
UCLA Physics OPEN-BOOK, OPEN-NOTE Fall 2021 Comprehensive Exam

10. (Electromagnetism)

Consider an electromagnet with an iron core. Each segment of iron has length L, constant cross-sectional
area A and permeability µ≫ µ0 where µ0 is the permeability of free space. The two halves of the magnet
are separated by a small distance x≪ L. The magnet is powered by a coil of N turns carrying a constant
current I.

(a) Determine the magnetic fields in the iron when x = 0 (the gap is closed).
Hint: since µ≫ µ0, the magnetic field lines follow the shape of the iron (no magnetic flux leakage),
and you can assume that the magnetic field strength is constant inside the iron core.

(b) Determine the fields H and B in the gap when x is non-zero, but very small, so that you can still
assume that the magnetic field vanishes outside of the iron core and the small gap region.

(c) Determine the total magnetic field energy as a function of x≪ L.

(d) Calculate the force (magnitude and direction) between the two halves for vanishing small gap x.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

This problem is a magnetostatics problem: You are given a steady current, and you need to solve
for the magnetic field. Since we are given practically no information about the steady current or the
geometry of the setup, the Biot-Savart law, finding the vector potential, and scalar potential theory
won’t work. That leaves Ampere’s law as the only viable strategy for the problem.

In order to use Ampere’s law, the setup must have quite a lot of symmetry. With this unusual
geometry, you might think there isn’t enough. However, the problem tells us that there is enough
symmetry, under the guise of providing hints and assumptions:

• In part (a), we are told that “the magnetic field strength is constant inside the iron core.”
Even though we are not explicitly told to use this assumption in part (b), we should do so
because the problem is unsolvable otherwise.

• For part (b), we are told that the gap is of very small width x ≪ L. Therefore, we can
approximate the magnetic field strength in the gap by a constant value.

• In both parts (a) and (b), we are told that “the magnetic field lines follow the shape of the
iron (no magnetic flux leakage)” and “the magnetic field vanishes outside of the iron core and
the small gap region.” This means that the magnetic field line at the edge of the electromagnet
must be parallel to the edge (otherwise magnetic flux would “leak” out of the electromagnet).
Since magnetic field lines never cross, all the magnetic field lines must therefore be parallel to
the edge of the electromagnet. Similar logic applies even when the small gap is present in part
(b).

As usual, we choose an Amperian loop that follows a magnetic field line of constant magnetic field
strength. Here, that means a loop that parallels the edge of the electromagnet. We won’t worry too
much about the orientation of the Amperian loop, since we are only interested in the magnitude
of the magnetic fields (and the problem doesn’t tell us about the direction of the external current
anyway).

Since we are dealing with magnetic materials, we should use the version of Ampere’s law relat-
ing the H field to the free current Jf :

∇×H = Jf ⇐⇒
∫
loop

H · dℓ = If,encl where B = µH (270)

(a) Here is the setup for this part of the problem:
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Each half of the electromagnet is of length L, so the circulation of H about this loop is∫
loop

H · dℓ = H(2L) (271)

The free current enclosed by the loop is provided by the coil. Each turn of wire has current I,
and there are N turns, so

If,encl = NI (272)

Setting (271) and (272) equal to one another by the integral version of Ampere’s law, we can
solve for H inside the electromagnet:

H(2L) = NI

H =
NI

2L
(273)

The magnetic field inside the electromagnetic B is defined by B = µH, so we have our answer:

H =
NI

2L
and B =

µNI

2L
(274)

(b) Here is the setup for this part of the problem:

Note that for this part of the problem, we expect both B and H to be different in the electro-
magnet and in the gap. We will use B andH to describe the magnetic field in the electromagnet,
and we will use Bgap and Hgap to describe the magnetic field in the gap.

Each half of the electromagnet is of length 2L, and the Amperian loop crosses the width-x
gap twice, so the circulation of H about this loop is∫

loop

H · dℓ = H(2L) +Hgap(2x) (275)

The free current enclosed by the loop is provided by the coil. Each turn of wire has current I,
and there are N turns, so

If,encl = NI (276)

Setting (275) and (276) equal to one another by the integral version of Ampere’s law, we can
get an expression relating H to Hgap:

H(2L) +Hgap(2x) = NI (277)
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We now need another condition that relates H to Hgap. This is the boundary condition for the
perpendicular component of the magnetic field at an interface:

B1,⊥ = B2,⊥ at the interface between media 1 and 2 (278)

(This relation comes from the no-magnetic-monopoles rule ∇ · B = 0, as applied to a small
“Guassian pillbox” at the interface.) Since B = µH, this becomes a condition on the perpen-
dicular component of H at the interface:

µ1H1,⊥ = µ2H2,⊥ at the interface between media 1 and 2 (279)

Here, the gap has magnetic permeability µ0 and the electromagnet has magnetic permeability µ.
The magnetic field lines are parallel to the edge of the electromagnet, so they are perpendicular
to the interface between the electromagnet and the gap. (279) tells us that

µH = µ0Hgap (280)

To solve for Hgap, combine (277) with (280):

H(2L) +Hgap(2x) = NI by (277)(
µ0

µ
Hgap

)
(2L) +Hgap(2x) = NI using (280)

Hgap

[
µ0

µ
(2L) + (2x)

]
= NI

Hgap =
NI

µ0

µ (2L) + (2x)

Since Bgap = µ0Hgap,

Hgap =
µNI

2 (µ0L+ µx)
and Bgap =

µ0µNI

2 (µ0L+ µx)
(281)

Note that when x = 0, this reduces to the part (a) answer (274). Technically speaking, these
expressions cannot be further simplified: We have both µ≫ µ0 and L≫ x, but that does not
imply anything about how µ0L compares to µx.

