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Physics & Astronomy Comprehensive Exam, UCLA, Fall 2013

1. Classical Mechanics

Consider the double pendulum shown below with equal string lengths / and unequal masses m
and 2m, (constrained to move in the plane shown, gravitational acceleration g). Find the
frequencies of the normal modes for small oscillations about the equilibrium position (&; and 6,
<<1).



jlee
Text Box
Name:  


Name:

Questions for the Comprehensive Exam Fall 2013

2. Classical Mechanics

A photon of energy E; collides at an angle & with another photon of energy E>. Find the
minimum value of E; (given E; and &) permitting the formation of a pair of particles of mass m.
With this expression, calculate the minimum energy a gamma ray must have to create an
electron-positron pair by colliding with a typical photon from the cosmic microwave background
(one significant figure is sufficient). [Treat the photon here as a relativistic quantum particle.]
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3. Quantum Mechanics: Scattering

Consider the scattering of a spinless particle of mass m from a diatomic molecule. The incoming
particle travels along the z-axis. Assume that the molecule is much heavier than the scattering
particle and that there is no recoil. The two atoms in the molecule are aligned along the y-axis
and localized at y = +b and y = —b. The potential the particle feels in the presence of the
molecule can be modeled by the following potential:

V(%) = a(6(y - 5)5(x)5(2) + 5(y +5)5(x)5(2))
(a) Calculate the scattering amplitude in the first Born approximation.
(b) Calculate the differential cross section from (a) (Express the result in terms of the scattering
angles).
(c) Calculate the total cross section. Do the integrals exactly. You might find the following
integrals helpful:
asinx

LZ” dalcos(xsina)|” = z(1+Jy(2x)), J.O” da(sina) J,(xsina) =
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4. Quantum Mechanics

Consider a system of two spin 1/2 particles, labeled a and b, with respective spin operators S,
and S,. We ignore all quantum numbers but those of spin. The particles are in the state |\V') of
zero total angular momentum, which we consider normalized to (‘\Y'|¥) = 1. Let n, and n; be two
independent unit vectors. Compute the expectation value of the product of the spin operators
projected onto the directions n, and n, respectively, namely, (¥|(n.: Sa)( Ny Sp)|¥).
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5. Quantum Mechanics

Consider a one dimensional simple harmonic oscillator with the usual Hamiltonian,
2

1
H, = L2 me’x?
2m

Now consider the effect of a perturbation,
V= %gma)zxz with g<<1.

Using perturbation theory, find the new ground state key |0) to order & and the ground state

energy shift to order &*. Solve this problem exactly and compare with the results obtained using
perturbation theory. You may assume without proof that

/ h (——=
<un' | X | un> = %( n +1§n',n+1 + \/;é‘n',n—l)

where |u,) is the n™" eigenstate of H,.
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6. Quantum Mechanics: Perturbation theory time (in)dependent

The Hamiltonian of a particle of mass m in a 1D finite well is given by

2 0 O<x<L
Hy=L sy, 7= -
2m o0 otherwise
A time dependent perturbation is added
H,, =H,+H', H'=15(x—L12)f(¢)

where A is a constant and f£{?) is a time dependent function.

(a) Calculate the matrix elements of A’ with the eigenstates of the unperturbed Hamiltonian.

(b) In this part of the problem we consider a time independent perturbation £(z) = 1. First,
calculate the first nonzero correction of the ground state energy. Second, at which order (if any)
will the first excited state receive a nonzero correction ? Please back up your answer with an
argument/calculation.

