S'ol\#1; ain.

Consider a system of thees spin-1/a-moments, $\vec{s}_{1}, \vec{s}_{1}, \vec{s}_{3}$. The permutation operator $P_{1 d}$ exchanges spin 1 anal. $=\ldots \ldots$

$$
P_{12}\left|\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle=\left(\sigma_{2}, \sigma_{1}, \sigma_{3}\right)
$$

 operator. P_{123} performs a cyclic permutation on spins. Z, α, and 3 so that $\alpha \rightarrow 1,1 \rightarrow 3,3 \rightarrow \alpha$

$$
P_{(\alpha)}\left|\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle=\left|\sigma_{2,}, \sigma_{3}, \sigma_{1}\right\rangle
$$

(a). Express P_{12} in terms of the spin operators $\vec{S}_{1}, \overrightarrow{S_{2}}$.
(b) Express $P_{1 a 3}$ ti s terms of the spin operators. $\vec{S}_{1}, \vec{S}_{1}, \vec{S}_{3}$.

See Prof. Chetrevarty's lecture notes $p: 38-41$:

$$
\begin{aligned}
& \tau=\binom{1}{0} ; \downarrow=(0) \\
& \sigma_{x}=\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right) ; \sigma_{x} \uparrow=\downarrow ; \sigma_{x} \downarrow=\uparrow \\
& \sigma_{y}=\left(\begin{array}{cc}
0 & -1 \\
10
\end{array}\right) ; \sigma_{z} r=i \downarrow ; \sigma_{z} \downarrow=i T \\
& \sigma_{z}=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right) ; \sigma_{z} r=\uparrow ; \sigma_{z} \downarrow=-\downarrow
\end{aligned}
$$

so $\vec{\sigma}_{1} \cdot \vec{\sigma}_{z}=\left(\sigma_{x}^{\prime} \sigma_{x}^{2}+\sigma_{y}^{\prime} \sigma_{y}^{2}+\sigma_{z}^{\prime} \sigma_{z}^{2}\right)$
and $\quad \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} r r=(\psi+\underbrace{(i \downarrow)(i \psi)}_{-\psi \psi}+T \eta)=11$

$$
\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} T \nu=(\downarrow \tau+\underbrace{(i \downarrow)(-i \psi)}_{\downarrow \tau}+\tau(-\downarrow))=2 \downarrow \tau-T \downarrow
$$

$$
\vec{\sigma}_{+} \cdot \vec{\sigma}_{2} \downarrow T=(T \downarrow+\underset{\uparrow \downarrow}{(-i \tau)(i \downarrow)-\downarrow \uparrow)=2 T \downarrow-\downarrow \tau}
$$

$$
\left.\overrightarrow{\sigma_{i}} \cdot \vec{\sigma}_{a} \downarrow \downarrow=(\eta)+\frac{(-i)(-i \eta)}{-\lambda}+(-\downarrow)(-\downarrow)\right)=\downarrow \downarrow
$$

In summary

$$
\vec{\sigma}_{1} \cdot \vec{\sigma}_{q}\left\{\begin{array}{c}
\uparrow \lambda \\
n \downarrow \\
\downarrow \uparrow \\
\psi \downarrow
\end{array}\right\}=\left\{\begin{array}{c}
\uparrow \tau \\
2 \downarrow \uparrow-\uparrow \downarrow \\
\alpha \uparrow-\downarrow \lambda \\
\psi \downarrow
\end{array}\right\}
$$

$T t_{y} P_{12}=\frac{1}{2}\left(\underline{Z}+\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right)=\frac{1}{2}\left(\mathbb{\#}+\frac{1}{4} \cdot \overrightarrow{S_{2}}\right)$ for $2\left(\frac{\pi}{4}+\overrightarrow{S_{1}} \cdot \vec{S}_{2}\right)$

$$
\begin{aligned}
& P_{12} T \uparrow=\frac{1}{2}(T \uparrow+\uparrow \uparrow)=\uparrow \uparrow \\
& P_{12} T \downarrow=\frac{1}{2}(\tau \downarrow+2 \downarrow \uparrow-T \downarrow)=\downarrow \uparrow \\
& P_{12} \downarrow T=\frac{1}{2}(\downarrow \uparrow+2 \uparrow \downarrow-\downarrow \tau)=\uparrow \downarrow \\
& P_{12} \downarrow \downarrow=\frac{1}{2}(\downarrow \downarrow+\downarrow \downarrow)=\downarrow \downarrow
\end{aligned}
$$

(b) The effect of Pas can be gotten by applying P_{12} and then P_{23} on $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$

$$
\left.P_{12}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}^{3}\right)=1 \sigma_{2}, \sigma_{1}, \sigma_{3}\right\rangle \Rightarrow P_{23}\left|\sigma_{2}, \sigma_{1}, \sigma_{3}\right\rangle=\left|\sigma_{2}, \sigma_{3}, \sigma_{1}\right\rangle
$$

which is what $P_{1+3}\left(\sigma_{1,} \sigma_{4}, \sigma_{3}\right)=\left|\sigma_{3}, \sigma_{3}, \sigma_{1}\right\rangle$
so $\quad P_{123}=P_{23} P_{12}=\frac{1}{4}\left(1+\frac{1}{4} \vec{S}_{2} \cdot \vec{S}_{3}\right)\left(1+\frac{1}{4} \vec{S}_{1} \cdot \vec{S}_{7}\right)$
$\operatorname{or} \quad 4\left(\frac{\pi}{4}+\overrightarrow{s_{1}} \cdot \overrightarrow{s_{3}}\right)\left(\frac{\pi}{4}+\overrightarrow{s_{2}} \overrightarrow{S_{2}}\right)$
p_{z} dispersions are degenerate, and they disperse the same way as the s state (Why?). Of course, atoms could contain both s - and p-orbitals, in which case we have to include them both in our model. These states can also mix to form a more complex dispersion.

The generalization to three dimensions is simple. The equation for the amplitudes are

$$
\begin{align*}
i \hbar \frac{\partial}{\partial t} C(x, y \cdot z, t) & =E_{0} C(x, y \cdot z, t)-A_{x} C(x+b, y \cdot z, t)-A_{x} C(x-b, y \cdot z, t) \\
& -A_{y} C(x, y+b, z, t)-A_{y} C(x, y-b, z, t) \\
& -A_{z} C(x, y, z+b, t)-A_{y} C(x, y, z-b, t) \tag{1.172}
\end{align*}
$$

where we have assumed a cubic lattice with a lattice spacing of b, but have assumed for generality that the matrix elements are different for the electron hopping in different directions. The energy spectrum is given by

$$
\begin{equation*}
E_{k}=E_{0}-2 A_{x} \cos k_{x} b-2 A_{y} \cos k_{y} b-2 A_{z} \cos k_{z} b, \tag{1.173}
\end{equation*}
$$

while the amplitudes are given by

$$
\begin{equation*}
C(x, y, z, t)=e^{-E_{k} t / \hbar} e^{-i \mathbf{k} \cdot \mathbf{r}} . \tag{1.174}
\end{equation*}
$$

1.5.2 Spin Waves

A magnetic Hamiltonian that can describe ferromagnetism is the ferromagnetic spin- $1 / 2$ Heisenberg model, where the nearest spins interact via a spinspin interaction

$$
\begin{equation*}
H=-J \sum_{n} \boldsymbol{\sigma}_{n} \cdot \boldsymbol{\sigma}_{n+1} . \tag{1.175}
\end{equation*}
$$

For simplicity, I have absorbed the factor $(\hbar / 2)^{2}$ in the coupling J, and $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ is the vector made of the Pauli matrices. The Hamiltonian is for a one-dimensional chain of spins, but you can easily generalize it to higher dimensions. First, define the raising and the lowering operators

$$
\begin{align*}
\sigma_{n}^{+} & =\frac{\sigma_{n}^{x}+i \sigma_{n}^{y}}{2} \tag{1.176}\\
\sigma_{n}^{-} & =\left(\sigma_{n}^{+}\right)^{\dagger}=\frac{\sigma_{n}^{x}-i \sigma_{n}^{y}}{2} . \tag{1.177}
\end{align*}
$$

Remember that the Pauli matrices are Hermitian and that $\sigma^{+}|+\rangle=0$, $\sigma^{+}|-\rangle=|+\rangle, \sigma^{-}|-\rangle=0$, and $\sigma^{-}|+\rangle=|-\rangle$. Now, the interaction for a pair
of spins can be written as

$$
\begin{equation*}
\boldsymbol{\sigma}_{n} \cdot \boldsymbol{\sigma}_{n+1}=2\left[\sigma_{n}^{+} \sigma_{n+1}^{-}+\sigma_{n}^{-} \sigma_{n+1}^{+}\right]+\sigma_{n}^{z} \sigma_{n+1}^{z} \tag{1.178}
\end{equation*}
$$

where we have used the fact that the Pauli matrices belonging to distinct sites commute. The interaction can also be written in terms of a permutation operator $P_{n, n+1}$ that permutes the spins on the sites n and $n+1$. To check this, define the kets for two spins as $| \pm, \pm\rangle$, where the first entry is for the first spin and the second entry is for the second spin. Then,

Therefore, as announced earlier,

$$
\begin{equation*}
\boldsymbol{\sigma}_{n} \cdot \boldsymbol{\sigma}_{n+1}=2 P_{n, n+1}-1 . \tag{1.183}
\end{equation*}
$$

What is the ground state of the ferromagnetic Heisenberg model? Since the coupling constant J, also called the exchange constant, is positive, a pair of nearest neighbor spins like to be parallel to the each other. So, perhaps, the groundstate is that state in which they are all lined up parallel to each other. This is clearly an infinitely degenerate state because it does not matter which direction in space they point as long as they are parallel to each other. Let us check that the assumed state is the lowest energy state. Note that the Hamiltonian acting on the presumed ground state is

$$
\begin{equation*}
-J \sum_{n}\left(2 P_{n, n+1}-1\right)|+++\ldots\rangle=-J N|+++\ldots\rangle \tag{1.184}
\end{equation*}
$$

The state $|+++\ldots\rangle$ is definitely an eigenstate; physically it is clear that it is also the lowest energy state, but, with a little bit more effort, you can also show that there are no other eigenstates of energy lower than $-J N$, where N is the total number of spins in the lattice. As the temperature is raised, thermal fluctuations will create excited states, which will disorder the spins. There will be a temeperature T_{c} at which the system will loose its average magnetization and a phase transition will take place. It can be rigorously shown that $T_{c}=0$ for dimensions $d \leq 2$, but it is finite at $d=3$. This proof is slightly off our track, so I won't give it to you here.

What do the excited states look like? Let us redefine the zero of energy by subtracting the ground state energy, so that

$$
\begin{equation*}
H-E_{0}=-2 J \sum_{n}\left(P_{n, n+1}-1\right) . \tag{1.185}
\end{equation*}
$$

It is easy to guess that the first excited state would be one where one of the spins is flipped. We need to invent a nice notation to denote this. For example, if the $4 t h$ spin is flipped, we will label that state as

$$
\begin{equation*}
\left|x_{4}\right\rangle=|+++-+++\ldots\rangle . \tag{1.186}
\end{equation*}
$$

What is the action of the Hamiltonian on this state? If the permutation operator does not involve the $4 t h$ spin, the state is unchanged. If it involves the 4 th spin, it will either permute it with the spin on the right, or on the left, so that

$$
\begin{align*}
P_{34}\left|x_{4}\right\rangle & =\left|x_{3}\right\rangle, \tag{1.187}\\
P_{45}\left|x_{4}\right\rangle & =\left|x_{5}\right\rangle . \tag{1.188}
\end{align*}
$$

The terms in the Hamiltonian that survive are

$$
\begin{equation*}
\left[-2 J\left(P_{34}-1\right)-2 J\left(P_{45}-1\right)\right]\left|x_{4}\right\rangle=4 J\left|x_{4}\right\rangle-2 J\left|x_{3}\right\rangle-2 J\left|x_{5}\right\rangle . \tag{1.189}
\end{equation*}
$$

In general,

$$
\begin{equation*}
H\left|x_{n}\right\rangle=4 J\left|x_{n}\right\rangle-2 J\left|x_{n+1}\right\rangle-2 J\left|x_{n-1}\right\rangle . \tag{1.190}
\end{equation*}
$$

This is identical to the problem we solved for an electron in a periodic lattice. The schrödinger equation is given by

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} C_{n}(t)=\sum_{n^{\prime}}\langle n| H\left|n^{\prime}\right\rangle C_{n^{\prime}}(t) \tag{1.191}
\end{equation*}
$$

where the only matrix elements of the Hamiltonian are

$$
\begin{align*}
H_{n, n} & =4 J, \tag{1.192}\\
H_{n, n+1}=H_{n-1, n} & =-2 J . \tag{1.193}
\end{align*}
$$

The set of linear difference equations can once again be solved by the choice

$$
\begin{equation*}
C_{n}(t)=\frac{1}{\sqrt{N}} e^{-i k x_{n}} e^{-i E t / \hbar} \tag{1.194}
\end{equation*}
$$

Then, the energy spectrum is given by

$$
\begin{equation*}
E_{k}=4 J(1-\cos k b) . \tag{1.195}
\end{equation*}
$$

The definite energy solutions correspond to waves of a flipped spin whose amplitude at a given site n is determined by the wavevector k lying within the first Brillouin zone between $\frac{-\pi}{b}$ and $\frac{\pi}{b}$. The energy dispersion at long wavelengths is that of a free particle, a magnon, of an effective mass $m_{\text {eff }}=$ $\hbar^{2} /\left(4 J b^{2}\right)$.

