
UCLA Physics OPEN-BOOK, OPEN-NOTE Fall 2020 Comprehensive Exam

4. (Quantum Mechanics)

A particle of mass m and charge q is confined to a circular ring of radius R lying in the x-y plane. There
are also constant electric and magnetic fields: ~E = E ŷ, ~B = Bẑ.

(a) Write a Schrödinger equation for the energy levels of this system.

(b) Compute the energy spectrum in the regime where E is negligible compared to B. Hint: this will
be simpler with the right choice of gauge.

(c) By making a suitable approximation in the Hamiltonian, compute the energy spectrum in the regime
where E is large and B is negligible. Hint: think about where the wavefunction is concentrated in
this limit.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

(a) The time-independent Schrödinger equation, which is the equation for the energy levels of this
system, is

H = En (114)

so this question boils down to finding the Hamiltonian H for this system.

To incorporate the constant electric field E = Eŷ, we need to know its associated potential
energy. The electric potential � is defined by E = �r�, so we can write

� = �Ey = �ER sin' where ' is the angle around the ring (115)

The associated potential energy is just the electric potential multiplied by q:

V (') = �qER sin' (116)

To incorporate the magnetic field, we’ll need to add it to the Hamiltonian via the vector
potential. What is the vector potential for the constant magnetic field B = Bẑ? There are
many di↵erent answers due to di↵erent gauge choices. We should select the most rotationally
symmetric gauge, since this problem takes place on a circular ring and we are looking forward
to the hint in part (b). Using the fact that r⇥A = B, we can reverse-engineer an answer

A =
B

2
(�yx̂+ xŷ) (117)

(This form of the vector potential for a constant magnetic field is the most useful for rota-
tionally symmetric problems, and you should be familiar with it. You should also be familiar
with the alternate vector potentials for a constant magnetic field A = �By x̂ and A = Bx ŷ,
which are useful for the derivation of “Landau levels” for a particle in a constant magnetic field.)

In this problem, the variable describing our location in space is ', the angle around the ring.
We can write (117) in a more convenient form by recalling the definition of the unit vectors in
polar coordinates:

r̂ = cos' x̂+ sin' ŷ =
1

r
(xx̂+ yŷ) (118)

'̂ = � sin' x̂+ cos' ŷ =
1

r
(�yx̂+ xŷ) (119)

Since r = R on the ring, what we have is

A =
BR

2
(� sin' x̂+ cos' ŷ) =

BR

2
'̂ (120)

Next, we need to incorporate this vector potential into the Hamiltonian. (We’ll work in SI units
throughout.) Here is the prescription for doing so:

Incorporating a vector potential into the Lagrangian:
SI units: Add +qṙ ·A.
Gaussian units: Add + qṙ·A

c
.

Incorporating a vector potential into the Hamiltonian:
SI units: Replace p with p� qA.
Gaussian units: Replace p with p�

qA
c
.

The safest method for writing the Hamiltonian correctly is to start with the Lagrangian, but
it is more e�cient to start with the Hamiltonian. We will show both methods:

20 Last revised July 15, 2022



UCLA Physics OPEN-BOOK, OPEN-NOTE Fall 2020 Comprehensive Exam

Lagrangian method:
The Lagrangian for a particle in an electric and magnetic field is

L =
1

2
mṙ2

| {z }
Kinetic term

� V (')| {z }
Scalar potential

+ qA · ṙ| {z }
Vector potential

(121)

In this case, since the particle is confined to a ring of radius R, we have

r = R (cos' x̂+ sin' ŷ) = R r̂ (122)

ṙ = R'̇ (� sin' x̂+ cos' ŷ) = R'̇ '̂ (123)

This gives us
ṙ2 = R

2
'̇
2
�
sin2 '+ cos2 '

�
= R

2
'̇
2 (124)

Using (120), we also have

A · ṙ =
1

2
BR

2
'̇
�
sin2 '+ cos2 '