(c) Now take the following time dependent function

f()= f; da)p(a))(ei"’ + e’“‘”) with  p(w) = \/ge““’z

If the system is in its ground state at time t = 0, what are the possible transitions into excited
states that the system can make at time t > 0 ? Use first order time-dependent perturbation theory.
(d) Find the transition rate into these excited states using Fermi's golden rule.
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7. Quantum Mechanics: Jaynes-Cummings Model

A spin-% particle (bare eigenstates \T) and ‘L)) is constrained to move in a 1D harmonic

potential (bare eigenstates |n> for ne{012,...}). In the absence of coupling, the Hamiltonian is
given by

H, = haylaa +1/2)+ he,6. 12
where 7, is the harmonic oscillation energy spacing and 7, is the energy difference between
\T) and ‘i) in the absence of coupling. Consider the case where the particle’s spin is coupled to
its motion through the interaction Hamiltonian

H,, =hQa'6 +aé, )2

where Q is the coupling strength and the operators for the spin degree of freedom are defined by
6. = M- 3. =[] ano 5|41
(a) Let A=, —w, >0. Consider the “dispersive regime” defined by A >> /2. Find the

energies and eigenstates of H = H, + H,,,. You may treat H,, as a perturbation and keep only

the first nonzero-order terms, and you may consider coupling between nearly-degenerate states
only. Do not bother to normalize the eigenstates.

(b) Consider the “resonant regime” where A — O0and @, and o, are both equal to some

frequency . Find the energies and eigenstates of H = H,+ H;,,. You may treat H,, asa

perturbation and use first-order degenerate perturbation theory, considering coupling between

1 ‘
nominally degenerate states only. Hint: consider the state |l//> = ﬁq¢n> + e""‘T, n —1>).
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8. Statistical Mechanics

We propose to evaluate the Richardson effect, namely the electric current density of electrons
which is produced by heating up a metal in the presence of an external electric potential. The
potential energy of an electron just outside the metal is denoted 7 > 0. The potential energy for
electrons inside the metal is taken to be 0. The electrons are considered otherwise non-interacting,
and filled up to chemical potential « with « < W. Since we consider the problem to be at
sufficiently low temperature, x may be identified with the Fermi energy.

(a) State the condition on the momentum of an electron that can escape from the metal to the
outside as a function of # and .

(b) Derive a general expression for the current density 7 of electrons leaving the metal.

(c) Obtain an approximation of your result in (b) valid for sufficiently low temperatures.
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9. Statistical Mechanics
The flexing modes of a thin plate at wave number & have an angular frequency @ such that:

o’ =y k*. Consider such waves propagating in one dimension around a thin ring of radius R.

What is the contribution to the heat capacity of these azimuthal modes? The plate is in thermal
equilibrium at a low temperature 7. You may write your answer in terms of:

X
+00
z@=[7—
e —_—

dy where x is a pure number.
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10. Statistical Mechanics

A liquid is in equilibrium with its vapor at temperature and pressure: 7,; P,. The surface
between liquid and vapor is flat. The temperature of the vapor is increased to 7, + AT while
keeping its pressure fixed. The liquid remains at temperature and pressure: T, ; P,. Evaluate the
net flux of gas to the liquid. You may treat the vapor as an ideal noble gas with atoms of mass m.

10
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11. Electromagnetism: A spherical capacitor

The gap between two spherical conducting shells of radii R; < R, is filled with a spatially
inhomogeneous dielectric. As a result, the dielectric constant depends on the polar angle &
(measured from the north pole of the sphere) as:

£(0) =¢,+¢,c08' 0
Both ¢, and &, are constants.
(a) When charged so that the inner and outer spheres have charges +Q and -Q respectively, show
that the internal electric field is purely radial. Determine how that radial electric field £, depends

on the polar angles, #and ¢.
(b) Calculate the capacitance C of the system.

11
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12. Electromagnetism

Assume the existence of magnetic charge related to the magnetic field by the local reaction

V-B=up,, .
(a). Using the Gauss’s theorem, obtain the magnetic field B of a point magnetic charge at

the origin.
(b). In the absence of the magnetic charge, the curl of the electric field is given by the

Faraday’s law, V x E = —%—lj . Show that this law is incompatible with the magnetic

charge density that is a function of time.
(c). Assuming that magnetic charge is conserved, derive the local relation between the

magnetic charge current density Jm and the magnetic density p,, .

(d). Modify Faraday’s law as given in part (b) to obtain a law consistent with the
presence of the magnetic charge density that is a function of position and time.

