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11. (Statistical Mechanics)

When a certain molecule A absorbs a photon it decays into molecules B and C according to the reaction
γ +A→ B + 3C. The time reversed process is also possible. The masses of the molecules are mA, mB ,
and mC . Let Eb be the binding energy (i.e. Eb is the minimum photon energy needed to produce the
reaction).

Assume the validity of non-relativistic statistical mechanics and Maxwell-Boltzmann statistics for the
molecules. Further, ignore the internal degrees of freedom of the molecules.

(a) Now suppose some A, B, and C molecules are placed in a box, whose walls can absorb and emit
photons, and allowed to come to thermal equilibrium at temperature T . What is the density per
unit volume, nA of A molecules in terms of the densities nB,C of B and C molecules? Your answer
should involve (nB , nC , mA, mB , mC , Eb) as well as fundamental constants.

(b) Now suppose that the photon γ is replaced by another particle γ∗ which has mass m∗ (and is
relativistic), spin-1 (and so obeys Bose-Einstein statistics), and which is not emitted/absorbed by
the walls of the box. We start with some number of γ∗ particles and molecules in the box and let
the system come to thermal equilibrium at temperature T . Derive an expression for the density
nγ∗ in the box in terms of the densities of molecules nA, nB , nC . Your answer can be given in the
form of an unevaluated integral.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

This problem asks for the relative number density of two different types of particles, which places
it into a common category of comp problem:

Chemical potential matching:
When a statistical mechanics problem asks you to compare the number of noninteracting classi-
cal particles of two different types, you should set the chemical potentials of each type of parti-
cle equal to one another.
The chemical potential is the free energy needed to add a particle of a certain type, i.e, the par-
tial derivative of F with respect to N : µ = ∂F

∂N

∣∣
T,V

. For that reason, the following statements

are all equivalent for a system of noninteracting particles of types 1 and 2, where a particle of
one type can become a particle of the other type:
A. The system is in thermodynamic equilibrium.
B. The free energy of the system is minimized.
C. The change in free energy when a particle of type 1 becomes a particle of type 2 is zero.
D. The free energy needed to subtract a particle of type 1, plus the free energy needed to add a
particle of type 2, is zero.
E. The chemical potential of type 1 particles is equal to the chemical potential of type 2 parti-
cles: −µ1 + µ2 = 0, or µ1 = µ2.
To find the chemical potential of a system of noninteracting classical particles of a certain type:
1. Calculate the partition function for that type of particle. For noninteracting, indistinguish-
able classical particles, the partition function for all the particles Z can be written in terms of
the partition function for one particle Z1 using Z = ZN

1 /N !.
2. Calculate the free energy for that type of particle using F = −kT lnZ.
3. The chemical potential is the free energy needed to add a particle of a certain type, i.e, the
partial derivative of F with respect to N : µ = ∂F

∂N

∣∣
T,V

.

If there is a constant energy shift between the types of particles (i.e. each particle of type 1 has
an energy ϵ greater than a particle of type 2), then the chemical potentials of the types of parti-
cles should have the same energy shift (the chemical potential for particles of type 1 is ϵ greater
than the chemical potential for particles of type 2).
In chemical reactions, there are cases in which one particle of type 1 becomes multiple particles
of type 2. In that case, the chemical potential of each type of particle must be multiplied by the
multiplicity of the particle.

To find the partition function in the classical limit, we also need to know about the phase-space
formalism:

Phase space:
Consider a particle in d-dimensional space. The particle’s state can be defined by its position
x = (x1, . . . , xd), its momentum p = (p1, . . . , pd), and any internal degrees of freedom (e.g.
spin). Assume that there are g possible internal states for the particle.
The position and momentum of the particle constitute a point in 2d-dimensional phase space:
(x1, . . . , xd, p1, . . . , pd).
To solve problems, discretize phase space by dividing it into 2d-dimensional boxes. The volume
of each box is hd, where h is Planck’s constant (which has units of position times momentum).
The number of boxes in a phase-space volume ddp ddx is the total volume divided by the vol-

ume of each box, or ddp ddx
hd . Each box has g possible states, corresponding to the internal de-

grees of freedom of the particle. Therefore, the number of possible states in a phase-space vol-
ume ddp ddx is

Number of possible states in a phase-space volume ddp ddx = g
ddp ddx

hd
(399)
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In this problem, we need to match the chemical potential of the reactants (one photon and one A
molecule) with the chemical potential of the products (one B and three C molecules).

