4. (Quantum Mechanics)

Find the differential and total cross sections of slow particles (small velocity) from a spherical delta potential $V(r)=V_{0} \delta(r-a)$. You may use partial wave analysis.

Solution:

Solution by Audrey Farrell
I'm going to briefly walk through partial wave analysis in case you need a refresher, and because I need a refresher. There's a note where you would ideally start solving this problem for the comps. For spherically symmetric potentials $V(r)$ the solutions to the Schrödinger equation are separable

$$
\psi(r, \theta, \phi)=R(r) Y_{l}^{m}(\theta, \phi)
$$

and the radial function $u(r)=r R(r)$ is the solution the the differential equation

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+V(r)+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u(r)=E u(r)
$$

The third term in this equation is the centrifugal contribution.
Partial wave analysis splits the problem into three regions: the radiation region ($k r \gg 1$), the intermediate region $(V \approx 0)$, and the scattering region. In the radiation region, both the potential and the centrifugal terms are negligible; in the intermediate region, the potential is negligible but the centrifugal term is not; in the scattering region all terms contribute significantly.
In the radiation region our radial equation simplifies to $\left(d_{r}^{2}+k^{2}\right) u(r) \approx 0$, which has the familiar solution $u(r)=A e^{i k r}+B e^{-i k r}$. The $e^{-i k r}$ term represents incoming waves rather than scattered, so we take $B=0$, and the radial equation at very large r is

$$
R(r) \sim \frac{e^{i k r}}{r} \text { in the radiation region }
$$

In the intermediate region our radial equation and general solution are

$$
\left[\frac{d^{2}}{d r^{2}}-\frac{l(l+1)}{r^{2}}+k^{2}\right] u(r) \approx 0 \rightarrow u(r)=A r j_{l}(k r)+B r n_{l}(k r)
$$

However spherical Bessel functions do not represent propagating waves, and we want to only look at outgoing waves. To represent the Bessel functions as outgoing and incoming waves, we use the spherical Hankel functions

$$
h_{l}^{(1)}(x) \equiv j_{l}(x)+i n_{l}(x), \quad h_{l}^{(2)} \equiv j_{l}(x)-i n_{l}(x)
$$

At large $\mathrm{r}, h_{l}^{(1)}(k r) \sim e^{i k r} / r$ and $h_{l}^{(2)}(k r) \sim e^{-i k r} / r$, so we only take the $h_{l}^{(1)}$ term of the solution

$$
R(r) \sim h_{l}^{(1)}(k r) \text { outside the scattering region }
$$

Now we can write the wave function outside the scattering region $(V \approx 0)$ as

$$
\psi(r, \theta, \phi)=A\left(e^{i k z}+\sum_{l, m} C_{l m} h_{l}^{(1)}(k r) Y_{l}^{m}(\theta, \phi)\right)
$$

Since we're working with a spherically symmetric potential the wave function cannot be ϕ-dependent, so only $m=0$ terms survive, and

$$
Y_{l}^{0}(\theta)=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(\cos \theta)
$$

The customary way of writing the partial wave expansion (that you should have written on your equation sheet) is

$$
\psi(r, \theta)=A\left(e^{i k z}+k \sum_{l=0}^{\infty} i^{l+1}(2 l+1) a_{l} h_{l}^{(1)}(k r) P_{l}(\cos \theta)\right)
$$

For very large $r h_{l}^{(1)}(k r) \approx(-i)^{l+1} e^{i k r} / r$, so

$$
\psi(r, \theta) \approx A\left(e^{i k z}+f(\theta) \frac{e^{i k r}}{r}\right), \quad \text { for } r \rightarrow \infty
$$

where $f(\theta)$ is the scattering amplitude

$$
f(\theta)=\sum_{l=0}^{\infty}(2 l+1) a_{l} P_{l}(\cos \theta)
$$

which is what we actually want to find in this problem since

$$
D(\theta)=\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}=\sum_{l, l^{\prime}}(2 l+1)\left(2 l^{\prime}+1\right) a_{l}^{*} a_{l^{\prime}} P_{l}(\cos \theta) P_{l^{\prime}}(\cos \theta) \rightarrow \sigma=4 \pi \sum_{l=0}^{\infty}(2 l+1)\left|a_{l}\right|^{2}
$$