Once we start examining the problem of two flipped spins, we discover that the spin waves interact when they approach each other. The interaction may in fact give rise to bound states. Although the two spin wave problem can still be solved eaxctly with some effort, we may argue that if there is a small density of such excited states, or spin waves, at low temperatures, they can be approximated to be independent. Such an independent particle approximation reproduces many low temperature properties of ferromagnets. In the independent particle approximation, the excited state energy $\varepsilon\left(k_{1}, k_{2}, \ldots\right)$ is then given by

$$
\begin{equation*}
\varepsilon\left(k_{1}, k_{2}, \ldots\right) \approx E_{k_{1}}+E_{k_{2}}+\ldots \tag{1.196}
\end{equation*}
$$

Ser. 2001 \#l:
$S_{1}, \vec{S}_{2}, \vec{S}_{2}$ all $\operatorname{spin} \frac{1}{2} \quad P_{12}\left|\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle=\left|\sigma_{2}, \sigma_{1,} \sigma_{3}\right\rangle$

$$
P_{123}\left|\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle=\left|\sigma_{2}, \sigma_{3}, \sigma_{1}\right\rangle
$$

$\sigma_{1,2,3}= \pm \frac{1}{2}$ are the eigenvalues of $S_{1}^{z}, S_{2}^{z}, S_{3}^{z}$
(a) express P_{12} in terms of $\Sigma_{1} \not+S_{2}$ recall the old trite $S_{1}^{2}=S_{1}^{2}+2 S_{1} \cdot S_{2}+S_{2}^{2}$

$$
2 \vec{S}_{2}: \vec{S}_{2}=2 S_{1}^{2} S_{2}^{z}+C_{1}^{+} S_{2}^{-}+S_{1}^{-} S_{2}^{+}
$$

the effect of this operator on $\left|\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle$ is
(F) $2 \zeta_{1}, \vec{S}_{2}\left|\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle=2 S_{1}^{z} \zeta_{2}^{z}\left|\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle=2 S_{1}^{2} \zeta_{2}^{z}\left|\sigma_{2}, \sigma_{1}, \sigma_{y}\right\rangle$

$$
=\frac{1}{2} \cdot \sigma_{2}, \sigma_{1}, \sigma_{3} y_{1}=\sigma_{2}
$$

(2) $2 \zeta_{1} \vec{\zeta}_{2}\left|\sigma_{1}, \sigma_{2} \sigma_{3}\right\rangle=-\frac{1}{2}\left|\sigma_{1}, \sigma_{4}, \sigma_{3}\right\rangle+\left|\sigma_{2}, \sigma_{1}, \sigma_{3}\right\rangle$ if $\sigma_{1} * \sigma_{2}$
in (I), can write $\frac{1}{2}\left|\sigma_{2}, \sigma_{1}, \sigma_{3}\right\rangle=\left|\sigma_{2}, \sigma_{1}, \sigma_{3}\right\rangle-\frac{1}{2}\left|\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle$
so The explosion in (I) always works
then have $\left.\left|\sigma_{2}, \sigma_{1}, \sigma_{3}\right\rangle=P_{12} / \sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle$, so

$$
2 \overrightarrow{S_{1}} \cdot \vec{S}_{1}=-\frac{1}{2}+P_{12} \Rightarrow P_{12}=\frac{1}{2}+2 \vec{S}_{1} \cdot \vec{S}_{2}
$$

(b) express P_{123} as $S_{1}, S_{2}, d S_{3}$
write $P_{123}=P_{12} P_{13}=\left(\frac{1}{2}+2 \bar{S}_{1} \cdot r_{2}\right)\left(\frac{1}{2}+2 \vec{S}_{1} \vec{S}_{3}\right)=2$

$$
S_{1}+\vec{S}_{1} \cdot \vec{S}_{3}+\vec{S}_{1} \vec{S}_{2}+4\left(\vec{S}_{1} \cdot \vec{S}_{2}\right)\left(\vec{S}_{1} \cdot \vec{S}_{3}\right)
$$

Solution Problem *2
Lea Fredrickson
Spring 2001 comp
An electron is injected into a region where $t=0 \uparrow \uparrow \uparrow \uparrow$ there is a constant magnetiefield $|B|$.

Let θ be the angle between the electron momentum and the expectation value of its spin.
At $t=0, \theta=0$ what is $\theta(t)$? [calculate
the time-dependence of the momentum classically.] Express your answer in terms of the gyromagnetic ratio g of the electron. heave g arbitrary - doit set it exactly equal to 2 .
At $t=0$, the direction of the electron's motion is perpendicular to the magnetic field, and it is complelely polarized so that its spin is definitely along the direction of the beam.

Jo solve for the momentum of the election,

$$
\begin{aligned}
& \frac{d \vec{p}}{d t}=\vec{F}=q \frac{\vec{v}}{c} \times \vec{B}=m \frac{d \vec{v}}{d t} \\
& m \frac{d v_{x}}{\partial t}=q\left(\frac{\vec{v}}{c} \times \vec{B}\right)_{x}=-q \frac{v_{y} B}{c}=e \frac{v_{y} B}{c} \\
& m \frac{d v_{y}}{d t}=q\left(\frac{\vec{v}}{c} \times \vec{B}\right)_{y}=q \frac{v_{x} B}{c}=-e \frac{v_{x} B}{C} \\
& m \frac{d v_{z}}{\partial t}=q\left(\frac{\vec{v}}{c} \times \vec{B}\right)_{z}=0
\end{aligned}
$$

$$
\Rightarrow v_{z}=C_{z}=0
$$

and we have two coupled differential equations Differentiate then to uncouple then

$$
\begin{aligned}
& m \frac{d^{2} v_{x}}{d t^{2}}=e^{B} \frac{d v_{y}}{d t}
\end{aligned} \quad \frac{m \frac{d^{2} v_{y}}{d t^{2}}=-e B \frac{d v_{x}}{d t}}{} \begin{array}{ll}
\frac{d^{2} v_{x}}{d t^{2}}=-\frac{e^{2} B^{2}}{c^{2} m^{2}} v_{x}, & v_{x}(t)=A \cos \left(\frac{e B}{c m} t\right)+B \sin \left(\frac{e B}{c m} t\right) \\
\frac{d^{2} v_{y}}{d t^{2}}=-\frac{e^{2} B^{2}}{c^{2} m^{2}} v_{y}, & v_{y}(t)=C \cos \left(\frac{e B}{c m} t\right)+D \sin \left(\frac{e B}{c m} t\right)
\end{array}
$$

at $t=0$, all of the velocity is in the x direction Therefore $B=C=0$

$$
v_{x}(t)=A \cos \left(\frac{e B}{c m} t\right), \quad v_{y}(t)=D \sin \left(\frac{e B}{c m} t\right)
$$

let the magnetude of the initial velocity be N_{i}

$$
\begin{aligned}
& \vec{v}(t)=v_{i}\left(\cos \left(\frac{e B}{C m} t\right) \hat{x}-\sin \left(\frac{e B}{C M} t\right) \hat{y}\right) \\
& \vec{p}(t)=m v_{i}\left(\cos \left(\frac{e B}{C m} t\right) \hat{x}-\sin \left(\frac{e B}{C m} t\right) \hat{y}\right)
\end{aligned}
$$

Therefore the angle that the momentum vector makes with the x aphis is $\left[\theta_{p}=\frac{e B t}{m C}\right]$

Now to solve for the angle that the spin makes

The Hamiltonian is $H=-\vec{\mu}_{\mathrm{s}} \cdot \vec{B}$

$$
\begin{aligned}
& \vec{\mu}_{s}=-\frac{e g}{2 m c} \vec{\delta} \\
& \vec{H}=\frac{e g}{2 m c} \vec{S} \cdot \vec{B}=\frac{e g}{2 m c} B S_{z}
\end{aligned}
$$

The initial state of the spin is

$$
\begin{aligned}
\left|\psi_{0}\right\rangle & =|+x\rangle=\frac{1}{\sqrt{2}}(|+z\rangle+|-z\rangle) \\
|\psi(t)\rangle & =e^{-i+t / \hbar}\left|\psi_{0}\right\rangle \\
& =e^{-\frac{i e g B t}{2 m c \hbar} s z}\left\{\frac{1}{\sqrt{2}}[|+z\rangle+|-z\rangle]\right\} \\
|\psi(t)\rangle & =\frac{1}{\sqrt{2}}\left\{e^{-\frac{i e g B t}{4 m c}}|+z\rangle+e^{\frac{i e g B t}{4 m c}}|-z\rangle\right\}
\end{aligned}
$$

Now to find the angle w.r.t. the $+x$ ats

$$
\langle+x \mid \psi(t)\rangle=\frac{1}{\sqrt{2}}[\langle+z|+\langle-z|]|\psi(t)\rangle
$$

$$
\begin{aligned}
& \langle+x \mid \psi(t)\rangle=\frac{1}{2}\left(e^{-\frac{i e g B t}{4 m c}}+e^{\frac{i \operatorname{ig} B t}{4 m c}}\right) \\
& |\langle+x \mid \psi(t)\rangle|^{2}=\operatorname{Cos}^{2}\left(\frac{e g B t}{4 m c}\right)
\end{aligned}
$$

One might think that we now have the angle of precession, but there is a catch. Remember that the spin must notate around trice to get back to the origional state.

$$
\Longrightarrow\left[\theta_{s}=\frac{e q B t}{2 m C}\right]=\omega_{0} t
$$

another way to see this is to take the expectation value of the spin

$$
\begin{aligned}
& \langle\psi(t)| \hat{S}_{x}|\psi(t)\rangle=\left\langle\hat{S}_{x}\right\rangle \\
& \begin{aligned}
\left\langle\hat{S}_{x}\right\rangle & =\frac{1}{\sqrt{2}}\left(e^{i \omega_{0} t / 2}, e^{-i \omega_{0} t / 2}\right) \frac{\hbar}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\binom{e^{-i \omega_{0} t / 2}}{e^{i \omega_{0} t / 2}} \\
& =\frac{\hbar}{2} \cos \omega_{0} t \Rightarrow O_{s}=\omega_{0} t=\frac{e g B t}{2 m c} \\
\Rightarrow \theta= & \theta_{s}-\theta_{p}=\left(\frac{g}{2}-1\right) \frac{e B t}{2 m c}=(g-2) \frac{\omega_{0} t}{2} \\
& \theta=(g-2) \frac{\omega_{0} t}{2}
\end{aligned}
\end{aligned}
$$

Spring $2001+3$

$$
V(r)=-V_{0} \frac{e^{-\mu r}}{\mu r} \quad U(r)=2 m v(r) \quad=2 m v_{0} \frac{e^{-\mu r}}{\mu r}
$$