�
=

1

2
BR

2
'̇ (125)

Putting everything together (using (116 for the scalar potential), we get the final form of the
Lagrangian:

L(', '̇) =
1

2
mR

2
'̇
2 + qER sin'+

1

2
qBR

2
'̇ (126)

To get the Hamiltonian, start by finding the momentum canonically conjugate to ':

p' ⌘=
@L

@'̇
= mR

2
'̇+

1

2
qBR

2 (127)

Then apply the Legendre transform and eliminate '̇ to get the Hamiltonian

H(p',') ⌘ p''̇� L

=

✓
mR

2
'̇+

1

2
qBR

2

◆
'̇�

✓
1

2
mR

2
'̇
2 + qER sin'+

1

2
qBR

2
'̇

◆

=
1

2
mR

2
'̇
2
� qER sin'

=
1

2
mR

2

✓
1

mR2

✓
p' �

1

2
qBR

2

◆◆2

� qER sin'

=
1

2mR2

✓
p' �

1

2
qBR

2

◆2

� qER sin' (128)

To canonically quantize the Hamiltonian, note that if we have a coordinate ' and its conjugate
momentum p', the operator p' is defined by

p' =
~
i

@

@'
(129)

Therefore, the quantum Hamiltonian is

H =
1

2mR2

✓
~
i

@

@'
�

1

2
qBR

2

◆2

� qER sin' (130)

Hamiltonian method:
The Hamiltonian for a particle in an electric and magnetic field is

H =
1

2m
(p� qA)2

| {z }
Kinetic term + vector potential

+ V (')| {z }
Scalar potential

(131)
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In this case, the scalar and vector potentials are given by (116) and (120), and the momentum
p is given by

p =
Lz

R
'̂ (132)

where Lz is the magnitude of the angular momentum about the ẑ-axis. Plugging all this in, we
get

H =
1

2m

✓
Lz

R
�

1

2
qBR

◆2

� qER sin'

=
1

2mR2

✓
Lz �

1

2
qBR

2

◆2

� qER sin' (133)

Now, recall the fact that the quantum mechanical angular momentum operator Lz is given by

Lz =
~
i

@

@'
(134)

Therefore, the quantum Hamiltonian is

H =
1

2mR2

✓
~
i

@

@'
�

1

2
qBR

2

◆2

� qER sin' (135)

Whichever method we pick, we can write down the time-independent Schrödinger equation
H = En using it. If En is the nth energy level and  (') is the wavefunction, we have

 
1

2mR2

✓
~
i

@

@'
�

1

2
qBR

2

◆2

� qER sin'

!
 (') = En (') (136)

(b) If E is negligible compared to B, we can drop the scalar potential from the time-dependent
Schrödinger equation:

1

2mR2

✓
~
i

@

@'
�

1

2
qBR

2

◆2

 (') = En (') (137)

The way to solve this di↵erential equation is by already knowing the answer. For a particle
confined to a ring, the wavefunction must be periodic ( (') =  (' + 2⇡)), which means that
it can be written as a sum of complex exponentials e

in', where n is an integer. To find the
energy of such a state, plug it into the di↵erential equation (137):

1

2mR2

✓
~
i

@

@'
�

1

2
qBR

2

◆2

e
in' =

1

2mR2

✓
~
i

@

@'
�

1

2
qBR

2

◆✓
~
i

@

@'
�

1

2
qBR

2

◆
e
in'

=
1

2mR2

✓
~
i

@

@'
�

1

2
qBR

2

◆✓
~n�

1

2
qBR

2

◆
e
in'

=
1

2mR2

✓
~n�

1

2
qBR

2

◆✓
~n�

1

2
qBR

2

◆
e
in'

=
1

2mR2

✓
~n�

1

2
qBR

2

◆2

e
in'