12
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13. Electromagnetism

An un-polarized plane electromagnetic wave is scattered by a free electron. Derive the
differential cross-section for scattering in the non-relativistic limit (Thompson scattering).

13



jlee
Text Box
Name:  


Name:

Questions for the Comprehensive Exam Fall 2013
14. Electromagnetism

A plane electromagnetic wave of frequency @ is normally incident on an infinitesimally-thin
planar sheet with a resistivity Z; = Z, = 377 ohms per square (4n/c in cgs units). The medium on
both sides of the sheet is vacuum, and the sheet is non-magnetic.

(a) Calculate the power coefficients of reflection (R), absorption (4), and transmission (7).

(b) What value of the resistivity Z,, would maximize 4? What is the maximal value of 4, and
why is this the limit?

14
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Question: Scattering

Consider the scattering of a spinless particle of mass m from a diatomic molecule. The
incoming particle travels along the z-axis. Assume that the molecule is much heavier than
the scattering particle and that there is no recoil. The two atoms in the molecule are aligned
along the y-axis and localized at y = b and y = —b. The potential the particle feels in the
presence of the molecule can be modeled by the following potential:

V(&) = a(3(y — b)d(2)d(2) + d(y + b)d(2)d(2))

a) Calculate the scattering amplitude in the first Born approximation.

b) Calculate the differential cross section from a) (Express the result in terms of the scat-
tering angles).

c¢) Calculate the total cross section. Do the integrals exactly. You might find the following
integrals helpful:

2sinx

2T T
/ acos(rsina)? = 7(1 + Jo(27)), / dasinaJy(rsina) = .
0 0



Solution:

a) The scattering amplitude in the first Born approximation is given by

o 2m,(2m)3/? =
FORFy = 2T ey ) (0.1
We have . .
k= é.k, k' = k(é* cos 6 + é, sinf cos ¢ + €, sin f sin ¢) (0.2)

Plugging in the potential and evaluating the integral over y gives

T 2m(27r)3/2a ifeb sin 0 si —ikbsin 0si
JOER) = =T g (eMhemfoind g mikveindsing) (0.3)
Amh
ma(2m)3/?
= —Tcos(kbsiDQSinqﬁ) (0.4)
m

b) The differential cross section can be calculated from the scattering amplitude by

do 2
= 156.6)
2
= a287r|cos(kb81n981n¢)| (0.5)

c) The total cross section is given by

ow = [ d2]f(0.9)

« m287r

2m
= / db sm@/ do| cos(kb cos 6 cos ¢) |?

a2m287r

_ 7/ df sin 61 + wJo(2kbsin6))

a’*m?8r? sin(2bk)
nt (2+ bk )
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Question qZQuantum Mechanics

Consider a system of two spin 1/2 particles, labelled a and b, with respective spin oper-
ators S, and S;. We ignore all quantum numbers but those of spin. The particles are in the
state |W¥) of zero total angular momentum, which we consider normalized to (\W|¥) = 1. Let
n, and n, be two independent unit vectors. Compute the expectation value of the product
of the spin operators projected onto the directions n, and n, respectively, namely,

(¥](ng - Sa)(ms - S)|V) (0.1)

Solution to Question If.:

Recall that the normalized spin 0 state |¥) of the two-spin system, in a basis where the
spin operators S? and S7 are diagonal with eigenstates |£), and |£),, is given by,

19) = 5 (19)a ® 10~ 1-)e @ [+)) 02)

Also recall that the spin operators in this basis are given by S: = ho’/2 and S} = ho}/2,
where o¢ and o} are the standard Pauli matrices acting in the Hilbert spaces for a and b.