Then from abers eqn 8.33

$$
\begin{aligned}
f(\phi, \phi) & =-\frac{\left(2 \pi^{3 / 2}\right.}{4 \pi^{3}} \int e_{\psi \phi\left(r^{\prime}\right)}^{-i k^{\prime} r^{\prime}} \psi\left(r^{\prime}\right) \psi\left(r^{\prime}\right) d^{3} \quad \quad \vec{r}^{\prime}=\frac{k \vec{r}}{r} \\
& =\frac{-(2 \pi)^{3 / 2}}{4 \pi^{\prime}} \int e^{-i k^{\prime} r^{\prime}} 2 m v_{0} \frac{e^{-\mu r^{\prime}}}{\mu r} \psi(r) d^{3} r
\end{aligned}
$$

b) First born approximation $\psi(r) \rightarrow \phi(r)=\frac{e^{i k_{0} r}}{12 \pi)^{3 / 2}}$
for spherically symettric cases

$$
\begin{aligned}
& f^{(i)}(0, \phi)=-\frac{1}{4 \pi} \int_{e}^{i(k-k) \cdot r} \text { wert } d^{3} r \quad \vec{q}=\vec{k}-\vec{k} \\
& q=2 k \sin \frac{\theta}{2} \\
& \text { * }=-\frac{1}{\varepsilon} \int_{0}^{0} r \sin (q r) u(r) d r \\
& \vec{q} \cdot \vec{r}=\varepsilon r \cos \theta \\
& =\frac{1}{q} \int_{0}^{\infty} r \sin (q r) 2 m v_{0} \frac{e^{-\mu r}}{\mu r} d r=\frac{-2 m v_{0}}{q u} \int_{0}^{\infty} \sin (\varepsilon r) e^{-\mu r} d r \\
& \int_{0}^{\infty} e^{-\mu x} \sin k x d x=\frac{k}{-\mu^{2}+k^{2}} \\
& \Rightarrow=\frac{2 m v_{0}}{q \mu} \frac{q}{\mu^{2}+\varepsilon^{2}}=\frac{2 m v_{0}}{\mu} \frac{1}{\varepsilon^{2}+\mu^{2}}
\end{aligned}
$$

c.)

$$
\begin{aligned}
& \left.O_{\text {tot }}=\int \mid t(\cos \phi)\right)^{2} \partial \Omega^{2} \\
& \therefore \quad Q_{0}=\frac{4 m^{2} v_{0}{ }^{2}}{u^{2}} f \frac{1}{q^{2}+d_{2}^{2}} d \Omega
\end{aligned}
$$

\because scattering neutron having o kinetic energy means

$$
\begin{gathered}
k \rightarrow 0, \Rightarrow k^{\prime} \rightarrow 0 \Rightarrow q \rightarrow 0 \\
\sigma_{\text {tot }}=\frac{4 m^{2} v_{0}}{\mu^{2}} \frac{1}{\mu^{4}} \cdot 4 \pi=\frac{16 \pi m^{2} v_{0}}{\mu^{6}} \text { in } k \rightarrow 0 \text { case }
\end{gathered}
$$

Spring 2001 ± 6
Calculate the collision frequency for the collisions between the molecules of a gas and a fixed sphere of diameter D. The molecules have an average diameter d. The gas has a temperature T.

- Collision will occur when centers of 2 molecules within $d+D$ of each other
\Rightarrow equivilant to one partide of radius $d+D$ colliding $\omega /$ pt. particles (collisions just as likely)

verse uotume/molecule

$$
\Rightarrow l=\frac{4}{\pi(d+D)^{2} n} \quad n=N / v
$$

- Now, $v=\frac{\bar{v}_{w g}}{l}$
\rightarrow need $\vec{v}_{\text {an }}$
* This is not $v_{\text {rms }}$ Though! $v_{\text {rms }}$ canes from the average of the squares of the velocities of the particles $v_{\text {rms }}=\sqrt{v^{2}}$.
$\Rightarrow \bar{v}_{\text {aug }}$ (or average of the velocities not square) will be mare accurate here
Maxwell Dist. function $\quad D(v)=\left(\frac{m}{2 \pi k r}\right)^{3 / 2} 4 \pi v^{2} e^{-m v^{2} / 2 k T} \quad\left[\right.$ mini $\left.(m 3)^{-1}\right]$

$$
D(v) \propto\binom{\# \text { of vectors } \vec{v} \text { aresparding }}{\text { to sped } v} \cdot\binom{\text { probability of a }}{\text { moleale haling }}
$$

$\rightarrow\left(\frac{m}{2 \pi k T}\right)^{3 / 2}$ cones from normalization candin

$$
\Delta=\int_{0}^{b} D(v) d v \quad\left(\begin{array}{c}
\text { patel } \\
\text { prob }
\end{array}=1\right)
$$

-Now $\bar{v}_{\text {avg }}$ given by:

$$
\begin{aligned}
& \vec{v}=\sum_{\text {all } v} v D(v) d v=\int_{0}^{\infty}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi v^{3} e^{-m v^{2} / 2 k T} d v \\
& \text { set } x=\frac{m v^{2}}{2 k T}, d x=\frac{2 m u d v}{2 k T} \text { so } d v=\frac{k T}{m v} d x \\
&=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2}\left(\frac{k T}{m}\right)^{2} \int_{0}^{\infty} x^{2} e^{-x} d x \\
&=-x^{2} /\left.e^{-x}\right|_{0} ^{\infty}+2 \int_{0}^{\infty} x e^{-x} d x=-2 y\left(\left.e^{-x}\right|_{0} ^{\infty}+2 \int_{e^{-x}}^{\infty}=-\left.2 e^{-x}\right|_{0} ^{\infty}=2\right. \\
&= 4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2}\left(\frac{k T}{m}\right)^{2} \cdot 2=\sqrt{\frac{8 k T}{n \pi}} \\
& \rightarrow v=\sqrt{\frac{8 k T}{n+\pi}} \cdot \frac{\pi}{4}(d+D)^{2} n=(d+D)^{2} n \sqrt{\frac{k T \pi}{2 m}}
\end{aligned}
$$

Spring 2001\#7 (p 1 of 5)
(a) You are asked bout the $2^{\text {nd }}$ law of thermodynamics, and you give one of the formulations, that thee is no process the sole effect of which is the conversion of heat into work. The inquirer then points out that a steam engine converts heat into work, Explainhow this is not a violation of the $z^{\text {nd }}$ law of thermodynamics. Your explanation should include an analysis of the steam engine, and a discussion of heat engines in general. (see leif section 5. 11)
perfectengiat:
$T \leftarrow$ heat reservoir
device $\rightarrow M \rightarrow$
\rightarrow working in a cycle, the perfect engine extracts heat from a reservoir and performs an equivalent amount of work without producing any other effect on the onvionament
\rightarrow this ic impossible due to the $2^{\text {nd }}$ law of thermodynamics. That is, it would require the spontaneous occurence of a process which goes from an initial situation, where a contain amount of energy is distributed randomly
prof 18 or i87 over the many degrees of freedom of a heat reservoir, to a much more special and enormously less probable final situation, where the exeat is all associated with the motion if a single degree of freedom capable of performing macroscopic work; in short because it wald require a process when the entropy S decreases.
\rightarrow the entropy change of the kent reservoir at absolute temperature T_{1} is

$$
\Delta S_{R}=\frac{\Delta Q}{T_{1}}=\frac{-q}{T_{1}}
$$

but we know that $\Delta S \geqslant 0$ (2nd law), when ΔS is the total entropy charge and

$$
\Delta S=\Delta S_{R}+\Delta S_{M}
$$

where $\Delta S_{m}=0$ since M is back in the same macrastate offer a cycle

Spring 2001 ($\quad(p 2015)$
real engine:

\rightarrow Now, $\Delta S=\frac{-q_{1}}{T_{1}}+\frac{q_{2}}{T_{2}} \geqslant 0$ can be satisfied with positive wert performed by the engine on the outside ward. The efficiency of the engine is given by

$$
\eta \equiv \frac{w}{q_{1}}=\frac{q_{1}-q_{2}}{q_{1}}<1 \text { since some beat does not get } \begin{aligned}
& \text { transformed into work but is } \\
& \text { instead rejected to some other }
\end{aligned}
$$ heat nservoir.

Conndu a Carnot Engine:

engine is the rally
isolated. Irs external parametio changed slowly until the eng inc temporation reaches T_{1}

engine now is thereat contract with the heat nacuadir at T_{1}, Engine absorbs heat qu from reservoir

engine back in thermal contact w/ heat Meswoin at $T=T_{2}$ ad rejects hast q_{2} into the Notum (Nowenqime belle in original state)
\rightarrow A steam engine is mare complicated than a carnot engine. In a steam engine the two reservoirs are represented by a boiler and a conduces.
\rightarrow The above explanation of real engines illustrate how a heat engine converts heat into work without violating the 2 nd law of thermodynamics.

Spring $2001 \# 7$ (p 3af5)
(b) You read on article in a physics jovial in which a grompof researchers a nonce that they have cooled a system to absolute zero. Discuss why one ought to be skeptical of this claim. Inwle the appropriate laws of thermodynamics. (Ref section 5,7)

3 laws of thermodyanmiss are:
st law- $\Delta \bar{E}=-W+Q$
and law- $d S=\frac{d Q}{T}, \Delta S \geqslant 0$
$3^{\text {rd }}$ law as $T \rightarrow \mathrm{O}_{+}, S \rightarrow S_{0}$
\rightarrow The basic idea is that the $3^{\text {rd }}$ law states that at $T=0, S=0$ Casual convention is to call the constant zero). This means that each element's entropy at $T=0$ is 0 . So all the elements at $T>0$ have a finite, positive entropy.
\rightarrow But, the second law tells us that no system can reach absolute zero because entropy cannot be reduced to zero by finite means
\rightarrow Absolute zero was 1 st calculated using the ideal gas law and can be defined as the temperative at which an ideal gas has no volume and exerts no pressure. ... but an ideal gas does not exist. A meal gas will lique By be for attaing absolute zee,
\rightarrow The save principle that tell's us no system may be 10090 efficient, tells us the temperature can near be exactly absolute zero. Implies a definite position and velocity of a partite which violates uncertainty principle.
\rightarrow see The Nernst heat theorem: if ore could reach absolute zero, all bodies would have the same entropy, Absolute zero can exist only x are possible state, which would possess a definite energy (zero point energy)
Summary:
$z^{\text {nd }}$ law states suggests the existence of an absolute temperature scale with absolutezer on it. Zed law stater that absolute zero cannot be reached in a finite number of steps: That is, 2 nd law stater that

Spring $2001 \# 7$ (p $40 f 5$)
heat can never spontaneously move from a colder body to a hotter body, so, as a system approacks absolute zero, it will evertailly have to draw energy from whatever systems ave nearby. If it draws energy, it con neut obtain absolute zero.
\rightarrow to make something cooler, you must putith ar environment that is colder then it. So, heat will flow from the object to the equiroument. No environment con be colder then absolute zero .i.. So, no object put in it con reach it either.
\rightarrow it would require an infinite ament of cycles from the device to reach absolute zero.
(c) Explain, using the laws of themodynomies, why a substance cannot have equate heat capacity.
\rightarrow heat capacity of a system is defined as the ratio

$$
c_{y} \equiv\left(\frac{d Q}{d T}\right)_{y}
$$

in the limit as $t Q \rightarrow 0(\operatorname{Cor} d T \rightarrow 0)$. Since $d S=\frac{d Q}{T}$, we have

$$
C_{y}=T\left(\frac{d s}{d T}\right)_{y}
$$

From the $2^{\text {nd }}$ Law, we know that the entropy of a system must increase if irreversible or stay the same if reversible. So there is noway $\frac{d S}{d T}<0$. But, this questions as k. about a substance, nut a system. um... you con get $\frac{\Delta s}{\Delta T}<0$ if $\Delta T<0 \ldots$
\rightarrow Heat capacity is also defined (in words) as the amount of heat required to raise unit mass of substance by one degree of temperature.
So, a negative heat capacity would imply that a substance gave off heat in order to raise its temperature, This would imply that $d Q<0$. That, in turn, would imply that $d S<0$ from the relation

$$
d s=\frac{d Q}{T} .
$$

Spring $2001 \# 7(p 5$ of 5$)$
assuming, of course, that $T>O$ (which seems reasonable on the absolute scale "),
If $d s<0$, then the $2^{\text {nd }}$ law is violated. "oh crap, I alvedy said this in the previous part. I still have the problem that the substance is not necessarily the system. If energy is alan from the "system", the $2^{\text {nd }}$ law is not violated.
\rightarrow I can only assume that heat capacity is defied sech that it treats the substance as the system. I cannot confirm this, however.
\rightarrow negative heat capacity means that if you put a hot thing by a cold thing than heat would go to the cold thing. As the change in temperature increases, then the cold thing would approach absolute value faster... then it seems reaching absolute zero is possible, we concluted this is impassible from part (b).

