
UCLA Physics Fall 2017 Comprehensive Exam

7. (Electromagnetism)

An infinite straight wire carrying a current I is suspended parallel to the plane interface between vacuum
and a medium with magnetic permeability µ 6= 1, at a distance a from the interface. Calculate the force
per unit length on the wire, and state whether it is attractive or repulsive.

Hint: for this problem, it is helpful to introduce a scalar potential. Also, it is helpful to take coordinates
in the complex plane perpendicular to the wire.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

We will use SI units, and we will take µ0 to be the magnetic permeability of the vacuum. (The
problem statement seems to be working in units where µ0 = 1; if you want to work in these units,
just replace µ0 with 1 throughout.)

This is a rare case in which I will disregard the hint given by the problem. This problem can
be solved using the magnetic scalar potential and complex numbers, but the extra math required
by this approach doesn’t translate into an easier or more efficient solution.

Instead, I will treat this as a traditional method of images problem. To calculate the force per
unit length on the wire, we need to know the magnetic field due to the magnetic material in the area
of the wire. By a variant of the uniqueness theorem (as applied to the magnetic scalar potential),
if we can find a magnetic field that satisfies all the boundary conditions, that must be the correct
magnetic field for this problem.

To start the problem, we must have a good guess for the magnetic field. The method of images allows
us to guess that the magnetic field in one region is the same as that of an “image current” in the other
region. (We can’t place image currents in the region of interest, since that would change the differ-
ential equation for the magnetic field in the region we’re trying to solve.) Therefore, we need two
image current configurations: one valid in the vacuum region, and one valid in the magnetic material.

We now need to know the correct image current configurations. These configurations are analo-
gous to the image charge configurations for a point charge and two dielectric materials, which you
need to have memorized (or written on your formula sheet). They look like this:

The next step is to find the magnetic fields in image current configurations 1 and 2. To start, let’s
find the H fields due to a single wire with steady current I ẑ in a linear isotropic homogeneous
magnetic material with magnetic permeability µ, which fills all space. We will call this magnetic
fields HI . The equations for HI in this magnetostatic situation are

∇ ·HI = ∇ ·
(

BI

µ

)
=

1

µ
(∇ ·BI) = 0 (39)

and
∇×HI = Jf where Jf is the free current density (40)
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(39) and the azimuthal symmetry of the setup implies that HI is in the ϕ̂I direction and depends
only on the distance to the wire, which we will call sI . (40) allows us to use the integral ver-
sion of Ampere’s law with a counterclockwise-oriented circular loop of radius sI , centered on and
perpendicular to the wire:

Using Ampere’s law for HI (40), we get

HI · 2πsI =

∫
loop

HI · d`

=

∫
loop interior

(∇×HI) · da by Stokes’ theorem

=

∫
loop interior

Jf · da by Ampere’s law (40)

= I (41)

Therefore,

HI =
I

2πsI
=⇒ HI =

I

2πsI
ϕ̂I (42)

With this information, we can calculate the H fields in image current configurations 1 and 2. Let s,
s′, and s′′, be the distance to the wires I, I ′, and I ′′, respectively (the same nomenclature applies
to ϕ̂, ϕ̂′, and ϕ̂′′). Using superposition, the H fields in current configurations 1 and 2 are

H1 =
I

2πs
ϕ̂+

I ′

2πs′
ϕ̂′ and H2 =

I ′′

2πs′′
ϕ̂′′ (43)

We need to impose the boundary conditions on the yz-plane, so we should shift to rectangular
coordinates. Set the origin to be the point on the boundary that is on the same level as the wire,
and consider a point with a specific y-coordinate y on the boundary. We want to find s and ϕ̂ (as
well as their primed equivalents) in rectangular coordinates for this point. Here is a diagram for
image current configuration 1:

19 Last revised August 29, 2022



UCLA Physics Fall 2017 Comprehensive Exam

The vectors s and s′ from each wire to the point on the boundary are

s = a x̂ + y ŷ and s′ = −a x̂ + y ŷ (44)

By the Pythagorean theorem, the lengths s and s′ are

s = s′ =
√
a2 + y2 on the boundary (45)

Since s and ϕ̂ are perpendicular, we must have s · ϕ̂ = 0. Therefore, since s = a x̂ + y ŷ, ϕ̂ must be
proportional to −y x̂ + a ŷ. The diagram tells us the correct direction of ϕ̂; the last thing we need
to do is divide the vector −y x̂ + a ŷ by its length to get the unit vector ϕ̂:

ϕ̂ =
−y x̂ + a ŷ√
a2 + y2

=
−y x̂ + a ŷ

s
on the boundary (46)

By the same logic, we can write the unit vector ϕ̂′, which is perpendicular to s′:

ϕ̂′ =
−y x̂− a ŷ√
a2 + y2

=
−y x̂− a ŷ

s
on the boundary (47)

Image current I ′′ in image current configuration 2 is in the same place as image current I was in
configuration 1. Therefore, s′′ = s and ϕ̂′′ = s′′:

s′′ = s =
√
a2 + y2 and ϕ̂′′ =

−y x̂ + a ŷ

s
on the boundary (48)

Plugging these results into (44), we can derive the H fields on the boundary for image current
configurations 1 and 2:

H1 =
I

2πs
ϕ̂+

I ′

2πs′
ϕ̂′ by (44)

=
I

2πs

(
−y x̂ + a ŷ

s

)
+

I ′

2πs

(
−y x̂− a ŷ

s

)
=

1

2πs2
[−y(I + I ′) x̂ + a(I − I ′) ŷ]

H1 =
1

2π(a2 + y2)
[−y(I + I ′) x̂ + a(I − I ′) ŷ] on the boundary (49)
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H2 =
I ′′

2πs′′
ϕ̂′′ by (44)

=
I ′′

2πs

(
−y x̂ + a ŷ

s

)
=

1

2πs2
[−yI ′′ x̂ + aI ′′ ŷ]

H2 =
1

2π(a2 + y2)
[−yI ′′ x̂ + aI ′′ ŷ] on the boundary (50)

We are now ready to impose the boundary conditions for B and H. Recall that H1 comes from
image current configuration 1, so it is valid to the left of the boundary (in the vacuum region).
Similarly, H2 comes from image current configuration 2, so it is valid to the right of the boundary
(in the magnetic material).

Here’s the first boundary condition. Since ∇ · B = 0 always, the perpendicular component of
B across the boundary is continuous:

B1,⊥ = B2,⊥ (51)

In this case, the direction perpendicular to the boundary is the x̂-direction. Since B = µH for a
magnetic material, this implies that

µ0H1,x = µH2,x on the boundary (52)

For the second boundary condition, since there is no free surface current on the boundary, ∇×H = 0
near the boundary. Therefore, the component of H parallel to the boundary is continuous:

H1,‖ = H2,‖ (53)

In this case, the direction parallel to the boundary is the ŷ-direction. Therefore,

H1,y = H2,y on the boundary (54)

Applying the two boundary conditions (52) and (54) to the expressions for H1 and H2 on the
boundary, which we derived earlier in (49) and (50), we get

µ0H1,x = µH2,x =⇒ µ0 ·
1

2π(a2 + y2)
[−y(I + I ′)] = µ · 1

2π(a2 + y2)
[−yI ′′]

µ0(I + I ′) = µI ′′ (55)

H1,y = H2,y =⇒ 1

2π(a2 + y2)
[a(I − I ′)] =

1

2π(a2 + y2)
[aI ′′]

I − I ′ = I ′′ (56)

(55) and (56) are a system of two linear equations that we can use to solve for I ′ and I ′′. Multiplying
(56) by µ and subtracting (55), we can solve for I ′:

µ(I − I ′) = µI ′′

−
(
µ0(I + I ′) = µI ′′

)
I(µ− µ0)− I ′(µ+ µ0) = 0

I ′ = I

(
µ− µ0

µ+ µ0

)
(57)
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If we want, we can then solve for I ′′:

I ′′ = I − I ′ by (56)

= I − I
(
µ− µ0

µ+ µ0

)
by (57)

= I

[
1− µ− µ0

µ+ µ0

]
I ′′ = I

(
2µ0

µ+ µ0

)
(58)

We have shown that there are values for I ′ and I ′′ for which H1 and H2 satisfy all the boundary
conditions. By the uniqueness theorem, this must be the correct magnetic field for the given setup.

Our last step is to find the force per unit length on the wire I. To do this, we need to find
the magnetic field due to the magnetic material at the location of the wire. The field H1 is valid
at the location of the wire, and we calculated its general form in (44). The wire exerts no force on
itself, so we ignore its magnetic field I

2πs ϕ̂. What is left is

Hon wire =
I ′

2πs′
ϕ̂′ =

I

2πs′

(
µ− µ0

µ+ µ0

)
ϕ̂′ by (57) (59)

Recall that s′ and ϕ̂′ are measured relative to the image wire with current I ′, as shown in the
diagram below:

We therefore have

s′ = 2a and ϕ̂′ = −ŷ at the location of the wire (60)

Plugging this into (59), we get

Hon wire =
I

2π(2a)

(
µ− µ0

µ+ µ0

)
(−ŷ) = − I

4πa

(
µ− µ0

µ+ µ0

)
ŷ (61)

Since B = µ0Ĥ in a vacuum, this implies

Bon wire = −µ0I

4πa

(
µ− µ0

µ+ µ0

)
ŷ (62)
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From this magnetic field, we can derive the force on a portion of the wire with length d` and moving
charge dq using the Lorentz force law:

dF = dq v ×Bon wire

= λv ×Bon wire d` where λ is the linear current density of moving charges

dF = I×Bon wire d` since I = λv (63)

Dividing by the unit of length d`, we find that the force per unit length of the wire is

f = I×Bon wire

= (I ẑ)×
[
−µ0I

4πa

(
µ− µ0

µ+ µ0

)
ŷ

]
by (62)

=
µ0I

2

4πa

(
µ− µ0

µ+ µ0

)
(−ẑ× ŷ)

Since −ẑ× ŷ = ŷ × ẑ = x̂, we have

f =
µ0I

2

4πa

(
µ− µ0

µ+ µ0

)
x̂ (64)

Since x̂ points toward the magnetic material, the force is attractive if µ > µ0 (i.e. if the material is
paramagnetic). The force is repulsive if µ < µ0 (i.e. if the material is diamagnetic).
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