The last thing we need before actually starting the problem is an expression for $e^{i k z}$ (the incoming plane wave) in spherical coordinates. This is given by Rayleigh's formula

$$
e^{i k z}=\sum_{l=0}^{\infty} i^{l}(2 l+1) j_{l}(k r) P_{l}(\cos \theta)
$$

and our wave function outside the scattering region in spherical coordinates is

$$
\psi(r, \theta)=A \sum_{l=0}^{\infty} i^{l}(s l+1)\left[j_{l}\left(k r+i k a_{l} h_{l}^{(1)}(k r)\right] P_{l}(\cos \theta)\right.
$$

This is where you would ideally start solving this problem on the actual exam assuming you have the partial wave expansion written down on a reference sheet or memorized. I've boxed the key equations above needed to solve this problem.

The problem simmers down to determining the partial wave amplitudes a_{l}. To do so we need to solve the Schrödinger equation in the scattering region $(V(r) \neq 0)$ and match boundary conditions with the exterior solution.
Slow particles is your hint to take only the $l=0$ term of the partial wave expansion right off the bat. Slow particles suggests low-energy scattering, and so $k a \ll 1$ where $k=\sqrt{2 m E} / \hbar$. In this limit only the $l=0$ term is significant.
For $r<a$ we have $V=0$ as well, so we can again take the general solution to the Schrödinger equation when $V=0$

$$
\psi(r, \theta, \phi)=\sum_{l, m}\left[A_{l m} j_{l}(k r)+B_{l m} n_{l}(k r)\right] Y_{l}^{m}(\theta, \phi), \quad l=0 \rightarrow \psi_{i n t}(r) \approx B j_{0}(k r)=B \frac{\sin (k r)}{k r}
$$

where we do not include the $n_{0}(k r)$ term in the wave function because it blows up at $r=0$. This is the interior solution that we need to boundary match with our partial wave expansion (exterior solution) at $r=a$.
Keeping only

$$
\begin{aligned}
\psi_{e x t}(r) \approx A\left[j_{0}(k r)+i k a_{0} h_{0}^{(1)}(k r)\right] P_{0}(\cos \theta) & =A\left[\frac{\sin (k r)}{k r}+i k a_{0}\left(-i \frac{e^{i k r}}{k r}\right)\right] \\
& =A\left[\frac{\sin (k r)}{k r}+a_{0} \frac{e^{i k r}}{r}\right]
\end{aligned}
$$

There are two boundary conditions on ψ : 1) ψ is continuous at $r=a$ and 2) $\psi^{\prime}(r)=\frac{\partial \psi}{\partial r}$ is discontinuous at $r=a$. The first is straightforward:

$$
\begin{equation*}
A\left[\frac{\sin (k a)}{k a}+a_{0} \frac{e^{i k a}}{a}\right]=B \frac{\sin (k a)}{k a} \tag{7}
\end{equation*}
$$

The discontinuity in ψ^{\prime} is found by integrating over the radial equation for $u(r)$ with $l=0$:

$$
-\frac{\hbar^{2}}{2 m} \int d r \frac{d^{2} u}{d r^{2}}+\int d r \alpha \delta(r-a) u(r) \rightarrow-\frac{\hbar^{2}}{2 m} \Delta u^{\prime}+\alpha u(a)=0 \rightarrow \Delta u^{\prime}=\frac{2 m \alpha}{\hbar^{2}} u(a)
$$