(a) Since the problem specifies that the walls can absorb and emit photons, the chemical potential
of the photon is zero. Therefore, the chemical potential of the reactants is solely due to the A
molecules.

We will set the zero point for energy to be a product state B + 3C with zero kinetic en-
ergy. Since the binding energy of the reaction is Eb, the product state B + 3C has energy Eb

greater than the A molecule. To account for this, we apply a negative energy shift −Eb to each
A molecule.

Using the phase-space formalism for classical noninteracting point particles, the partition func-
tion for a single A molecule is

Z1,A =

∫
d3p d3x

h3
e−βEA where β ≡ 1

kT
(400)

The energy of a single A molecule is its nonrelativistic kinetic energy, minus the energy shift:

EA =
p2

2mA
− Eb (401)

Plugging this in and carrying out the spatial integral for the partition function, we get

Z1,A =

∫
d3p d3x

h3
e
−β

(
p2

2mA
−Eb

)

= eβEb

∫
d3p d3x

h3
e−βp2/(2mA)

= eβEb
V

h3

∫
d3p e−βp2/(2mA) since

∫
d3x = V

= eβEb
V

h3

[∫ ∞

−∞
dpx e

−βp2
x/(2mA)

] [∫ ∞

−∞
dpy e

−βp2
y/(2mA)

] [∫ ∞

−∞
dpz e

−βp2
z/(2mA)

]
(402)

Each of these three integrals is the same Gaussian integral, which can be calculated by a change

of coordinates u ≡ (β/(2mA))
1/2

p = (2mAkT )
−1/2

p:∫ ∞

−∞
dp e−βp2/(2mA) = (2mAkT )

1/2

∫ ∞

−∞
du e−u2

= (2πmAkT )
1/2 using the result

∫ ∞

−∞
du e−u2

= π1/2 (403)

Plugging this back into (402), we get

Z1,A = eβEb
V

h3
(2πmAkT )

3/2

= eβEbV

(
2πmAkT

h2

)3/2

Z1,A = eβEb
V

λ3A
for λA ≡

(
h2

2πmAkT

)1/2

(404)

The quantity λA is called the thermal wavelength.
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Assuming the A molecules are indistinguishable and noninteracting classical particles, the par-
tition function for all A molecules is related to the partition function for one A molecule. For
simplicity, in this part of the solution, N refers to the number of A molecules.

ZA =
ZN
1,A

N !
=

1

N !

V N

λ3NA
for λA ≡

(
h2

2πmAkT

)1/2

(405)

To find the free energy for the A molecules, use the definition of F in terms of Z:

FA = −kT lnZA

= −kT ln

(
1

N !
eNβEb

V N

λ3NA

)
= −kT

(
ln eNβEb + lnV N − lnλ3NA − lnN !

)
using ln(AB) = lnA+ lnB

= −kT (NβEb +N lnV − 3N lnλA − lnN !) using lnxn = n lnx

= −NEb −NkT lnV + 3NkT lnλA + kT lnN ! using β =
1

kT
≈ −NEb −NkT lnV + 3NkT lnλA + kT (N lnN −N)

by Stirling’s formula lnN ! ≈ N lnN −N (406)

To get from the free energy to the chemical potential for the A molecules, take the partial
derivative of the free energy with respect to N :

µA =
∂FA

∂N

∣∣∣∣
T,V

= −Eb − kT lnV + 3kT lnλA + kT

(
lnN +N

(
1

N

)
− 1

)
= −Eb − kT lnV + 3kT lnλA + kT lnN

= −Eb + kT (− lnV + 3 lnλA + lnN)

= −Eb + kT ln

(
N

V
λ3A

)
Since N is the number of A molecules, N/V is the number density of A molecules, which we
will call nA:

µA = −Eb + kT ln
(
nAλ

3
A

)
for λA ≡

(
h2

2πmAkT

)1/2

(407)

The partition functions for the B and C particles are essentially the same as for the Amolecules,
except for the lack of an energy shift −Eb:

Z1,B =

∫
d3p d3x

h3
e−βp2/(2mB) and Z1,C =

∫
d3p d3x

h3
e−βp2/(2mC) (408)

We can therefore follow the same process as for the A molecules to get the chemical potentials
for the B and C particles:

µB = kT ln
(
nBλ

3
B

)
and µC = kT ln

(
nCλ

3
C

)
for λi ≡

(
h2

2πmikT

)1/2

(409)

Note that in the classical limit, where ni ≪ 1
λ3
i
(when the gas is very diffuse), the chemical

potential is negative. This is a general fact for a classical ideal gas.
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To complete this part of the problem, we need to match the chemical potentials. At ther-
modynamic equilibrium, the free energy of the system is minimized. Therefore, the change in
free energy when an A molecule and a photon become a B molecules and three C molecules
is zero. Since the chemical potential is the free energy to add a particle, this condition means
that

− µA + µB + 3µC = 0

=⇒ µA = µB + 3µC (410)

Note the extra factor of 3, which comes from the fact that one A molecule produces three C
molecules, instead of just one.

We now plug in the earlier expressions for the chemical potentials (407) and (409):

−Eb + kT ln
(
nAλ

3
A

)
= kT ln

(
nBλ

3
B

)
+ 3kT ln

(
nCλ

3
C

)
(411)

The last step is to solve for nA:

kT ln
(
nAλ

3
A

)
= Eb + kT ln

(
nBλ

3
B

)
+ 3kT ln

(
nCλ

3
C

)
ln
(
nAλ

3
A

)
=
Eb

kT
+ ln

(
nBλ

3
B

)
+ 3 ln

(
nCλ

3
C

)
ln
(
nAλ

3
A

)
=
Eb

kT
+ ln

[(
nBλ

3
B

) (
nCλ

3
C

)3]
using logarithm rules

nAλ
3
A = exp

(
−Eb

kT
+ ln

[(
nBλ

3
B

) (
nCλ

3
C

)3])
nAλ

3
A = eEb/(kT )

(
nBλ

3
B

) (
nCλ

3
C

)3
nA = eEb/(kT ) nBn

3
C

(
λBλ

3
C

λA

)3

(412)

Using the definition of the thermal wavelength, λi ≡
(

h2

2πmikT

)1/2
, we can simplify the last

factor:

λBλ
3
C

λA
=

(
h2

2πmBkT

)1/2 (
h2

2πmCkT

)3/2
(

h2

2πmAkT

)1/2
=

(
h2

2πkT

)3/2(
mA

mBm3
C

)1/2

(413)

Plugging this into (412), we get the final answer:

nA = eEb/(kT ) n3BnC

((
h2

2πkT

)3/2(
mA

mBm3
C

)1/2
)3

nA = eEb/(kT ) n3BnC

(
h2

2πkT

)9/2(
mA

mBm3
C

)3/2

(414)

Note the Boltzmann factor eEb/(kT ). This factor means that since the A molecules have lower
energy than the B and C molecules, the number density of the A molecules is correspondingly
greater.
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(b) As in part (a), our starting point involves matching the chemical potentials for the reactants
and products in the process

γ∗ +A −→ B + 3C (415)

Only a slight modification of our part (a) chemical-potential matching equation (410) is needed
here. In part (a), the chemical potential of the photon is zero; here, the chemical potential of
the γ∗ particle is nonzero and must be accounted for. The change in free energy when an A
molecule and a photon γ∗ become a B molecule and three C molecules is zero, meaning that

−µA − µγ∗ + µB + 3µC = 0 (416)

We can solve this equation for µγ∗ , which we don’t know. This gives us

µγ∗ = −µA + µB + 3µC (417)

Plugging in the expressions for the chemical potentials of the A, B, and C molecules, (407) and
(409), we get

µγ∗ = Eb − kT ln
(
nAλ

3
A

)
+ kT ln

(
nBλ

3
B

)
+ 3kT ln

(
nCλ

3
C

)
= Eb + kT ln

(
nBn

3
C

nA

)
+ kT ln

(
λBλ

3
C

λA

)3

(418)

Now that we have the chemical potential for the γ∗ particle, how do we find the number density
of γ∗ particles? The key is the occuptation number formalism:

Occupation numbers:
When a statistical mechanics problem describes a system of bosons or fermions, you should
consider using occupation numbers.
Occupation numbers describe the average number of particles in each state.