However, if you know something about iron-core electromagnets, you might be able to de-
termine that µx ≫ µ0L. For iron, µ/µ0 ≈ 5000. Reasonable values for L/x are around
10 − 100 (e.g. L = 10 cm and x = 1 mm), so we have µ/µ0 ≫ L/x, or µx ≫ µ0L. Using this
approximation, we can get

Hgap =
NI

2x
and Bgap =

µ0NI

2x
if µx≫ µ0L (282)

(c) We will start by using the exact answer from part (b) (281). By (278), the magnetic field
strength inside the electromagnet is the same as the magnetic field strength in the gap:

B =
µ0µNI

2 (µ0L+ µx)
in the electromagnet (283)

The magnetic field energy density in a linear isotropic homogeneous magnetic material is given
by the formula

umagnetic =
B2

2µ
(284)
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Note the use of µ rather than µ0 to account for the presence of the magnetic material. There-
fore, since the magnetic field strength has the same value B (given by (283) in the entire
electromagnet and gap, we have

umagnetic =

{
B2

2µ in the electromagnet
B2

2µ0
in the gap

(285)

Since the magnetic energy density is uniform in the electromagnet, we can just multiply the
magnetic energy density in the electromagnet by the volume of the electromagnet, which is the
cross-sectional area times the total length for both halves: Velectromagnetic = 2LA. This gets us
the magnetic energy stored in the electromagnet

Umagnetic, electromagnet =
B2

2µ
(2LA) (286)

Similarly, we can multiply the magnetic energy density in the gap by the volume of the gap
Vgap = 2Ax to get the magnetic energy stored in the gap

Umagnetic, gap =
B2

2µ0
(2xA) (287)

Adding together the two contributions to the total mangnetic energy, we get

Umagnetic = Umagnetic, electromagnet + Umagnetic, gap

=
B2

2µ
(2LA) +

B2

2µ0
(2xA)

= B2A

(
L

µ
+

x

µ0

)
=

(
µ0µNI

2 (µ0L+ µx)

)2

A

(
L

µ
+

x

µ0

)
=
µ2
0µ

2 (NI)2A

4 (µ0L+ µx)
2

(
L

µ
+

x

µ0

)
=

µ0µ (NI)
2A

4 (µ0L+ µx)
2 (µ0L+ µx)

Umagnetic =
µ0µ (NI)

2A

4(µ0L+ µx)
(288)

If we additionally make the approximation µx ≫ µ0L, discussed at the end of part (b), this
answer simplifies to

Umagnetic =
µ0(NI)

2A

4x
if µx≫ µ0L (289)

(d) Given the flow of this question, it is reasonable to expect that we should attempt to derive the
force between the two halves using the stored magnetic energy as a function of x, which we found
in part (c). This is indeed what we need to do, using the “method of virtual displacement.”
Before using this method, though, you must be warned about a common way to make sign
errors:
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Method of virtual displacement:
Consider an electromagnetic setup that depends on a one-dimensional displacement x. If
U(x) is the electromagnetic energy stored in the setup, then the (signed) force associated
with this potential energy is

F = −dU
dx

if the setup is not connected to a battery (290)

This is the formula most familiar from elementary mechanics. (As an example, for a spring
with potential energy U = 1

2kx
2, the corresponding signed force is Fspr = −dU

dx = −kx.)
It reflects the fact that if a force does positive work on a system, the system moves from
higher to lower potential energy, so the change in potential energy is negative.
However, if the setup is connected to a battery, the battery can do work on the system. It
turns out that the work that the battery does on the system is exactly enough to make the
net force on the system switch signs from (290):

F = +
dU

dx
if the setup is connected to a battery (291)

(This heuristic is helpful in practice for avoiding sign errors, but it is somewhat inaccurate.
If the parameter x never changes, then the system never “knows” whether there is a bat-
tery or not. So the force on the system as a function of x can’t directly depend on the pres-
ence or absence of a battery. A more correct statement is that if you take the derivative of
U while holding constant variables that would only be constant if a battery were connected,
then you need to use (291). Connecting a battery holds the voltage and current constant,
so if you intend to hold those variables constant, then use (291).)

In this problem, we are assuming the current in the wire I is constant, so we must be assuming
a battery is connected to the system. (If the system wasn’t connected to a battery, changing the
width of the gap x would change the circulation around the Amperian loop (275) identified in
part (b), so by Ampere’s law, the enclosed current NI would also have to change.) Therefore,
we must use (291) (with the somewhat unusual plus sign) to get the signed force

F = +
dUmagnetic

dx

=
d

dx

(
µ0µ (NI)

2A

4(µ0L+ µx)

)
by (288)

= − µ0(µNI)
2A

4 (µ0L+ µx)
2

The minus sign means that the force is in the direction of decreasing x, meaning that the force
is attractive: It tends to close the gap. We therefore have

F = − µ0(µNI)
2A

4 (µ0L+ µx)
2 (direction: attractive force between the halves) (292)

If we additionally make the approximation µx ≫ µ0L, discussed at the end of part (b), this
answer simplifies to

F = −µ0(NI)
2A

4x2
(direction: attractive force between the halves) if µx≫ µ0L

(293)
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