Since $u(r)=r R(r), u^{\prime}(r)=R(r)+r R^{\prime}(r) \rightarrow \Delta u^{\prime}=\Delta R(a)+a \Delta R^{\prime}(a)=\frac{2 m \alpha}{\hbar^{2}} a R(a)$. It makes our lives easier to define the dimensionless constant

$$
\beta \equiv \frac{2 m a \alpha}{\hbar^{2}} \rightarrow \Delta \psi^{\prime}=\frac{2 m \alpha}{\hbar^{2}} \psi(a)=\frac{\beta}{a} \psi(a)
$$

Now we can evaluate the boundary condition at $r=a$:

$$
\begin{equation*}
\left.\frac{d \psi_{e x t}}{d r}\right|_{r=a}-\left.\frac{d \psi_{i n t}}{d r}\right|_{r=a}=\Delta \psi^{\prime}=\frac{\beta}{a} \psi(a) \tag{8}
\end{equation*}
$$

Taking the lefthand side of equation (8):

$$
\begin{aligned}
\text { LHS } & =\left(\frac{A}{k a}\left[k \cos (k a)+i k^{2} a_{0} e^{i k a}\right]-\frac{A}{k a^{2}}\left[k \sin (k a)+k a_{0} e^{i k a}\right]\right)-\left(\frac{B}{a} \cos (k a)-\frac{B}{k a^{2}} \sin (k a)\right) \\
& =\frac{A}{k a}\left[k \cos (k a)+i k^{2} a_{0} e^{i k a}\right]-\frac{B}{a} \cos (k a)-\frac{1}{a}\left(\frac{A}{k a}\left[k \sin (k a)+k a_{0} e^{i k a}\right]-\frac{B}{k a} \sin (k a)\right)
\end{aligned}
$$

The term in parentheses is zero by equation (7), so equation (2) becomes

$$
A\left[\cos (k a)+i k a_{0} e^{i k a}\right]=B\left[\cos (k a)+\frac{\beta}{k a} \sin (k a)\right]
$$

Using (7) to write B in terms of A gives

$$
\begin{gathered}
A\left[\cos (k a)+i k a_{0} e^{i k a}\right]=A\left[\cot (k a)+\frac{\beta}{k a}\right]\left[\sin (k a)+k a_{0} e^{i k a}\right] \\
i k a_{0} e^{i k a}=\frac{\beta}{k a} \sin (k a)+k a_{0} \cot (k a) e^{i k a}+\frac{\beta}{a} a_{0} e^{i k a} \\
i k a_{0} e^{i k a}\left[1+i \cot (k a)+i \frac{\beta}{k a}\right]=\frac{\beta}{k a} \sin (k a) \approx \frac{\beta}{k a} k a=\beta
\end{gathered}
$$

Here we have taken advantage of the fact that $k a \ll 1$, so $\sin (k a) \approx k a$. We can also use this approximation for the left-hand side, taking $\cot (k a)=\frac{\cos (k a)}{\sin (k a)} \approx \frac{1}{k a}$ and $e^{i k a} \approx(1+i k a)$

$$
i k a_{0}(1+i k a)\left[1+\frac{i}{k a}(1+\beta)\right]=i k a_{0}\left[1+\frac{i}{k a}(1+\beta)-(1+\beta)\right]=\beta
$$

Because $k a \ll 1$, the second term dominates and we can solve for the partial scattering amplitude

$$
i k a_{0}\left[1+\frac{i}{k a}(1+\beta)-(1+\beta)\right] \approx-\frac{a_{0}}{a}(1+\beta)=\beta \rightarrow a_{0} \approx-\frac{a \beta}{1+\beta}
$$

In the limit where $l=0$ dominates, the scattering amplitude $f(\theta) \approx a_{0}$ and $\sigma=4 \pi D(\theta)$, and so

$$
D(\theta)=|f(\theta)|^{2}=\left(\frac{a \beta}{1+\beta}\right)^{2} \rightarrow \sigma=4 \pi\left(\frac{a \beta}{1+\beta}\right)^{2}, \quad \beta \equiv \frac{2 m a \alpha}{\hbar^{2}}
$$

