
UCLA Physics Fall 2019 Comprehensive Exam

4. (Quantum Mechanics)

Find the di↵erential and total cross sections of slow particles (small velocity) from a spherical delta
potential V prq “ V0�pr ´ aq. You may use partial wave analysis.
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Solution: Solution by Audrey Farrell

I’m going to briefly walk through partial wave analysis in case you need a refresher, and because I
need a refresher. There’s a note where you would ideally start solving this problem for the comps.

For spherically symmetric potentials V prq the solutions to the Schrödinger equation are separable

 pr, ✓,�q “ RprqY m

l
p✓,�q

and the radial function uprq “ rRprq is the solution the the di↵erential equation
„

´ ~2
2m

d
2

dr2
` V prq ` ~2

2m

lpl ` 1q
r2

⇢
uprq “ E uprq

The third term in this equation is the centrifugal contribution.

Partial wave analysis splits the problem into three regions: the radiation region (kr " 1), the
intermediate region (V « 0), and the scattering region. In the radiation region, both the potential
and the centrifugal terms are negligible; in the intermediate region, the potential is negligible but
the centrifugal term is not; in the scattering region all terms contribute significantly.

In the radiation region our radial equation simplifies to pd2
r

` k
2quprq « 0, which has the familiar

solution uprq “ Ae
ikr ` Be

´ikr. The e
´ikr term represents incoming waves rather than scattered,

so we take B “ 0, and the radial equation at very large r is

Rprq „ e
ikr

r
in the radiation region

In the intermediate region our radial equation and general solution are
„
d
2

dr2
´ lpl ` 1q

r2
` k

2

⇢
uprq « 0 Ñ uprq “ Ar jlpkrq ` Br nlpkrq

However spherical Bessel functions do not represent propagating waves, and we want to only look
at outgoing waves. To represent the Bessel functions as outgoing and incoming waves, we use the
spherical Hankel functions

h
p1q
l

pxq ” jlpxq ` i nlpxq, h
p2q
l

” jlpxq ´ i nlpxq

At large r, hp1q
l

pkrq „ e
ikr{r and h

p2q
l

pkrq „ e
´ikr{r, so we only take the h

p1q
l

term of the solution

Rprq „ h
p1q
l

pkrq outside the scattering region

Now we can write the wave function outside the scattering region (V « 0) as

 pr, ✓,�q “ A

˜
e
ikz `

ÿ

l,m

Clm h
p1q
l

pkrqY m

l
p✓,�q

¸

Since we’re working with a spherically symmetric potential the wave function cannot be �-dependent,
so only m “ 0 terms survive, and

Y
0
l

p✓q “
c

2l ` 1

4⇡
Plpcos ✓q

The customary way of writing the partial wave expansion (that you should have written on your

equation sheet) is

 pr, ✓q “ A

˜
e
ikz ` k

8ÿ

l“0

i
l`1p2l ` 1q al hp1q

l
pkrqPlpcos ✓q

¸
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For very large r h
p1q
l

pkrq « p´iql`1
e
ikr{r, so

 pr, ✓q « A

ˆ
e
ikz ` fp✓qe

ikr

r

˙
, for r Ñ 8

where fp✓q is the scattering amplitude

fp✓q “
8ÿ

l“0

p2l ` 1q al Plpcos ✓q

which is what we actually want to find in this problem since

Dp✓q “ d�

d⌦
“ |fp✓q|2 “

ÿ

l,l1
p2l ` 1qp2l1 ` 1q a˚

l
al1 Plpcos ✓qPl1 pcos ✓q Ñ � “ 4⇡

8ÿ

l“0

p2l ` 1q |al|2

The last thing we need before actually starting the problem is an expression for eikz (the incoming
plane wave) in spherical coordinates. This is given by Rayleigh’s formula

e
ikz “

8ÿ

l“0

i
l p2l ` 1q jlpkrqPlpcos ✓q

and our wave function outside the scattering region in spherical coordinates is

 pr, ✓q “ A

8ÿ

l“0

i
l psl ` 1q

”
jlpkr ` ik al h

p1q
l

pkrq
ı
Plpcos ✓q

This is where you would ideally start solving this problem on the actual exam assum-
ing you have the partial wave expansion written down on a reference sheet or memorized. I’ve
boxed the key equations above needed to solve this problem.

The problem simmers down to determining the partial wave amplitudes al. To do so we need to
solve the Schrödinger equation in the scattering region (V prq ‰ 0) and match boundary conditions
with the exterior solution.