Spring $2001 \# 10$
A yo of velocity r_{0} decays in fight into two photons $\pi^{0} \rightarrow 2 \gamma$. Compute the minimum g maximum values of the energies of the produced photar as a function of v_{0}.

In Lab frame:

- energy consecution: $\gamma_{m \pi} c^{2}=E_{1}+E_{2}$ (I) where 1,2 refers to $\gamma_{1}: \gamma_{2}$
- momention conservation:

$$
\begin{align*}
& \gamma_{m} v_{0}=\frac{E_{1}}{c} \cos \theta_{1}+\frac{E_{2}}{c} \cos \theta_{2} \tag{II}\\
& \frac{E_{1}}{c} \sin \theta_{1}=\frac{E_{2}}{c} \sin \theta_{2}
\end{align*}
$$

(w/ $m_{\gamma}=0 \quad E_{\gamma}=P_{\gamma} c$)
(II):

$$
\begin{align*}
\left(x_{m} v_{0}-\frac{E_{1}}{c} \cos \theta_{1}\right)^{2} & =\left(\frac{E_{2}}{c} \cos \theta_{2}\right)^{2} \\
& =\left(\frac{E_{2}}{c}\right)^{2}-\left(\frac{E_{2}}{c} \sin \theta_{2}\right)^{2} \\
\left(x_{m v_{0}}-\frac{E_{1}}{c} \cos \theta_{1}\right)^{2}+\left(\frac{E_{1}}{c} \sin \theta_{1}\right)^{2} & =\left(\frac{E_{2}}{c}\right)^{2} \\
& =\left(8 m c-\frac{E_{1}}{c}\right)^{2} \tag{II}
\end{align*}
$$

$$
\begin{aligned}
& \begin{array}{r}
\rightarrow \gamma^{2} m^{2} v_{0}^{2}-\frac{2 \gamma m v_{0} E_{1}}{c} \cos \theta_{1}+\frac{E_{1}^{2} c^{2} \theta_{1}}{c^{2}}+\frac{E_{1}^{2} \sin ^{3} \theta_{1}^{8}}{c^{2}}=\gamma^{2} m^{2} c^{2}-2 \gamma m E_{1} \\
+E_{1}^{2}
\end{array} \\
& +E_{1}^{2} / C
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \gamma^{2} m^{2}\left(v^{2}-c^{2}\right)-2 \gamma m E_{1}\left(\frac{v_{0}}{c} \cos \theta_{1}-1\right)=0 \\
& \Rightarrow E_{1}=\frac{\gamma m\left(v_{0}^{2}-c^{2}\right)}{2\left(v_{c} \cos \theta-1\right)}=\frac{\gamma m c^{2}\left(\frac{v_{0}^{2}}{c^{2}}-1\right)}{2\left(\frac{\left.v_{c} \cos \theta-1\right)}{}\right.} \\
& \text { now w/r} \gamma=\left(1-\frac{v^{2} c^{2}}{}\right)^{-1 / 2} \\
& E_{1}=\frac{m m c^{2}}{2 \gamma\left(1-v_{c} \cos \theta\right)}
\end{aligned}
$$

- In lab frame an an range from -1 to 1 corresponding. to minimum \& maximum energies. Photons can By backed even in the lab frame because they travel at c and thus cannot be Lorentz boosted to The forward direction when they are travelling very-backwand in the CM forme.

$$
\rightarrow E_{\max }=\frac{m c^{2}}{2 \gamma\left(1-\frac{v_{0}}{c}\right)} \quad \& E_{\min }=\frac{m_{c}^{2}}{2 \gamma\left(1+\frac{v_{0}}{c}\right)}
$$

\rightarrow similar expressions can be denied for the min of max energies of the 2 nd photon

S'OI \# 10; E.M.

A π° of velocity v_{0} decays in flight into two photons $\pi^{0} \Rightarrow d \gamma$
Compute the minimum and maximum values of the energies of the produced photons as a function of vo.

Three ways of doing it:
(1) If bon can accept that the maximum energy comes from the photon traveling in the same direction as the π° and the minimum energy when traveling in the exact opposite direction:

then from energy conservation tomentan conservation

$$
E_{\pi 0}=E_{1}+E_{2} ; \quad\left|\vec{p}_{11}\right|=\left|\overrightarrow{p_{1}}\right|=\left|\overrightarrow{p_{d}}\right|=E_{1}-E_{2} \quad \text { with } c=1
$$

combining $\quad E_{T^{\circ}}+\left|\vec{P}_{\text {\#ed }}\right|=2 E_{1}$
so

$$
\text { as } E=\gamma_{m} ;|p|=\gamma \beta m
$$

$$
\begin{aligned}
E_{1}=\frac{1}{2}\left(E_{\pi 0}+\left|\vec{P}_{\pi 0}\right|\right) & =\frac{1}{2}\left(\gamma_{\eta_{\pi}} 0+\gamma \beta n_{\pi_{0}}\right) \\
& =\frac{\gamma_{m} \pi^{0}}{2}(1+\beta) \quad \text { where } \gamma=\frac{1}{\sqrt{1-\bar{\beta}^{\pi}}}
\end{aligned}
$$

and the minimam energy would then be:

$$
E_{\alpha}=\frac{\gamma_{n} \pi^{0}}{\alpha}(1-\beta)
$$

(2) Can be done via a Lorente transformation from the rest froffe $2 / 3$ of the π° :

Just like

$$
\begin{aligned}
& c t=\gamma\left(c x^{\prime}+\beta x^{\prime}\right) \\
& x=\gamma\left(x^{\prime}+\beta c t^{\prime}\right) \\
& z=y^{\prime} \\
& z=z^{\prime}
\end{aligned}
$$

a similar thing can be done with the energy: momertuen four vector:

$$
\begin{aligned}
& E / c=\gamma\left(E^{\prime} / c+\beta P_{x}^{\prime}\right)=\gamma m c \Rightarrow E=\gamma m c^{\alpha} \\
& P_{x}=\gamma\left(D_{x}^{\prime}+\beta E^{\prime} / c\right)=\gamma \beta m c \rightarrow p_{x}=\gamma \beta m c^{\alpha}
\end{aligned}
$$

now in $s^{\prime}\left(\pi^{0}\right.$ rest frone) from maneutun conservation $E_{1}^{\prime}=\frac{n^{\prime \prime}}{2}=p_{1, x}^{\prime}$
$E_{i}^{\prime}=\frac{\mu}{2}=-p_{\alpha}^{\prime} \neq$. Then going into S (moving at v_{0}):

$$
\begin{aligned}
& E_{t}=\gamma\left(E_{1}^{\prime}+\beta p_{1}^{\prime}\right)=\frac{M \gamma}{\alpha} \gamma(1+\beta) \\
& E_{\alpha}=\gamma\left(E_{\alpha}^{\prime}+\beta p_{\alpha}^{\prime}\right)=\frac{M}{\alpha} \gamma(1-\beta)
\end{aligned}
$$

(3) $P=p_{1}+p_{k}(4$-vectors) depends on metric cusec

$$
p^{2}=n^{2}=p_{1}^{x^{2}}+x^{x^{2}}+\alpha p_{i} p_{\alpha}=\alpha\left[E_{1} E_{2} \underline{\psi} \underline{p_{2}} \cdot \vec{p}_{*}^{2}\right]
$$

as $x y=0$
so $x^{2}=2 E_{1} E_{2}(1-\cos \theta) \Rightarrow E_{1} E_{2}=\frac{n^{2}}{2(1-\cos \theta)} \quad \theta=0 \quad E_{1} E_{2}=\infty$

$$
\theta=\pi \quad E_{1} E_{2}=\frac{\mu^{2}}{2}
$$

from energy conservation

$$
\begin{aligned}
& E=E_{1}+E_{2} \quad E_{2}=\frac{1}{E_{1}} \frac{\mu^{2}}{2(1-\cos \theta)} \\
& =E_{1}+\frac{1}{E_{1}} \frac{n^{2}}{2(1-\cos \theta)} a x^{2}+b x+c=0 \\
& \Rightarrow F_{1} E=E_{1}^{2}+\frac{x^{2}}{2(1-\cos \theta)} \Rightarrow E_{1}^{2}-E \bar{E}_{1}+\frac{x^{2}}{\alpha(1-\cos \theta)}=0 \\
& \Rightarrow E_{1}=-\frac{(-E)}{2} \pm \frac{1}{2} \sqrt{E-\frac{4 n^{2}}{2(1-\cos \theta)}}=\frac{E}{2} \pm \sqrt{\frac{E^{2}-\frac{\mu^{2}}{2(1-\cos \theta)}}{\mu}}=\frac{E}{2} \pm \sqrt{\frac{E}{4}^{2}-\frac{\mu^{2}}{4}} \\
& \text { smallest } \\
& \text { value } \theta=\pi
\end{aligned}
$$

So $E_{1}=\frac{E}{2} \pm \frac{1}{2} \cdot \underbrace{\sqrt{E^{2}-\mu^{2}}}_{|\vec{p}|}=\frac{E}{2} \pm \frac{1}{2}|\vec{p}|$

$$
=\frac{\gamma m_{1}{ }^{0}}{2}=\frac{1}{2} \gamma \beta m \pi^{0}=\frac{\gamma m \pi^{0}}{2}(1 \pm \beta)
$$

hence the maximum energy is $\frac{\gamma_{n} \eta^{\circ}}{2}(1+\beta)$ and -minimum $\frac{\gamma_{m \neq} 0}{2}(1-\beta)$

Spring 2001 \# 11 ($p 1$ of 4)
consider the penetration of a magnetic field B into a conducting medium by -diffusion and convection.
The medium obeys an ohm's law of the form $\vec{E}+\vec{V} \times \vec{B}=\eta \vec{J}$, when \vec{E} is the electric fold, $\vec{J}=-n e \vec{v}$ is the current density of electrons of velocity $\overrightarrow{\text { on d }}$ number dusity n, add η is a casstent niform scalar resistivity.
(a) Using Faraday's law and Ampere's law (neglect displacement current) obtain a differential equation for the magnetic field.
Ampere's law with the displacement current is given by

$$
\begin{equation*}
\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{f}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t} \tag{1}
\end{equation*}
$$

apply " $\nabla \times$ " to both sides

$$
\begin{equation*}
\nabla \times(\nabla \times \vec{B})=\frac{\mu \pi}{c} \nabla \times \vec{j}+\frac{1}{c} \frac{\partial}{\partial \pi}(\nabla \times \vec{E}) \tag{2}
\end{equation*}
$$

From Faraday's law, we know $\nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$, So, eq (2) becomes

$$
\nabla(\nabla, \vec{B})-\nabla^{2} \vec{B}=4 \frac{\pi}{C}(\nabla \times \vec{j})-\frac{1}{C^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
$$

when we used the vector relation

$$
\nabla \times(\nabla \times \vec{C})=\nabla(\nabla \cdot \vec{C})-\nabla^{2} \vec{C}
$$

\sim pecan use $\sin c$ dalian w/ cartesian cooed.
Since $\nabla \cdot \bar{B}=0$, we have

$$
\begin{equation*}
\frac{\partial^{2} \vec{B}}{\partial t^{2}}-c^{2} \nabla^{2} \vec{B}=4 \pi c(\nabla \times \vec{j}) \tag{3}
\end{equation*}
$$

This is a general result.
For our problem, we ar toll to ignore the displacement current in eq (1) and ane giver that $\vec{E}+\vec{V} \times \vec{B}=\eta \vec{j}$ is valid. So ignoring the displacement cor rent, eq (3) becomes

$$
\begin{equation*}
\nabla^{2} \vec{B}=-\frac{4 \pi}{c}(\nabla \times \vec{j}) \tag{4}
\end{equation*}
$$

where we con get an expression for $\nabla \times \vec{j}$ from On's law eq. That is,

$$
\begin{equation*}
\eta \nabla \times \vec{y}=\nabla \times\left(\vec{E}+\frac{\vec{V}}{c} \times \vec{B}\right) \tag{5}
\end{equation*}
$$