For fermions (Fermi-Dirac statistics): nFD(ϵk, µ) =
1

eβ(ϵk−µ) + 1
(419)

For bosons (Bose-Einstein statistics): nBE(ϵk, µ) =
1

eβ(ϵk−µ) − 1
(420)

For classical particles (Maxwell-Boltzmann statistics): nMB(ϵk, µ) = e−β(ϵk−µ) (421)

Here, ϵk is the energy of the state k, µ is the chemical potential, and β = 1/(kT ).

In this case, the γ∗ particles are spin-1 particles, so Bose-Einstein statistics apply. They are
relativistic particles, so the energy of a single particle γ∗ state with momentum p is given by
the standard energy-momentum relationship in special relativity:

ϵ∗(p) =
√
(pc)2 + (m∗c2)2 (422)

Therefore, the average number of γ∗ particles per state of momentum p is given by

nBE
∗ (p) =

1

eβϵ∗(p−µγ∗ ) − 1

=
[
exp

[
β
(√

(pc)2 + (m∗c2)2 − µγ∗

)]
− 1
]−1

(423)

To get the total number of γ∗ particles, use the following relation:

Number of particles in a phase-space volume d3p d3x

=
(
Number of states in the phase-space volume d3p d3x

)
· (Average number of particles per state)
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(399) tells us that the number of states in the phase-space volume d3p d3x is g d3p d3x
hd . Here,

g is the number of internal states for each γ∗ particle. Since the electron is a spin-1 particle,
there are three internal states and so g = 3. The average number of particles per state is just
the occupation number nBE

c (p) found in (423). With that in mind, we get

Number of γ∗ particles in a phase-space volume d3p d3x

= 3
d3p d3x

h3

[
exp

[
β
(√

(pc)2 + (m∗c2)2 − µγ∗

)]
− 1
]−1

(424)

To find the total number of γ∗ particles, integrate over phase space:

Nγ∗ = 3

∫
d3p d3x

h3

[
exp

[
β
(√

(pc)2 + (m∗c2)2 − µγ∗

)]
− 1
]−1

The integral over d3x yields the volume of space:

Nγ∗ = 3V

∫
d3p

h3

[
exp

[
β
(√

(pc)2 + (m∗c2)2 − µγ∗

)]
− 1
]−1

To find the number density of γ∗ particles, divide both sides by V :

nγ∗ ≡ Nγ∗

V
= 3

∫
d3p

h3

[
exp

[
β
(√

(pc)2 + (m∗c2)2 − µγ∗

)]
− 1
]−1

(425)

We can simplify this using our expression for µγ∗ (418):

exp (−βµγ∗) = exp

[
−β

(
Eb + kT ln

(
nBn

3
C

nA

)
+ kT ln

(
λBλ

3
C

λA

)3
)]

= e−Eb/(kT ) exp

[
− ln

(
nBn

3
C

nA

)
− ln

(
λBλ

3
C

λA

)3
]

= e−Eb/(kT )

(
nA

nBn3C

)(
λBλ

3
C

λA

)−3

=⇒ exp
[
β
(√

(pc)2 + (m∗c2)2 − µγ∗

)]
= e

(√
(pc)2+(m∗c2)2−Eb

)
/(kT )

(
nA

nBn3C

)(
λBλ

3
C

λA

)−3

(426)

Therefore, plugging into (425), we get

nγ∗ = 3

∫
d3p

h3

[
e

(√
(pc)2+(m∗c2)2−Eb

)
/(kT )

(
nA

nBn3C

)(
λBλ

3
C

λA

)−3

− 1

]−1

(427)

Using (413) to simplify the factor
(

λBλ3
C

λA

)
, we get

nγ∗ = 3

∫
d3p

h3

[
e

(√
(pc)2+(m∗c2)2−Eb

)
/(kT )

(
nA

nBn3C

)(
h2

2πkT

)−9/2(
mA

mBm3
C

)−3/2

− 1

]−1

(428)
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