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pz dispersions are degenerate, and they disperse the same way as the s state
(Why?). Of course, atoms could contain both s- and p-orbitals, in which
case we have to include them both in our model. These states can also mix
to form a more complex dispersion.

The generalization to three dimensions is simple. The equation for the
amplitudes are

i! ∂

∂t
C(x, y.z, t) = E0C(x, y.z, t) − AxC(x + b, y.z, t) − AxC(x − b, y.z, t)

− AyC(x, y + b, z, t) − AyC(x, y − b, z, t)
− AzC(x, y, z + b, t) − AyC(x, y, z − b, t),

(1.172)

where we have assumed a cubic lattice with a lattice spacing of b, but have
assumed for generality that the matrix elements are different for the electron
hopping in different directions. The energy spectrum is given by

Ek = E0 − 2Ax cos kxb − 2Ay cos kyb − 2Az cos kzb, (1.173)

while the amplitudes are given by

C(x, y, z, t) = e−Ekt/!e−ik·r. (1.174)

1.5.2 Spin Waves

A magnetic Hamiltonian that can describe ferromagnetism is the ferromag-
netic spin-1/2 Heisenberg model, where the nearest spins interact via a spin-
spin interaction

H = −J
∑

n

σn · σn+1. (1.175)

For simplicity, I have absorbed the factor (!/2)2 in the coupling J , and
σ = (σx,σy,σz) is the vector made of the Pauli matrices. The Hamiltonian
is for a one-dimensional chain of spins, but you can easily generalize it to
higher dimensions. First, define the raising and the lowering operators

σ+
n =

σx
n + iσy

n

2
(1.176)

σ−
n = (σ+

n )† =
σx

n − iσy
n

2
. (1.177)

Remember that the Pauli matrices are Hermitian and that σ+ |+〉 = 0,
σ+ |−〉 = |+〉, σ− |−〉 = 0, and σ− |+〉 = |−〉. Now, the interaction for a pair
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of spins can be written as

σn · σn+1 = 2[σ+
n σ−

n+1 + σ−
n σ+

n+1] + σz
nσz

n+1, (1.178)

where we have used the fact that the Pauli matrices belonging to distinct
sites commute. The interaction can also be written in terms of a permutation
operator Pn,n+1 that permutes the spins on the sites n and n + 1. To check
this, define the kets for two spins as |±,±〉, where the first entry is for the
first spin and the second entry is for the second spin. Then,

(
2[σ+

n σ−
n+1 + σ−

n σ+
n+1] + σz

nσz
n+1

)
|++〉 = |++〉 (1.179)

(
2[σ+

n σ−
n+1 + σ−

n σ+
n+1] + σz

nσz
n+1

)
|−−〉 = |−−〉 (1.180)

(
2[σ+

n σ−
n+1 + σ−

n σ+
n+1] + σz

nσz
n+1

)
|+−〉 = 2 |−+〉 − |+−〉 , (1.181)

(
2[σ+

n σ−
n+1 + σ−

n σ+
n+1] + σz

nσz
n+1

)
|−+〉 = 2 |+−〉 − |−+〉 . (1.182)

Therefore, as announced earlier,

σn · σn+1 = 2Pn,n+1 − 1. (1.183)

What is the ground state of the ferromagnetic Heisenberg model? Since
the coupling constant J , also called the exchange constant, is positive, a
pair of nearest neighbor spins like to be parallel to the each other. So,
perhaps, the groundstate is that state in which they are all lined up parallel
to each other. This is clearly an infinitely degenerate state because it does
not matter which direction in space they point as long as they are parallel to
each other. Let us check that the assumed state is the lowest energy state.
Note that the Hamiltonian acting on the presumed ground state is

−J
∑

n

(2Pn,n+1 − 1) |+ + + . . .〉 = −JN |+ + + . . .〉 . (1.184)

The state |+ + + . . .〉 is definitely an eigenstate; physically it is clear that it
is also the lowest energy state, but, with a little bit more effort, you can also
show that there are no other eigenstates of energy lower than −JN , where
N is the total number of spins in the lattice. As the temperature is raised,
thermal fluctuations will create excited states, which will disorder the spins.
There will be a temeperature Tc at which the system will loose its average
magnetization and a phase transition will take place. It can be rigorously
shown that Tc = 0 for dimensions d ≤ 2, but it is finite at d = 3. This proof
is slightly off our track, so I won’t give it to you here.
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What do the excited states look like? Let us redefine the zero of energy
by subtracting the ground state energy, so that

H − E0 = −2J
∑

n

(Pn,n+1 − 1). (1.185)

It is easy to guess that the first excited state would be one where one of
the spins is flipped. We need to invent a nice notation to denote this. For
example, if the 4th spin is flipped, we will label that state as

|x4〉 = |+ + + − + + + . . .〉 . (1.186)

What is the action of the Hamiltonian on this state? If the permutation
operator does not involve the 4th spin, the state is unchanged. If it involves
the 4th spin, it will either permute it with the spin on the right, or on the
left, so that