Spring 2001 \# 11 Cp 2 of D
substituting eq (5) into eq (4) yields

$$
\nabla^{2} \vec{B}=-\frac{4 \pi}{c \eta} \nabla \times(\vec{E}+\vec{E} \times \vec{B})=-\frac{4 \pi}{c \eta}[\nabla \times \vec{E}+\nabla \times(\overrightarrow{\vec{E}} \times \vec{B})]
$$

From what we are given, wee now that $\vec{j}=-n e \vec{v} \Rightarrow \vec{v}=-\frac{1}{n e} \vec{j}$, Using this result andtarady's law, we get

$$
\begin{equation*}
\nabla^{2} \vec{B}=-\frac{4 \pi}{c \eta}\left[-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}-\frac{1}{e} \nabla \times\left(\frac{\vec{j} \times \vec{B}}{c n}\right)\right] \tag{6}
\end{equation*}
$$

Now, from Ampere's law (ignoring the displace mart current), we know that

$$
\vec{\jmath}=\frac{c}{4 \pi} \nabla \times \vec{B}
$$

So, making this substitution into eq (6) we get

$$
\nabla^{2} \vec{B}=+\frac{4 \pi}{2^{2} \eta} \frac{\partial \vec{B}}{\partial t}+\frac{4 \pi}{c} \frac{h}{\eta e c} \frac{c}{4 \pi} \nabla \times\left[\frac{(\nabla \times \vec{B}) \times \vec{B}}{n}\right]
$$

the position of the parartheses is important since $\nabla \times(\vec{B} \times \vec{B})=0$, Barraging terms, we get

$$
\begin{equation*}
\frac{\partial \vec{B}}{\partial t}-\frac{c^{2} n}{4 \pi} \nabla^{2} \vec{B}=\frac{-1}{e} \nabla \times\left[\frac{(\nabla \times \vec{B}) \times \vec{B}}{n}\right] \tag{7}
\end{equation*}
$$

(b) Now consider a simple baudary problem: the conducting medium's located is the half-space $x>0$. The exists a density gradient of scale length $L=\frac{n}{\left(\frac{d n}{d y}\right)}$, At $t=0$ a uniform field B_{0} along z is applied in the space $x<0$. write. down the differential equation for the field $B_{z}(x, t)$. Describe which terms describe field diffusion $\left(t \alpha x^{2}\right)$ ad convection $(t \alpha x)$.
we just want the D.E. for $B(x, t)$, So, let $\vec{B}=B_{z}(x, t) \hat{z}$. Then

$$
\nabla^{2} \stackrel{\rightharpoonup}{B}=\frac{\partial^{2} B z}{\partial x^{2}} \hat{Z}
$$

Spring 2001\#11 $c_{p} 30 F 4$
and

$$
\begin{aligned}
(\nabla \times \vec{B}) \times \vec{B} & =\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\partial x & \partial y & \partial_{z} \\
0 & 0 & B_{z}(x, t)
\end{array}\right| \times B_{z}(x, t) \hat{z}=-\frac{\partial B_{z}}{\partial x} \hat{y} \times B_{z} \hat{z} \\
& =-B_{z} \frac{\partial B_{z}}{\partial x} \hat{x}
\end{aligned}
$$

$S_{0, \text { we get }}$

$$
\begin{equation*}
\frac{\partial B_{z}}{\partial t} \hat{z}-\frac{c^{2} \eta}{4 \pi} \frac{\partial^{2} B_{z}}{\partial x^{2}} \hat{z}=\frac{+1}{e} \nabla x\left[\frac{B_{z}}{n} \frac{\partial B_{z}}{\partial x} \hat{x}\right] \tag{8}
\end{equation*}
$$

where $n=L \frac{d n}{d y}$. That is, n has a depuduce on y.
(6) Show that the solution $B=\left[1-\left(\frac{x}{B_{0}}\right) x\right]^{-1}$ satisfies the differential equation in steady-state where $K=\left(\mu_{0} n e L\right)^{-1}$ and $D=\frac{n}{\mu_{0}}$.

$$
\frac{K}{D}=\frac{1}{n e L n} \text {. note that steady-state } \Rightarrow \frac{\partial B}{\partial t}=0 \text {. }
$$

So, eq (8) becomes

$$
\begin{aligned}
& \frac{c^{2} n}{4 \pi} \frac{\partial^{2}}{\partial x^{2}}\left[1-\left(\frac{k B_{0}}{D}\right)_{x}\right]^{-1} \hat{z}=\frac{-1}{e} \nabla \times\left\{\frac{\left[1-\left(\frac{\left.k B_{0}\right)}{b}\right)_{x}\right]^{-1}}{n(\dot{y})} \frac{\lambda\left[1-\left(\frac{k B_{0}}{D}\right) \times T^{1}\right.}{\partial x} \hat{x}\right\} \\
& \Rightarrow \frac{c^{2} \eta}{4 \pi}\left[\frac{-2\left(\frac{k B_{0}}{A}\right)^{2}}{\left[1-\left(\frac{k B_{0}}{D}\right) x\right]^{3}}\right] \hat{z}=-\frac{1}{e} \nabla_{x}\left[\frac{1}{n(y)} \frac{1}{\left(1-\left(\frac{\left.k B_{0}\right) x}{5}\right)\right.} \frac{\left(\frac{-k B_{0}}{D}\right)}{\left[1-\left(\frac{\left.k B_{0}\right)}{\Delta}\right]^{2}\right.} \hat{x}\right] \\
& \Rightarrow \frac{-2 e c^{2} n}{4 \pi}\left(\frac{k B_{0}}{\Delta}\right) \frac{\hat{z}}{\left[1-\left(\frac{\left.k B_{b}^{2}\right)}{}\right)\right]^{3}}=\nabla \times\left[\frac{1}{n(y)} \frac{\hat{x}}{\left[1-\left(\frac{k B_{0}}{D}\right) \times\right]^{3}}\right] \\
& =\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\partial x & \partial y & \partial z \\
{[3} & 0 & 0
\end{array}\right|=\hat{z} \frac{\partial}{\partial y}[]=\frac{\hat{z}}{\left[1-\left(\frac{\partial_{0}}{D}\right) x\right]^{3}} \frac{\partial}{\partial y}\left[\frac{1}{N(y)}\right]
\end{aligned}
$$

Spring 2001 (p 11 (pf)
So, this becomes

$$
\begin{aligned}
& \frac{-e c^{2} \eta}{2 \pi}\left(\frac{K B_{0}}{D}\right)=\frac{\partial}{\partial y}\left[\frac{1}{n(y)}\right]=\frac{-1}{[n(y)]^{2}} \frac{\partial n}{\partial y} \\
\Rightarrow & \frac{-e c^{2} B_{0}}{2 \pi^{-}} \frac{1}{n e L \eta}=\frac{-L}{\left[L \frac{d n}{d y}\right]^{2}} \frac{d}{d y}\left(\frac{d n}{d y}\right)=-\frac{1}{L} \\
\Rightarrow \quad & \frac{2^{2} B_{0}}{2 \pi n}=1
\end{aligned}
$$

\rightarrow this does not sem satisfied $n 10$.... ithink it is because i went from anksuaits to cays units... oh well..
(d) Show that in the absence of diffusion $(\eta=0)$ a propagating field $B_{z}(x-v t)$ satisfies the differential equation. Find the propagation velocity in terms of B_{0} ad ∇n.

$$
\text { if } \begin{aligned}
& \eta=0 \text {, ion } \begin{aligned}
\frac{\partial B_{z}}{\partial t} & =\frac{-1}{e} \nabla \times\left[\frac{B_{z}}{n} \frac{\partial B_{z}}{\partial x} \hat{x}\right] \\
& \Rightarrow-5 B_{z}
\end{aligned}=-\frac{1}{e} \nabla \times\left[\frac{B_{z}}{n} B_{z} \hat{x}\right]=-\frac{B_{z}^{2}}{e}\left(-\frac{1}{[n y)]^{2}} \frac{\partial n}{\partial y}\right) \\
& \Rightarrow v=-\frac{B_{z}}{e} \frac{1}{n^{2}} \frac{\partial n}{\partial y} \\
& \therefore v=-\frac{B_{z}}{e n^{2}} \frac{\partial n}{\partial y} \Rightarrow v \text { is in the } z \text {-direction }
\end{aligned}
$$

The "official" answer claims that

$$
v \propto \vec{B} \times \nabla_{n}
$$

But if $\vec{v} \perp \vec{B}$ and \vec{B} is in the z-druction, how is v in the Z-direction given above

Solution Problem \#12
Spring 2001 Comp
A magnetic field is given by

$$
\vec{B}=\left(B_{x}, B_{y}, B_{z}\right)=((1-\gamma) x,(-1+\gamma) y,-2 \gamma z)
$$

where γ is a constant
a) Show that this field satisfies Mapowells equations and may be derived from a acalom potential

I will work in cantesion coordinates

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{B}=\frac{d B x}{d x}+\frac{d B_{y}}{d y}+\frac{d B_{z}}{d z} \\
&=(1-\gamma)+(-1+\gamma)-2 \gamma=0 \\
& \Rightarrow \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{B}=\left(\frac{\partial B_{z}}{\partial y}-\frac{\partial B_{y}}{\partial z}\right) \tilde{x}+\left(\frac{\partial B x}{d z}-\frac{\partial B_{z}}{d x}\right) \hat{y}+\left(\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}\right) \hat{z} \\
& \vec{\nabla} \times \vec{B}=0 \text { (there are no cross terms) }
\end{aligned}
$$ therefore the field nay be derived from scala potential $\quad \vec{B}=-\vec{\nabla} \Phi_{m}$

b) For $\gamma=0$, find the equation for the field lives, the wetter potential, and thew that the field lines one lines of content rector potential.
for $\gamma-$ a

$$
\vec{E}=(x,-y, 0)
$$

The equation for the field lines is

$$
\begin{aligned}
& \vec{B}=x \hat{x}-y \hat{y} \\
& \vec{B}=\vec{\nabla} x \vec{A} \\
& B_{x}=x=\frac{\partial A_{z}}{\partial y}-\frac{\partial A y}{\partial z} \\
& B_{y}=-y=\frac{\partial A x}{\partial z}-\frac{\partial A z}{\partial x} \\
& B_{z}=0=\frac{\partial A y}{\partial x}-\frac{\partial A x}{\partial y}
\end{aligned}
$$

let $A_{x}=0$

$$
\begin{array}{rlr}
x=\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z} & A_{y}=C_{y}(y, z) \\
-y=-\frac{\partial A_{z}}{\partial x} & A_{z}=x y+C_{z}(y, z) \\
0 & =\frac{\partial A_{y}}{\partial x} & A_{x}=0
\end{array}
$$

$$
\begin{aligned}
& \vec{A}=A_{z} \hat{z}=x y \hat{z} \\
& \vec{\nabla} \times \vec{A}=\vec{B}=\frac{\partial A_{z}}{\partial y} \hat{x}+\left(-\frac{\partial A_{z}}{\partial x} ; \hat{y}=x \hat{x}+y \hat{y}\right.
\end{aligned}
$$

Let $A=\operatorname{const}=x y$

$$
\Rightarrow x=\frac{\cos \Delta t}{y} \quad y=\frac{\operatorname{const}}{x}
$$

$\ln x=\ln$ cost $-\ln y$

So, the slope of the lines that define a equipotential surforec is the save as the slope of
 the \vec{P} field.
C) $\gamma=0$ see absence

Stat. Mech. S'O4\#6; S'OI\#13

For relativistic bosons

$$
E=|\vec{p}| c
$$

a) First we need the density of states D(E) for 3-D:

$$
\frac{L}{\partial / 2}=x \Rightarrow \frac{\partial L}{x}=\lambda ; \quad p=\frac{h}{\partial}=\frac{h}{\partial L} x
$$

$$
\begin{aligned}
& E=c|\vec{p}|=c\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{1}\right)^{1 / 2}=\frac{h c}{2 c}\left(x_{x}^{2}+x_{y}^{1}+x_{z}^{2}\right)^{1 / \alpha} \\
& =\frac{h c}{\partial l} x \Rightarrow x=\frac{\partial l}{x c} E \Rightarrow d x=\frac{\partial l}{x c} d E . \\
& \frac{(\lambda s+1)}{8} \int_{0}^{\infty} 4 \pi x^{2} d x=\frac{(\alpha s+1)}{8} \int 4 \pi\left(\frac{2 L}{n c}\right)^{3} E^{2} d E=\int_{0}^{\infty} \underbrace{\frac{(2 s+1) 4 \pi)^{3}}{(4 c)^{4}}} E^{L^{3}} d E \\
& D(E)=\frac{(2 s+1) 4 \pi V}{\left(h c^{3}\right.} E^{2}
\end{aligned}
$$

