)︸ ︷︷ ︸
ŝ

sin θ + ẑ cos θ (81)

Thus,∫ 2π

0

dϕ

∫ +1

−1
d(cos θ)r̂ cos θ =

∫ 2π

0

dϕ

∫ +1

−1
d(cos θ)̂s sin θ cos θ +

∫ 2π

0

dϕ

∫ +1

−1
d(cos θ)ẑ cos2 θ (82)

Since ŝ = x̂ cosϕ + ŷ sinϕ, the first integral vanishes once we take the integral over ϕ. All that
remains is the second integral:∫ 2π

0

dϕ

∫ +1

−1
d(cos θ)r̂ cos θ = ẑ

∫ 2π

0

dϕ

∫ +1

−1
d(cos θ) cos2 θ

= 2πẑ

[
cos3 θ

3

]cos θ=+1

cos θ=−1

=
4π

3
ẑ (83)
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Plugging this back into (80), we get an expression for the force on the inner sphere

F = − 3q2

16π2ε0

δ

b3 − a3

(
4π

3
ẑ

)
+O(δ2)

or

F = −ẑ q2

4πε0

δ

b3 − a3
+O(δ2) (84)

To this order in δ, the force tends to push the inner capacitor further off-center.
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