P34 |x4〉 = |x3〉 , (1.187)
P45 |x4〉 = |x5〉 . (1.188)

The terms in the Hamiltonian that survive are

[−2J(P34 − 1) − 2J(P45 − 1)] |x4〉 = 4J |x4〉 − 2J |x3〉 − 2J |x5〉 . (1.189)

In general,
H |xn〉 = 4J |xn〉 − 2J |xn+1〉 − 2J |xn−1〉 . (1.190)

This is identical to the problem we solved for an electron in a periodic lattice.
The schrödinger equation is given by

i! ∂

∂t
Cn(t) =

∑

n′

〈n|H|n′〉Cn′(t), (1.191)

where the only matrix elements of the Hamiltonian are

Hn,n = 4J, (1.192)
Hn,n+1 = Hn−1,n = −2J. (1.193)

The set of linear difference equations can once again be solved by the choice

Cn(t) =
1√
N

e−ikxne−iEt/!. (1.194)
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Then, the energy spectrum is given by

Ek = 4J(1 − cos kb). (1.195)

The definite energy solutions correspond to waves of a flipped spin whose
amplitude at a given site n is determined by the wavevector k lying within
the first Brillouin zone between −π

b and π
b . The energy dispersion at long

wavelengths is that of a free particle, a magnon, of an effective mass meff =
!2/(4Jb2).

Once we start examining the problem of two flipped spins, we discover
that the spin waves interact when they approach each other. The interaction
may in fact give rise to bound states. Although the two spin wave problem
can still be solved eaxctly with some effort, we may argue that if there is
a small density of such excited states, or spin waves, at low temperatures,
they can be approximated to be independent. Such an independent particle
approximation reproduces many low temperature properties of ferromag-
nets. In the independent particle approximation, the excited state energy
ε(k1, k2, . . .) is then given by

ε(k1, k2, . . .) ≈ Ek1 + Ek2 + . . . (1.196)





























































Bose-Einstein Condensation in 1, 2 and 3 dimensions for massive and massless bosons
in a box

I. MASSIVE BOSONS

Consider a gas of massive, non-interacting, non-relativistic, identical, spin-0 bosons. The total number of bosons
in a given state with energy ε is given by

N =
∫ ∞

0

n̄(ε)dN =
∫ ∞

0

n̄(ε)D(ε)dε (1)

where

n̄(ε) =
1

eβ(ε−µ) − 1
(2)

is the quantum distribution function for bosons, and

D(ε) =
dN

dε
(3)

is the ”density of states” function. For a particle in a box of side length L, the contained modes are quantized by the
condition that the wave function vanish at the walls, Ψ(x,y,z=0)=Ψ(x,y,z=L)=0. Thus for each spatial dimension i,
we have the condition

ki =
niπ

L
(4)

In 3D:

D3D(ε) =
dN

dε
=

dN

dn

dn

dε
= 4πn2 dn

dε
(5)

For a massive particle in the box the energy is quadratic in the momentum,

ε =
1

2m
(px

2 + py
2 + pz

2) =
~2

2m
(kx

2 + ky
2 + kz

2) =
~2π2

2mL2
(nx

2 + ny
2 + nz

2) =
~2π2

2mL2
n2 (6)

thus

n =
L

~π

√
2mε, and dn =

L

2~π

√
2m

ε
dε (7)

Combining terms into the density of states,

D3D(ε) = 4π
2mL2

~2π2
ε
( L

2~π

√
2m

ε

)
= 2π

( L

~π

)3

(2m)
3
2
√

ε (8)

The total number of particles can now be expressed as

N3D =
2π

8

( L

~π

)3

(2m)
3
2

∫ ∞

0

√
ε

eβ(ε−µ) − 1
dε

=
2πV

h3
(2m)

3
2

∫ ∞

0

√
ε

eβ(ε−µ)

1
1− e−β(ε−µ)

dε

=
2πV

h3
(2m)

3
2

∫ ∞

0

√
ε

eβ(ε−µ)

( ∞∑
l=0

e−βl(ε−µ)
)
dε

=
2πV

h3
(2m)

3
2

∫ ∞

0

√
ε
( ∞∑

l=1

e−βl(ε−µ)
)
dε

=
2πV

h3
(2m)

3
2

∫ ∞

0

√
ε
( ∞∑

l=1

e−βlεeβlµ
)
dε

=
V

h3

(2mπ

β

) 3
2

∞∑
l=1

eβlµ

l
3
2

(9)



2

where the factor of 8 has been introduced since we are including only the positive values of n, and thus only the
first quadrant of the 3D sphere in n-space. The last sum on the right is a polylogarithm function, also called the the
weighted Zeta function (weighted by the exponential factor). We have used the expansion condition e−β(ε−µ) < 1,
which is validated by the physical mandate that we do not obtain negative values for n̄(ε). It follows then that we
posit the restriction ε > µ.