The condition for $B E C$ is determined by the boson temperature T_{B}, which can be derived followingly:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1}{e^{E / k T}-1} D(E) \alpha E=N \text { for } T=T_{B} \\
& \Rightarrow \frac{(2 s+1) 4 \pi V}{(h c)^{3}} \int_{0}^{\infty} \frac{E^{2}}{e^{E / k T}-1} d E=\frac{(2 s+1) 4 \pi V(k T)^{3}}{(h c)^{3}} \int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x \\
& x=E / k T \Rightarrow E=k T x \Rightarrow d E=k T \alpha x \quad L \quad=2.404
\end{aligned}
$$

hence

$$
\begin{gathered}
\frac{(2 s+1) 4 \pi V}{(h c)^{3}}\left(k T_{B}\right)^{3} 2 \cdot 404=N \\
\Rightarrow\left(K T_{B}\right)^{3}=\frac{N}{v} \frac{(h c)^{3}}{(d s+1) 4 \pi \cdot 2.404} \\
\Rightarrow T_{B}=\left(\frac{N}{k^{3} v} \frac{(h c)^{3}}{(2 s+1) 4 \pi \cdot 2.404}\right)^{1 / 3}
\end{gathered}
$$

b) yes it does occur - Dust derive $D(E)$ for 2 -b case and repeat above steps:

$$
\begin{aligned}
& E=\frac{h c}{d L}\left(x_{x}^{2}+x_{y}^{2}\right)=\frac{h_{c}}{d c} x \Rightarrow x=\frac{d L}{h_{L}} E \Rightarrow d x=\frac{\partial L}{h c} d E \\
& \frac{(d s+1)}{4} \int_{0}^{\infty} 2 \pi x d x=\frac{(2 s+1)}{4} \int_{0}^{\infty} 2 \pi\left(\frac{\lambda L}{h c}\right) E d E=\int_{0}^{\infty} \underbrace{\frac{(\alpha s+1) 2 \pi)^{2}}{\left(h u^{2}\right.}} E d E \\
& D(E)=\frac{\left(d_{s}+1\right) 2 \pi A}{(4 C)^{2}} E \\
& \begin{array}{l}
\int_{0}^{\infty} \frac{(2 s+1) 2 \pi A}{(k c)^{2}} \frac{E}{e^{E / k I_{1}}} d E=\frac{(d s+1) d \pi A}{(k c)^{2}}(k T)^{2} \int_{0}^{\infty} \frac{x}{e^{x}-1} d x=N \\
x \equiv E / k T \Rightarrow E=k T x \Rightarrow d E=k T d x
\end{array}
\end{aligned}
$$

so.

$$
\left(k T_{B}\right)^{2}=\frac{N}{A} \frac{3(2 s+1)}{\pi^{3}\left(h c c^{2}\right.} \Rightarrow T_{B} 2\left(\frac{N}{k^{2} A} \frac{3(2 s+1)}{\pi^{3}(h c)^{2}}\right)^{k / 2}
$$

Stat, Mech, S'04\#6
c) BEC does not occur in $1-D$ case.

$$
\begin{gathered}
E=c|\vec{p}|=\frac{h c}{\lambda c} x \Rightarrow \frac{x+\frac{d L}{h c} E \Rightarrow d x=\frac{\partial L}{h c} d E}{\frac{(2 s+1)}{2} \int_{0}^{\infty} d x=\int_{0}^{\infty} \frac{(\alpha s+1)}{x} \frac{x L}{h c}} d E \\
D(E)=\frac{(2 s+1) L}{h c}
\end{gathered}
$$

$$
\int_{0}^{\infty} \frac{(\lambda+1) c}{n c} \frac{d E}{e^{-E / k I} 1}=\frac{(d s+1)<}{k c} k T \int_{0}^{\infty} \frac{d x}{e^{x}-1}=x r d \text { fired. }
$$

$x \equiv E / k T \Rightarrow \alpha E=k T d x \quad$ undefined

Bose-Einstein Condensation in 1, 2 and 3 dimensions for massive and massless bosons in a box

I. MASSIVE BOSONS

Consider a gas of massive, non-interacting, non-relativistic, identical, spin-0 bosons. The total number of bosons in a given state with energy ϵ is given by

$$
\begin{equation*}
N=\int_{0}^{\infty} \bar{n}(\epsilon) d N=\int_{0}^{\infty} \bar{n}(\epsilon) D(\epsilon) d \epsilon \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{n}(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}-1} \tag{2}
\end{equation*}
$$

is the quantum distribution function for bosons, and

$$
\begin{equation*}
D(\epsilon)=\frac{d N}{d \epsilon} \tag{3}
\end{equation*}
$$

is the "density of states" function. For a particle in a box of side length L, the contained modes are quantized by the condition that the wave function vanish at the walls, $\Psi(\mathrm{x}, \mathrm{y}, \mathrm{z}=0)=\Psi(\mathrm{x}, \mathrm{y}, \mathrm{z}=\mathrm{L})=0$. Thus for each spatial dimension i , we have the condition

$$
\begin{equation*}
k_{i}=\frac{n_{i} \pi}{L} \tag{4}
\end{equation*}
$$

In 3D:

$$
\begin{equation*}
D_{3 D}(\epsilon)=\frac{d N}{d \epsilon}=\frac{d N}{d n} \frac{d n}{d \epsilon}=4 \pi n^{2} \frac{d n}{d \epsilon} \tag{5}
\end{equation*}
$$

For a massive particle in the box the energy is quadratic in the momentum,

$$
\begin{equation*}
\epsilon=\frac{1}{2 m}\left(p_{x}{ }^{2}+p_{y}{ }^{2}+p_{z}{ }^{2}\right)=\frac{\hbar^{2}}{2 m}\left({k_{x}}^{2}+{k_{y}}^{2}+{k_{z}}^{2}\right)=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}\left(n_{x}{ }^{2}+n_{y}{ }^{2}+n_{z}{ }^{2}\right)=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2} \tag{6}
\end{equation*}
$$

thus

$$
\begin{equation*}
n=\frac{L}{\hbar \pi} \sqrt{2 m \epsilon}, \quad \text { and } \quad d n=\frac{L}{2 \hbar \pi} \sqrt{\frac{2 m}{\epsilon}} d \epsilon \tag{7}
\end{equation*}
$$

Combining terms into the density of states,

$$
\begin{equation*}
D_{3 D}(\epsilon)=4 \pi \frac{2 m L^{2}}{\hbar^{2} \pi^{2}} \epsilon\left(\frac{L}{2 \hbar \pi} \sqrt{\frac{2 m}{\epsilon}}\right)=2 \pi\left(\frac{L}{\hbar \pi}\right)^{3}(2 m)^{\frac{3}{2}} \sqrt{\epsilon} \tag{8}
\end{equation*}
$$

The total number of particles can now be expressed as

$$
\begin{align*}
N_{3 D} & =\frac{2 \pi}{8}\left(\frac{L}{\hbar \pi}\right)^{3}(2 m)^{\frac{3}{2}} \int_{0}^{\infty} \frac{\sqrt{\epsilon}}{e^{\beta(\epsilon-\mu)}-1} d \epsilon \\
& =\frac{2 \pi V}{h^{3}}(2 m)^{\frac{3}{2}} \int_{0}^{\infty} \frac{\sqrt{\epsilon}}{e^{\beta(\epsilon-\mu)}} \frac{1}{1-e^{-\beta(\epsilon-\mu)}} d \epsilon \\
& =\frac{2 \pi V}{h^{3}}(2 m)^{\frac{3}{2}} \int_{0}^{\infty} \frac{\sqrt{\epsilon}}{e^{\beta(\epsilon-\mu)}}\left(\sum_{l=0}^{\infty} e^{-\beta l(\epsilon-\mu)}\right) d \epsilon \\
& =\frac{2 \pi V}{h^{3}}(2 m)^{\frac{3}{2}} \int_{0}^{\infty} \sqrt{\epsilon}\left(\sum_{l=1}^{\infty} e^{-\beta l(\epsilon-\mu)}\right) d \epsilon \tag{9}\\
& =\frac{2 \pi V}{h^{3}}(2 m)^{\frac{3}{2}} \int_{0}^{\infty} \sqrt{\epsilon}\left(\sum_{l=1}^{\infty} e^{-\beta l \epsilon} e^{\beta l \mu}\right) d \epsilon \\
& =\frac{V}{h^{3}}\left(\frac{2 m \pi}{\beta}\right)^{\frac{3}{2}} \sum_{l=1}^{\infty} \frac{e^{\beta l \mu}}{l^{\frac{3}{2}}}
\end{align*}
$$

where the factor of 8 has been introduced since we are including only the positive values of n, and thus only the first quadrant of the 3 D sphere in n -space. The last sum on the right is a polylogarithm function, also called the the weighted Zeta function (weighted by the exponential factor). We have used the expansion condition $e^{-\beta(\epsilon-\mu)}<1$, which is validated by the physical mandate that we do not obtain negative values for $\bar{n}(\epsilon)$. It follows then that we posit the restriction $\epsilon>\mu$.

From the expression it can be seen that $N_{3 D}$ is a maximum at $\mu=0$, which is therefore when the condensate occurs. The sum can be evaluated and we arrive at the condensate phase transition temperature,

$$
\begin{equation*}
N_{3 D}=\frac{V}{h^{3}}\left(\frac{2 m \pi}{\beta}\right)^{\frac{3}{2}} \underbrace{\sum_{l=1}^{\infty} \frac{1}{l^{\frac{3}{2}}}}_{\zeta\left(\frac{3}{2}\right)} \approx \frac{V}{h^{3}}\left(\frac{2 m \pi}{\beta}\right)^{\frac{3}{2}}(2.612) \quad \Longrightarrow \quad T_{c} \approx \frac{h^{2}}{2 m \pi k_{b}}\left(\frac{N_{3 D}}{2.612 V}\right)^{\frac{2}{3}} \tag{10}
\end{equation*}
$$

For massive bosons in 2D we follow the same procedure. The density of states is

$$
\begin{equation*}
D_{2 D}(\epsilon)=\frac{d N}{d \epsilon}=\frac{d N}{d n} \frac{d n}{d \epsilon}=2 \pi n \frac{d n}{d \epsilon} \tag{11}
\end{equation*}
$$

The energy has a similar form as previously

$$
\begin{equation*}
\epsilon=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2} \tag{12}
\end{equation*}
$$

Plugging into the integral for $N_{2 D}$, we note that the density of states here does not depend on the energy. Consequently the integral is over only the distribution function, with a factor of $1 / 4$ that comes from dealing with only the first quadrant of the 2 D sphere in n -space.

$$
\begin{equation*}
N_{2 D}=\frac{2 \pi}{4}\left(\frac{L}{\hbar \pi}\right)^{2} \frac{2 m}{2} \int_{0}^{\infty} \frac{1}{e^{\beta(\epsilon-\mu)}-1} d \epsilon=\frac{2 \pi m A}{h^{2} \beta} \sum_{l=1}^{\infty} \frac{e^{\beta l \mu}}{l} \tag{13}
\end{equation*}
$$

For the condensate to occur, $\mu=0$ and the above expression diverges, $\zeta(1) \rightarrow \infty$. Hence, the condensate does not occur for massive bosons in 2D.

Lastly for the 1D case, the density of states is simply

$$
\begin{equation*}
D_{1 D}(\epsilon)=\frac{d N}{d \epsilon}=\frac{d N}{d n} \frac{d n}{d \epsilon}=(1) \frac{d n}{d \epsilon} \tag{14}
\end{equation*}
$$

The energy is, again, the same as above

$$
\begin{equation*}
\epsilon=\frac{1}{2 m}\left(p_{x}^{2}\right)=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2} \tag{15}
\end{equation*}
$$

So the total number is

$$
\begin{equation*}
N_{1 D}=\frac{L}{2 h} \sqrt{2 m} \int_{0}^{\infty} \frac{1 / \sqrt{\epsilon}}{e^{\beta(\epsilon-\mu)}-1} d \epsilon=\frac{L}{2 h} \sqrt{\frac{2 \pi m}{\beta}} \sum_{l=1}^{\infty} \frac{e^{\beta l \mu}}{l^{\frac{1}{2}}} \tag{16}
\end{equation*}
$$

There is a factor of $1 / 2$ from dealing with only positive n values. Again, this expression is non-physical for $\mu=0$, so the condensate for massive bosons in 1D does not occur.