The expectation value to be calculated is linear in n, and linear in n,. It is also invariant
under rotations, since the state |W¥) is invariant under rotations. Thus, the outcome must be
proportional to the only possible rotation invariant bilinear in n, and n,,

(¥)(ng - Sa)(np - Sp)|¥) = Cn, -y (0.3)

The coefficient C is independent of n, and n,. To evaluate it, we may choose any convenient
assignment of n, and n, such that their inner product is non-zero. We take n, = n, =
(0,0,1). It is now straightforward to evaluate C by first computing, by inspection,

§2831W) = - (g) ) 04)

Since | V) is normalized, we thus find,

C=- (g)z (0.5)

By the way, it is also easy to double check that the expectation value vanishes when n,-n, = 0,
by taking for example n, = (1,0,0) and n, = (0,0, 1). We then find,

sz5i0) =~ (&) (e s e 1) 05)

whose inner product with |¥) vanishes term by term.
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QUESTION: Perturbation theory time (in)dependent
The Hamiltonian of a particle of mass m in a one dimensional infinite well is given by

0 O<ax< L
oo otherwise

Hy = C- + V(x), V(z) = {
A time dependent perturbation is added
Hiogta1 = Hy + H', H =Xd(x—L/2) f(t)
Where \ is constant and f(¢) is a time dependent function.
a) Calculate the matrix elements of H' with the eigenstates of the unperturbed Hamiltonian.

b) In this part of the problem we consider a time independent perturbation f(¢) = 1.

First, calculate the first nonzero correction of the ground state energy. Second, at which
order (if any) will the first excited state receive a nonzero correction ? Please back up your
answer with an argument /calculation.

c) Now take the following time dependent function

f(t) = /O:O dwp(w) (ei"‘}t + e—iwt)

with

If the system is in it’s ground state at time ¢t = 0, what are the possible transitions into
excited states that the system can make at time ¢ > 0 7 Use first order time-dependent
perturbation theory.

d) Find the transition rate into these excited states using Fermi’s golden rule.



Solution:

The free particle in a box has eigenfunctions

Up(x) = \/Esin n—zm, ne N (0.7)

With eigenvalues of H given by

n? n?r?
n= 52 (0.8)
a) The matrix elements are
| H |m) = ZAf() /L dasin 7 sin ™ (0 — 1)2)
T I o T
20f(t) . nm . mm
= sin — sin —
L 2 2
270y m odd
= L ’ 0.9
{ 0  otherwise (09)

b) For the ground state one has n = 1 which is odd, hence the first nonzero correction occurs
at first order in perturbation theory and is given by

2
AEY = (1| H |1) = 2 (0.10)

For the first excited state one has n = 2, in the formal power series of time independent non
degenerate perturbation theory the m-th order contribution to the energy F, is given by

AES™ = (20 | H' | 20%V) (0.11)

Where | 2(m=1) is the wave function correction to order m — 1. No matter which form

| 20m=1) takes, the inner product always vanishes since () has a zero at x = L/2. Hence
the first excited state is not corrected to all orders in perturbation theory.

c) The generate time dependent wave function van be expanded as

[0(8) = Y ealt)e 75 | ) (0.12)
With Z, t /
nlt) = enl0) = g /O dt'(n | H' | mye "5 ¢, (1) (0.13)



In first order time dependent perturbation theory ¢,,(t') gets replaced by ¢,,(0). Since the

initial condition sets ¢,,(0) = 0 for m # 1 the only nonzero matrix element occurs for
oddn = 1,3,5,- -, because of (0.23). Hence the only transitions can occur to states with
odd n.

d) For an interaction of the form
H = V(™" e ™t (0.14)

Fermi’s Golden rule gives the transition rate

2T
@)z = 2 [ (1IV [ 2k + 1)2(6(Barr — By — hw) + 6(Earr — By + hw)) - (0.15)
With
V = \o(z — L/2) (0.16)
One finds from part a)
, AN

The total rate then becomes

it = [ dwp(w)T(w)1-s2k41
1

= Zr{p(h(EQk—i—l — E1)) + ,0( — ;(E%H — El))} | O]V | 2k + 1)[?