From the expression it can be seen that N3D is a maximum at µ=0, which is therefore when the condensate occurs.
The sum can be evaluated and we arrive at the condensate phase transition temperature,

N3D =
V

h3

(2mπ

β

) 3
2

∞∑
l=1

1
l
3
2︸ ︷︷ ︸

ζ( 3
2 )

≈ V

h3

(2mπ

β

) 3
2 (2.612) =⇒ Tc ≈

h2

2mπkb

( N3D

2.612V

) 2
3

(10)

For massive bosons in 2D we follow the same procedure. The density of states is

D2D(ε) =
dN

dε
=

dN

dn

dn

dε
= 2πn

dn

dε
. (11)

The energy has a similar form as previously

ε =
1

2m
(px

2 + py
2) =

~2π2

2mL2
n2 (12)

Plugging into the integral for N2D, we note that the density of states here does not depend on the energy. Consequently
the integral is over only the distribution function, with a factor of 1/4 that comes from dealing with only the first
quadrant of the 2D sphere in n-space.

N2D =
2π

4

( L

~π

)2 2m

2

∫ ∞

0

1
eβ(ε−µ) − 1

dε =
2πmA

h2β

∞∑
l=1

eβlµ

l
(13)

For the condensate to occur, µ=0 and the above expression diverges, ζ(1)→∞. Hence, the condensate does not occur
for massive bosons in 2D.

Lastly for the 1D case, the density of states is simply

D1D(ε) =
dN

dε
=

dN

dn

dn

dε
= (1)

dn

dε
(14)

The energy is, again, the same as above

ε =
1

2m
(px

2) =
~2π2

2mL2
n2 (15)

So the total number is

N1D =
L

2h

√
2m

∫ ∞

0

1/
√

ε

eβ(ε−µ) − 1
dε =

L

2h

√
2πm

β

∞∑
l=1

eβlµ

l
1
2

(16)

There is a factor of 1/2 from dealing with only positive n values. Again, this expression is non-physical for µ=0, so
the condensate for massive bosons in 1D does not occur.

II. MASSLESS BOSONS

For massless bosons by contrast, we must express their energy relativistically. Thus from the relation

ε = c|p| (17)

it is evident that the energy is linear in momentum. This alters the conditions for the BEC to occur. In every case
the energy is given as

ε = c~|k| = c~
nπ

L
=⇒ n =

εL

c~π
(18)
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For 3D the density of states is

D3D(ε) = 4πn2 dn

dε
= 4π

( L

c~π

)3

ε2 (19)

so the total number is

N3D =
4π

8

( L

c~π

)3
∫ ∞

0

ε2

eβ(ε−µ) − 1
dε =

8πV

(chβ)3

∞∑
l=1

eβlµ

l3
=

µ→0
8πV

(chβ)3
ζ(3) ≈ 8πV

(chβ)3
1.1202 (20)

Now we can calculate the phase transition temperature for massless bosons in 3D:

Tc ≈
( N3D

8πV (1.1202)

) 1
3 ch

kb
. (21)

In 2D the density of states is

D2D(ε) = 2πn
dn

dε
= 2π

( L

c~π

)2

ε (22)

Note that now the 2D density of states does depend on the energy. The total number of particles is

N2D =
2π

4

( L

c~π

)2
∫ ∞

0

ε

eβ(ε−µ) − 1
dε =

2πA

(chβ)2

∞∑
l=1

eβlµ

l2
=

µ→0
2πA

(chβ)2
ζ(2) =

2πA

(chβ)2
(π2

6
)

(23)

This result shows that massless bosons in 2D do indeed form a condensate, whereas massive bosons in 2D do not.
The temperature of condensation here is

Tc =
(3N2D

Aπ3

) 1
2 ch

kb
(24)

Finally, for the 1D system of massless bosons we have a density of states that is independent of energy, just like the
2D massive boson system.

D1D(ε) =
dn

dε
=

L

c~π
. (25)

Again, the integral diverges for µ=0,

N1D =
L

2c~π

∫ ∞

0

1
eβ(ε−µ) − 1

dε =
L

ch

∞∑
l=1

eβlµ

l
⇒

µ→0
L

chβ
ζ(1)⇒∞ (26)

and thus in the 1D massless case we find the same condition as the massive bosons in 1D, i.e., the condensate is
forbidden in this geometry.

III. CONCLUSION

For the particle-in-a-box model, BEC’s occur for both massive and massless bosons in 3D. They occur only in the
massless case for 2D, and never for 1D. This model can in principle be applied to higher spatial dimensions whereupon
evaluation of the total number of particles would be an integral of the form

NqD ∼
∫ ∞

0

ε(q−2)/2

eβ(ε−µ) − 1
dε ∼

µ→0 ζ(
q

2
) (Massive)

NqD ∼
∫ ∞

0

ε(q−1)

eβ(ε−µ) − 1
dε ∼

µ→0 ζ(q) (Massless)
(27)

where q is the dimension of the space.
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