II. MASSLESS BOSONS

For massless bosons by contrast, we must express their energy relativistically. Thus from the relation

$$
\begin{equation*}
\epsilon=c|p| \tag{17}
\end{equation*}
$$

it is evident that the energy is linear in momentum. This alters the conditions for the BEC to occur. In every case the energy is given as

$$
\begin{equation*}
\epsilon=c \hbar|k|=c \hbar \frac{n \pi}{L} \quad \Longrightarrow \quad n=\frac{\epsilon L}{c \hbar \pi} \tag{18}
\end{equation*}
$$

For $\mathbf{3 D}$ the density of states is

$$
\begin{equation*}
D_{3 D}(\epsilon)=4 \pi n^{2} \frac{d n}{d \epsilon}=4 \pi\left(\frac{L}{c \hbar \pi}\right)^{3} \epsilon^{2} \tag{19}
\end{equation*}
$$

so the total number is

$$
\begin{equation*}
N_{3 D}=\frac{4 \pi}{8}\left(\frac{L}{c \hbar \pi}\right)^{3} \int_{0}^{\infty} \frac{\epsilon^{2}}{e^{\beta(\epsilon-\mu)}-1} d \epsilon=\frac{8 \pi V}{(\operatorname{ch\beta })^{3}} \sum_{l=1}^{\infty} \frac{e^{\beta l \mu}}{l^{3}} \stackrel{=}{=} \frac{8 \pi V}{(\operatorname{ch\beta })^{3}} \zeta(3) \approx \frac{8 \pi V}{(\operatorname{ch\beta })^{3}} 1.1202 \tag{20}
\end{equation*}
$$

Now we can calculate the phase transition temperature for massless bosons in 3D:

$$
\begin{equation*}
T_{c} \approx\left(\frac{N_{3 D}}{8 \pi V(1.1202)}\right)^{\frac{1}{3}} \frac{c h}{k_{b}} . \tag{21}
\end{equation*}
$$

In $2 \mathbf{D}$ the density of states is

$$
\begin{equation*}
D_{2 D}(\epsilon)=2 \pi n \frac{d n}{d \epsilon}=2 \pi\left(\frac{L}{c \hbar \pi}\right)^{2} \epsilon \tag{22}
\end{equation*}
$$

Note that now the 2D density of states does depend on the energy. The total number of particles is

$$
\begin{equation*}
N_{2 D}=\frac{2 \pi}{4}\left(\frac{L}{c \hbar \pi}\right)^{2} \int_{0}^{\infty} \frac{\epsilon}{e^{\beta(\epsilon-\mu)}-1} d \epsilon=\frac{2 \pi A}{(\operatorname{ch\beta })^{2}} \sum_{l=1}^{\infty} \frac{e^{\beta l \mu}}{l^{2}} \stackrel{\mu \rightarrow}{=} \frac{2 \pi A}{(\operatorname{ch\beta })^{2}} \zeta(2)=\frac{2 \pi A}{(\operatorname{ch\beta })^{2}}\left(\frac{\pi^{2}}{6}\right) \tag{23}
\end{equation*}
$$

This result shows that massless bosons in 2D do indeed form a condensate, whereas massive bosons in 2D do not. The temperature of condensation here is

$$
\begin{equation*}
T_{c}=\left(\frac{3 N_{2 D}}{A \pi^{3}}\right)^{\frac{1}{2}} \frac{c h}{k_{b}} \tag{24}
\end{equation*}
$$

Finally, for the 1D system of massless bosons we have a density of states that is independent of energy, just like the 2 D massive boson system.

$$
\begin{equation*}
D_{1 D}(\epsilon)=\frac{d n}{d \epsilon}=\frac{L}{c \hbar \pi} . \tag{25}
\end{equation*}
$$

Again, the integral diverges for $\mu=0$,

$$
\begin{equation*}
N_{1 D}=\frac{L}{2 c \hbar \pi} \int_{0}^{\infty} \frac{1}{e^{\beta(\epsilon-\mu)}-1} d \epsilon=\frac{L}{\operatorname{ch}} \sum_{l=1}^{\infty} \frac{e^{\beta l \mu}}{l} \mu \rightarrow 0 \frac{L}{\operatorname{ch\beta }} \zeta(1) \Rightarrow \infty \tag{26}
\end{equation*}
$$

and thus in the 1 D massless case we find the same condition as the massive bosons in 1 D , i.e., the condensate is forbidden in this geometry.

III. CONCLUSION

For the particle-in-a-box model, BEC's occur for both massive and massless bosons in 3D. They occur only in the massless case for 2 D , and never for 1D. This model can in principle be applied to higher spatial dimensions whereupon evaluation of the total number of particles would be an integral of the form

$$
\begin{array}{ll}
N_{q D} \sim \int_{0}^{\infty} \frac{\epsilon^{(q-2) / 2}}{e^{\beta(\epsilon-\mu)}-1} d \epsilon \underset{\mu \rightarrow 0}{\sim} \zeta\left(\frac{q}{2}\right) & \text { (Massive) } \\
N_{q D} \sim \int_{0}^{\infty} \frac{\epsilon^{(q-1)}}{e^{\beta(\epsilon-\mu)}-1} d \epsilon \underset{\mu \rightarrow 0}{\sim} \zeta(q) & \text { (Massless) } \tag{27}
\end{array}
$$

where q is the dimension of the space.

Spring 2001 \# 14 .

$$
\begin{aligned}
& F=-k T \ln z \quad z=\left[\varepsilon_{r} e^{-B \varepsilon_{r}}\right]^{N} \text { or } 9.4 .4 \text { reit. } \\
& F=-k T N \ln \left[\varepsilon_{r} e^{-\beta \varepsilon_{r}}\right] \\
& \approx z_{1}{ }^{N} \\
& \text { pase } 344 \\
& =-k T N \ln \left[\varepsilon_{r} e^{-\frac{\varepsilon_{r}}{K T}}\right] \\
& z_{1}=\varepsilon_{r} e^{-\varepsilon_{r} \beta}=\frac{1}{h_{0}^{3}} \int_{-0}^{\infty} e^{-\beta} \frac{r^{2}}{2 m} d^{3} \rho \int_{0}^{1} d r
\end{aligned}
$$

$$
\begin{aligned}
& =(\sqrt{n-2 m k T})^{3} \frac{V}{n_{0}^{3}} \\
& =\frac{V}{h_{0} 3}(2 \pi m k T)^{3 / 2} \quad \text { leif } 7.26 \\
& F=-k T N \ln \left[y(2 \pi m K T)^{3 / 2}\right]
\end{aligned}
$$

(b) For the electronic motion cericited statese)

$$
\begin{aligned}
& z_{1}=\sum_{r} e^{-\varepsilon_{r} \beta}+\sum_{d} \Omega_{0} e^{\beta \varepsilon_{d}} \quad \varepsilon_{d} \text { is negative. } \\
& \text { degeneracy of ground state. } \\
& \Rightarrow F=-k T N \ln [Z]]_{0}^{3} \sum_{d} \Omega_{0} e^{\beta \varepsilon_{d}} \text { diverges since } \\
& \text { you have a } \\
& \text { positive exponent. }
\end{aligned}
$$

The cut off in areal 945 is that the ground state is smaller than the next closest state by a wide energy gap so electrons have an overwhelming probability to be in the ground state.

Problem \#14 Spring 2ad
a)

$$
\begin{aligned}
& F=-K T \ln Z \\
& Z=\frac{1}{N!}\left(\frac{V}{\left(2 \pi K^{2} / m K T\right)^{3 / 2}}\right)^{N} \\
& F=-K T\left[N \ln \left(\frac{V}{\left(2 \pi \hbar^{2} / m K T\right)^{3 / 2}}\right)-\ln N!\right]
\end{aligned}
$$

$$
a \operatorname{cis}^{j \theta} \int_{i} z=\sum_{i} e^{-\beta \epsilon_{i}} \rightarrow e^{-\beta \frac{p^{2}}{2 m}} \frac{d \vec{p} d \vec{r}}{h_{3 N}^{\cos }}
$$

$$
\begin{aligned}
& F=-K T\left[N \ln V-\frac{3}{2} N \ln \left(2 \pi \hbar^{2}\right)+\frac{3}{2} N \ln M K T-\ln N!\right] \\
& \left.F=-N K T\left[\ln V-\frac{3}{2} \ln \left(2 \pi K^{2}\right)+\frac{3}{2} \ln \ln K T\right)-\ln N-1\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \\
& \text { b) } \left.\quad z=z^{\prime} z_{q}=\frac{1}{N!}\left(\frac{V}{\left(2 \pi \pi^{2} / m k T\right.}\right)^{3 / 2}\right)^{N} \sum_{i} e^{-\vec{\beta} \epsilon_{i}} \\
& \text { where } \epsilon_{i}=\frac{-\alpha^{2} m}{2 n^{2}}=\frac{-m e^{4}}{2 \hbar^{2} n^{2}} \\
& \epsilon_{i}=\frac{-m e^{4}}{8 \varepsilon_{0}^{2} h^{2} n^{2}}=\frac{-m e^{4}}{32 \pi^{2} \epsilon_{0}^{2} \hbar^{2} n^{2}} \\
& Z_{q}=\left(\sum_{n=1}^{\infty} e^{+\beta \frac{\alpha}{n^{2}}}\right)^{N} \\
& F=-n k T\left[\text { Chssial ln piece }+\ln \sum_{n=1}^{\infty} e^{+\beta \frac{\beta}{n_{2}}}\right]
\end{aligned}
$$

Selected Answers
Spring 2001

1) (a) $P_{12}=2\left(\frac{1}{4}+\vec{S}_{1} \cdot \vec{S}_{2}\right)$
(b) $\left.P_{123}=\left[\frac{1}{4}+\vec{s}_{1}, \vec{s}_{2}+\vec{S}_{1} \cdot \vec{s}_{3}+4\left(\vec{s}_{1} \cdot \vec{s}_{2}\right) \overrightarrow{\left\langle s_{1}\right.}, \vec{s}_{3}\right)\right]$
2) $\Theta=(g-2) \frac{\omega t}{2}$
3) $(a) f(0, \phi)=-2 \pi^{2} \int \frac{1}{(2 \pi)^{3 / 2}} e^{-i \vec{k}^{\prime}\left(\vec{r}^{\prime}\right.} 2 m v(r) \psi(r) d^{3} r$ (b) $f(0, A)=\frac{2 m v_{0}}{\mu} \frac{1}{\left(q^{2}+\mu^{2}\right)}$
(c) $\sigma \underset{k \rightarrow 0}{ } \frac{16 \pi m^{2} v_{0}^{2}}{\mu^{2}} \quad, k^{2}=2 m E, \vec{k}^{\prime}=k \frac{\vec{r}}{r}$
4) (a) $E_{n}=\frac{-\alpha^{2} m c^{2}}{2 n^{2}}$ begesexy is n^{2}
(b) $H_{L S} \sim \alpha^{4}$, Hpross shactive $\sim \alpha^{2}$ $H_{k \text { in }} \sim \alpha^{4}$
(c)

$$
\begin{aligned}
& n=2: 2 \times 3 P \text { states }+2 \times 15 \text { state } \\
& n L_{j}: 2-25 \frac{1}{2} \text { states, } 2-2 P_{\frac{1}{2}} \text { states, } 4-2 P_{3} \text { states }
\end{aligned}
$$

 spm zeros triplot
$H_{\text {HFS }}$ is save oder ind as $H_{F S}$ but has $\frac{m_{C}}{m_{p}}$ factar as welil
5) $E=\frac{\hbar^{2} \pi^{2}}{2 m(b-a)^{2}}, \gamma(r)=\frac{1}{\sqrt{\pi}} \sqrt{\frac{2}{b-a}} \frac{1}{r} \sin \left[\frac{\pi(i-a)}{(b-a)}\right] \quad \substack{\text { use radial } \\ e=0}_{\substack{\text { equ }}}$
c) see spring 2002 \#6
9) (a) $F_{\phi}=\frac{q_{d_{0}}}{2 c}\left|\frac{\partial t}{\partial t}\right|$
(b) $\frac{p^{2}}{B}=\frac{q^{2 q_{0}^{2} B}}{c^{2}}, \frac{d J}{d t}=0, J=\int \rho \cdot d \theta+\frac{q}{c} \int d \vec{r} \cdot \vec{B}=\frac{\pi c}{a_{0}} \frac{p^{2}}{B}$
II) (a) $\frac{\partial \vec{B}}{\partial t}=\frac{-\mu}{\mu_{0}} \nabla \times(\nabla \times \vec{B})-\frac{1}{\mu_{0}^{e}} \nabla \times\left[\frac{(\nabla \times \vec{B}) \times \vec{B}}{\eta}\right]$

$$
\vec{v}=\frac{1}{\mu_{0} n^{2} e}\left(\vec{B} \times \nabla_{n}\right)
$$

12) (a) $\nabla \times \vec{B}=0, \nabla \cdot \vec{B}=0$ pothinl field
13) se
(b) $A_{x}=x y=\cos t \Rightarrow y=\frac{\cos t}{x}$

WRITTEN COMPREHENSIVE EXAMINATION FOR THE MASTER'S DEGREE AND QUALIFYING EXAMINATION FOR THE PH.D. DEGREE DEPARTMENT OF PHYSICS

Thursday, March 29, and Friday, March 30, 2001

PART I - THURSDAY, MARCH 29

Important - please read carefully.