=
~2

2mR2

✓
n�

qBR
2

2~

◆2

e
in'

so the energy spectrum is

En =
~2

2mR2

✓
n�

qBR
2

2~

◆2

for n an integer (138)
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Since n is any integer, we could also write this as

En =
~2

2mR2

✓
�n�

qBR
2

2~

◆2

=
~2

2mR2

✓
n+

qBR
2

2~

◆2

for n an integer (139)

While the problem doesn’t ask for this, it is interesting to note that if we change the magnetic
flux through the ring, �B = ⇡R

2
B, by an integer multiple of the flux quantum �0 ⌘

2⇡~
q

(i.e.,

if we change B by an integer multiple of 2~
qR2 ), then the energy spectrum is unchanged.

(c) If E is large and B is negligible, then we can drop the vector potential term from the quantum
Hamiltonian:  

1

2mR2

✓
~
i

@

@'

◆2

� qER sin'

!
 (') = En (') (140)

Simplifying, we get ✓
�

~2
2mR2

@
2

@'2
� qER sin'

◆
 (') = En (') (141)

Now consider the hint: think about where the wavefunction is concentrated in this limit. If
the electric field E ŷ is of large magnitude, the particle is most likely to be found in the part
of the ring closest to the point Rŷ. In other words, since ' is measured from the +x̂-axis, the
wavefunction will be concentrated around ' = ⇡

2 .

For that reason, we’ll define

↵ ⌘ '�
⇡

2
(142)

and expand the Hamiltonian about small ↵:

H = �
~2

2mR2

@
2

@↵2
� qER sin

⇣
⇡

2
+ ↵

⌘

= �
~2

2mR2

@
2

@↵2
� qER


sin
⇣
⇡

2

⌘
+ cos

⇣
⇡

2

⌘
↵�

1

2
sin
⇣
⇡

2

⌘
↵
2 +O(↵3)

�
Taylor expanding

= �
~2

2mR2

@
2

@↵2
� qER


1�

1

2
↵
2 +O(↵3)

�

⇡ �
~2

2mR2

@
2

@↵2
+

1

2
qER↵

2
� qER (143)

The ↵2 dependence of the second term should remind you of the harmonic oscillator. If we use
the prescription for the canonical momentum operator in quantum mechanics

p↵ =
~
i

@

@↵
(144)

we can write

H =
p
2
↵

2mR2
+

1

2
qER↵

2
� qER (145)

We want this to closely match the harmonic oscillator potential p
2

2m + 1
2m!

2
x
2, since we already

know that its spectrum is En = ~!
�
n+ 1

2

�
. To do this, first define

m ⌘ mR
2 (146)

This makes the first term in (145) look just like the kinetic term of the harmonic oscillator.
We will also incorporate it into the second term in an attempt to make it look more like the
potential term of the harmonic oscillator.

H =
p
2
↵

2m
+

1

2
m

qE

mR
↵
2
� qER (147)
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As a final step, define

! ⌘

r
qE

mR
(148)

Then, (145) exactly matches the Hamiltonian for a harmonic oscillator of mass m and natural
frequency !, with a constant energy shift of �qER:

H =
p
2
↵

2m
+

1

2
m!

2 qE

mR
↵
2
� qER (149)

Using the formula for the energy eigenstates of the harmonic oscillator, and subtracting the
constant energy shift of �qER, we get the energy spectrum in this approximation:

En = ~!
✓
n+

1

2

◆
� qER for n = 0, 1, 2, . . . (150)

Substituting our expression for !, we get our final answer for the energy spectrum:

En = ~
r

qE

mR

✓
n+

1

2

◆
� qER for n = 0, 1, 2, . . . (151)

Part (c) of this problem is really the “quantum pendulum” in disguise: R represents the length
of the pendulum, and the constant electric field acts like a constant gravitational field. As
you might expect, in the small-angle approximation (when the field is large), the quantum
pendulum has a spectrum similar to that of the quantum harmonic oscillator.
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