Slow particles is your hint to take only the l “ 0 term of the partial wave expansion right o↵ the
bat. Slow particles suggests low-energy scattering, and so ka ! 1 where k “

?
2mE{~. In this limit

only the l “ 0 term is significant.

For r † a we have V “ 0 as well, so we can again take the general solution to the Schrödinger
equation when V “ 0

 pr, ✓,�q “
ÿ

l,m

rAlmjlpkrq ` BlmnlpkrqsY m

l
p✓,�q, l “ 0 Ñ  intprq « Bj0pkrq “ B

sinpkrq
kr

where we do not include the n0pkrq term in the wave function because it blows up at r “ 0. This
is the interior solution that we need to boundary match with our partial wave expansion (exterior
solution) at r “ a.

Keeping only

 extprq « A

”
j0pkrq ` ik a0 h

p1q
0 pkrq

ı
P0pcos ✓q “ A

„
sinpkrq

kr
` ik a0

ˆ
´i

e
ikr

kr

˙⇢

“ A

„
sinpkrq

kr
` a0

e
ikr

r

⇢
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There are two boundary conditions on  : 1)  is continuous at r “ a and 2)  1prq “ B 
Br is

discontinuous at r “ a. The first is straightforward:

A

„
sinpkaq

ka
` a0

e
ika

a

⇢
“ B

sinpkaq
ka

(7)

The discontinuity in  1 is found by integrating over the radial equation for uprq with l “ 0:

´ ~2
2m

ª
dr

d
2
u

dr2
`

ª
dr ↵ �pr ´ aquprq Ñ ´ ~2

2m
�u

1 ` ↵upaq “ 0 Ñ �u
1 “ 2m↵

~2 upaq

Since uprq “ rRprq, u1prq “ Rprq ` rR
1prq Ñ �u

1 “ �Rpaq ` a�R
1paq “ 2m↵

~2 aRpaq. It makes our
lives easier to define the dimensionless constant

� ” 2ma↵

~2 Ñ � 1 “ 2m↵

~2  paq “ �

a
 paq

Now we can evaluate the boundary condition at r “ a:

d ext

dr

ˇ̌
ˇ̌
r“a

´ d int

dr

ˇ̌
ˇ̌
r“a

“ � 1 “ �

a
 paq (8)

Taking the lefthand side of equation (8):

LHS “
ˆ

A

ka

“
k cospkaq ` ik

2
a0 e

ika
‰

´ A

ka2

“
k sinpkaq ` k a0 e

ika
‰˙

´
ˆ
B

a
cospkaq ´ B

ka2
sinpkaq

˙

“ A

ka

“
k cospkaq ` ik

2
a0 e

ika
‰

´ B

a
cospkaq ´ 1

a

ˆ
A

ka

“
k sinpkaq ` k a0 e

ika
‰

´ B

ka
sinpkaq

˙

The term in parentheses is zero by equation (7), so equation (2) becomes

A
“
cospkaq ` ik a0 e

ika
‰

“ B

„
cospkaq ` �

ka
sinpkaq

⇢

Using (7) to write B in terms of A gives

A
“
cospkaq ` ik a0 e

ika
‰

“ A

„
cotpkaq ` �

ka

⇢ “
sinpkaq ` k a0 e

ika
‰

ik a0 e
ika “ �

ka
sinpkaq ` k a0 cotpkaqeika ` �

a
a0 e

ika

ik a0 e
ika

„
1 ` i cotpkaq ` i

�

ka

⇢
“ �

ka
sinpkaq « �

ka
ka “ �

Here we have taken advantage of the fact that ka ! 1, so sinpkaq « ka. We can also use this

approximation for the left-hand side, taking cotpkaq “ cospkaq
sinpkaq « 1

ka
and e

ika « p1 ` ikaq

ik a0p1 ` ikaq
„
1 ` i

ka
p1 ` �q

⇢
“ ik a0

„
1 ` i

ka
p1 ` �q ´ p1 ` �q

⇢
“ �

Because ka ! 1, the second term dominates and we can solve for the partial scattering amplitude

ik a0

„
1 ` i

ka
p1 ` �q ´ p1 ` �q

⇢
« ´a0

a
p1 ` �q “ � Ñ a0 « ´ a�

1 ` �

In the limit where l “ 0 dominates, the scattering amplitude fp✓q « a0 and � “ 4⇡Dp✓q, and so

Dp✓q “ |fp✓q|2 “
ˆ

a�

1 ` �

˙2

Ñ � “ 4⇡

ˆ
a�

1 ` �

˙2

, � ” 2ma↵

~2
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