The exam (8 hours) is in two parts:
Part 1 Quantum Mechanics, Thermodynamics, Statistical Mechanics
March $29 \quad 7$ Problems - DO ALL PROBLEMS.
9:00-1:00 This part will be collected at the end of four hours.
Each problem counts for 20 points; the total is 140 .

PART 2 Electromagnetic Theory,Thermodynamics,Statistical Mechanics
March $30 \quad 7$ Problems - DO ALL PROBLEMS.
9:00-1:00 This part will be collected at the end of four hours.
Each problem counts for 20 points; the total is 140 .

Instructions

1) This is a closed book exam and calculators are not be used.
2) Work each problem on a separate sheet of paper. Use one side only.
3) Print your name and problem number on EACH AND EVERY page. (Note:

Pages without names may not be counted.)
4) Return the problem page as the first page of your answers.
5) If a part of any question seems ambiguous to you, state clearly what your interpretations and answer the question accordingly.

1. Quantum Mechanics.

Consider a system of three spin- $1 / 2$ moments, $\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{S}_{3}$. The permutation operator P_{12} exchanges spins 1 and 2:

$$
P_{12}\left|\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle=\left|\sigma_{2}, \sigma_{1}, \sigma_{3}\right\rangle
$$

where $\sigma_{1,2,3}= \pm \frac{1}{2}$ are the eigenvalues of $S_{1}^{z}, S_{2}^{z}, S_{3}^{z}$. The permutation operator P_{123} performs a cyclic permutation on spins 1,2 , and 3 so that $2 \rightarrow 1,1 \rightarrow 3$, $3 \rightarrow 2$.

$$
P_{123}\left|\sigma_{1}, \sigma_{2}, \sigma_{3}\right\rangle=\left|\sigma_{2}, \sigma_{3}, \sigma_{1}\right\rangle
$$

(a) Express P_{12} in terms of the spin operators $\mathbf{S}_{1}, \mathbf{S}_{2}$.
(b) Express P_{123} in terms of the spin operators $\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{S}_{3}$.

2. Quantum Mechanics.

An electron is injected into a region where there is a constant magnetic field of magnitude B. At $t=0$, the direction of the electron's motion is perpendicular to the magnetic field, and it is completely polarized so that its spin is definitely along the direction of the beam.

Let θ be the angle between the electron's momentum and the expectation value of its spin. At $t=0, \Theta=0$. What is Θ as a function of the time t ? [Calculate the time-dependence of the momentum classically.] Express your answer in terms of the gyromagnetic ratio g of the electron. Leave g arbitrary - don't set it exactly equal to 2 .

3. Quantum Mechanics.

A neutron (mass M) scatters off a very heavy nucleus, and the force between them is given by a Yukawa potential:

$$
V(r)=V_{o} \frac{e^{-\mu r}}{\mu r}
$$

(a) Imagine you could find the solution $\psi(\mathbf{r})$ to the time-independent Schrödinger equation (with an incident wave in the $+z$ direction) with this potential for positive energy E. Write a formula for the scattering amplitude in terms of this wave function. Don't try to calculate $\psi(\mathbf{r})$. Define any symbols you introduce, other than those in $V(r)$ above and natural constants.
(b) What is the first Born approximation to the scattering amplitude $f(\theta, \phi)$?
(c) What is the total cross section in the limit that the scattering neutron has zero kinetic energy?

4. Quantum Mechanics.

The simplest approximation for the Hamiltonian of an electron in a hydrogen atom is

$$
H_{o}=\frac{\mathbf{p}^{2}}{2 m}-\frac{\alpha \hbar c}{r}
$$

where $\alpha \approx 1 / 137.036$ is a dimensionless constant. In cgs units, the electric charge e is related to α by $e^{2}=\alpha \hbar c$.
(a) In this approximation, what are the energy levels of the hydrogen atom and what is the degeneracy of each level?
(b) There are some corrections to H_{o} that give rise to a small correction to the energy levels called the fine structure. What are the effects that give rise to the fine structure? Just describe them briefly - don't try to remember the formulas. What is the order of magnitude of the fine structure splitting compared to the splitting between the eigenvalues of H_{0} ? Why?
(c) Consider the states in the first excited level with the approximation H_{o} above. Into how many levels are these states split, and what is the degeneracy of each level? What are the quantum numbers of the states in each level?
(d) There is a further splitting called the hyperfine structure. What is the effect that causes the hyperfine structure? Here too just describe it briefly. Into how many levels is the ground state level (i.e. all the states in the lowest energy level when hyperfine structure is ignored) split by the hyperfine effect, and what is the degeneracy of each level? Why is the hyperfine splitting small compared to the fine structure splitting?
5. Quantum Mechanics.

A particle of mass m is constrained to move between two concentric impermeable spheres of radii $r=a$ and $r=b$. There is no other potential. Find the ground state energy and normalized wave function.
6. Statistical Mechnics and Thermodynamics

Calculate the collision frequency for the collisions between the molecules of a gas and a fixed sphere of diameter D. The molecules have an average diameter d . The gas has a temperature T .
7. Statistical Mechnics and Thermodynamics

This is an essay question. Answer two of the following three questions.
(a) You are asked about the second law of thermodynamics, and you give one of the formulations, that there is no process the sole effect of which is the conversion of heat into work. The inquirer then points out that a steam engine converts heat into work. Explain how this is not a violation of the second law of thermodynamics. Your explanation should include an analysis of the steam engine, and a discussion of heat engines in general.
(b) You read an article in a physics journal in which a group of researchers announce that they have cooled a system to absolute zero. Discuss why one ought to be skeptical of this claim. Invoke the appropriate laws of thermodynamics.
(c) Explain, using the laws of thermodynamics, why a substance cannot have a negative heat capacity.

WRITTEN COMPREHENSIVE EXAMINATION FOR THE MASTER'S DEGREE AND QUALIFYING EXAMINATION FOR THE PH.D. DEGREE DEPARTMENT OF PHYSICS

Thursday, March 29, and Friday, March 30, 2001

PART II - FRIDAY, MARCH 30

Important - please read carefully.

The exam (8 hours) is in two parts:
Part 1 Quantum Mechanics, Thermodynamics, Statistical Mechanics
March 297 Problems - DO ALL PROBLEMS.

9:00-1:00 This part will be collected at the end of four hours.
Each problem counts for 20 points; the total is 140 .

PART 2 Electromagnetic Theory, Thermodynamics, Statistical Mechanics
March $30 \quad 7$ Problems - DO ALL PROBLEMS.
9:00-1:00 This part will be collected at the end of four hours.
Each problem counts for 20 points; the total is 140.

Instructions

2) This is a closed book exam and calculators are not be used.
3) Work each problem on a separate sheet of paper. Use one side only.
4) Print your name and problem number on EACH AND EVERY page. (Note: Pages without names may not be counted.)
5) Return the problem page as the first page of your answers.
6) If a part of any question seems ambiguous to you, state clearly what your interpretations and answer the question accordingly.

8. Electricity and Megnetism

One hemisphere of a metallic sphere of radius R is kept at a potential V while the other hemisphere is kept at a potential of $-V$.
(a) What is the approximate potential and electric field a far away distance r from the center of the sphere. Keep only the leading contribution in R / r.
(b) Suppose the the potential V varies in time as $V_{0} e^{-i \omega t}$ where $\omega R \ll c$. What is the electric field far away from the sphere? Again keep only the leading contribution in R / r. (If you can't figure out an exact expression then explain the generic behavior.)
9. Electricity and Megnetism

A charged particle moves in a plane perpendicular to a magnetic field \vec{B}, which is uniform in space but varies very slowly with time.
(a) Find a relation between the momentum p, the magnetic field B, and the instantaneous cyclotron (or gyration) radius a_{0} of the particle's trajectory. (The radius will change very slowly in time as the B field varies.)
(b) Using Faraday's law, derive an approximate relation between the magnitude of the induced electromotive force around the orbit, the time derivative of B and the intantaneous radius a_{0}.
(c) Utilizing your answer to the previous parts, or otherwise, show that p^{2} / B remains constant in time.
10. Electricity and Megnetism

A π^{0} of velocity v_{0} decays in flight into two photons $\pi^{0} \rightarrow 2 \gamma$. Compute the minimum and maximum values of the energies of the produced photons as a functions of v_{0}.

11. Electricity and Megnetism

Consider the penetration of a magnetic field B into a conducting medium by diffusion and convection.

The medium obeys an Ohm's law of the form $\mathbf{E}+\mathbf{v} \times \mathbf{B}=\eta \mathbf{J}$, where \mathbf{E} is the electric field, $\mathbf{J}=-n e v$ is the current density of electrons of velocity \mathbf{v} and number density n, and η is a constant uniform scalar resistivity.
(a) Using Faraday's law and Ampere's law (neglect displacement current) obtain a differential equation for the magnetic field.
(b) Now consider a simple boundary problem: the conducting medium is located in the half-space $x>0$. There exists a density gradient of scale length $L=n /(d n / d y)$. At $\mathrm{t}=0$ a uniform field B_{0} along \mathbf{z} is applied in the space $x<0$. Write down the differential equation for the field $B_{z}(x, t)$. Identify which terms describe field diffusion $\left(t \propto x^{2}\right)$ and convection $(t \propto x)$.
(c) Show that the solution $B=\left[1-\left(k B_{0} / D\right) x\right]^{-1}$ satisfies the differential equation in steady-state where $k=\left(\mu_{0} n e L\right)^{-1}$ and $D=\eta / \mu_{0}$.
(d) Show that in the absence of diffusion ($\eta=0$) a propagating field $B_{z}(x-v t)$ satisfies the differential equation. Find the propagation velocity v in terms of B_{0} and ∇n.
12. Electricity and Megnetism

A magnetic field is given by

$$
\mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)=((1+\gamma) x,(-1+\gamma) y,-2 \gamma z)
$$

where γ is a constant.
(a) Show that this field satisfies Maxwell's equations and may be derived from a scalar potential.
(b) For $\gamma=0$, find the equation for field lines, the vector potential, and show that field lines are lines of constant vector potential.
(c) Sketch field lines for three parameter values $\gamma=0, \gamma=1 / 3, \gamma=1$.
13. Statistical Mechnics and Thermodynamics

Consider a gas of relativistic, conserved bosons. The relation between energy and momentum is

$$
E=|\vec{p}| c
$$

(a) Derive the condition for Bose-Einstein condensation in three dimensions.
(b) Does Bose-Einstein condensation occur in two dimensions? Justify your answer.
(c) What is the highest dimension for which Bose-Einstein condensation does not occur?
14. Statistical Mechnics and Thermodynamics
(a) What is the free energy (as a function of temperature, T, volume, V, and particle number, N) of a ideal gas obeying Maxwell-Boltzmann statistics?
(b) Assume that the ideal gas is made up of hydrogen atoms. Now the free energy must include a contribution reflecting the different possible electronic excited states of the hydrogen atoms. Show that this contribution diverges. What cuts off this divergence in a real gas?