— 27T4)\2\/§26_;2(E%+1_E1)2
h L2Vn7

(0.18)
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A 4wo-level System with bare eigenstates 1) and 117
(“a qubit”) has on energy splittivg wy (%=1). Consider
the couplimg between the quibit and a harmonic oscillator

(bare eigenstates [n) for n €{0,3,2,..}) with energy
spliting w, , which described by the Hamiltonian

where S0 is the caughmj S‘l-rcnsfh, &' and 4 are the harmonic

oscillabar raising and lmr;n, operators , and the spin-3 operriors
are defincd as &5z 1MX1] - IXLL , & 21T, Gz LXTL,

9.) Consider the “d ispersive (hs:me': defined by w””‘»%.
Find the energies and eigenstates of H. You may treat
Bt as a 9er+ur\oq+.'on ond use 1%*- ponzeco- order TErMS,

Covsider coupling between nearly-degencrate states only.
Let AZ w,-wy>0. Dont bother fo normalize the elgemstates,

b,) Consider the “fesonant regime,” defined by Wq%We =W,
Fiad the ememyies and elenstates of H. You moy treat
Wit as a perturbation ond use 1%L order deyenerate

pertuchatim theory . Hint: Consider the state ,,-‘i—.(u,,,,.)*-ei ?11,n-2))
Considel cmpl:n, between Je,encmfe States 0"'\/-



Solution to  Quantym Mechanics ! Taynes- lommings Mede]

4.‘-) Solution #1 : Phlu-o(& perturbation 'ﬂ\fofy

/-
E::": 4'nm‘,-l- - -_.ﬁr = Mo+ =

(-] - A
ET,"" - nwb = -i.

A"ly Merzbacher %.3%F or Sakurai 5.1.11

Eo = é[hw s q.emq

®
®

Un-wno rmol- zed ecpcns'h*cs

e
EM Q.h -y

oy = 14ny + e Wl ) oy + L l‘l‘,n-q

\—n/)c H,n’l) ﬁ%—' llh
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quum—n

—

e Solution #1: eigenstates by inspection

b®)

Since we are nstructed 4o consiler Cowpling between

degenceate States only (I ordec) we have a Series
of dwo-leve| SystemsS desenled LY “',“) =0 ”,n-l)

TL:SE hwe the Some enefgy wJer ", (ﬂm)' S0 we will
Subtract +his constant from e Hamiltonian., We note

"'ka{- H;‘.‘. ‘ls mmf‘ﬁi'e"l OG‘F'JI\G,DMI in ms bqs;s 2
Lol Wit 1bn) = &on-o] Wit [9,0-10 2 0, b [ Hint | T, n-2=fdn

Sp we afe asked o Jl‘oﬁona”‘i‘e a 2x2 watrix thet
s proportional 4o Gy

H: %—F(? Q)

The elgenstates are therefore  gven by
1

biy)

L ey (1007 + 1n-0)3E
\-n V‘) = ( “"“7 = \1"“-‘>);\;‘;‘

\

The ehefsv'es can be 'FOunJ Qs "-\0"095

1)

o (tay= Ew oy = T 02
B =00 = E, \=,n 7 P%ﬁ' \-,n?

so the energies are given by Fwi‘%{ﬁ' i




Golurion #2 Jeoem-lvc pertucbation theory

be)
Using, e.q., Mergbacher €37 we cn write

E,= é[ nw + hw & J((""’(")‘ « 4|<dnl """"1\»”"”;']
(o

Sinece <'ll,“““'ini'l1‘,.h’1 3 %"E‘_', we have
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Question 8: Statistical Mechanics

We propose to evaluate the Richardson effect, namely the electric current density of
electrons which is produced by heating up a metal in the presence of an external electric
potential. The potential energy of an electron just outside the metal is denoted W > 0.

The potential energy for electrons inside the metal is taken to be 0. The electrons are
considered otherwise non-interacting, and filled up to chemical potential p with p < W.
Since we consider the problem to be at sufficiently low temperature, 4 may be identified
with the Fermi energy.

(a) State the condition on the momentum of an electron that can escape from the metal to
the outside as a function of W and p.

(b) Derive a general expression for the current density I of electrons leaving the metal.

(c) Obtain an approximation of your result in (b) valid for sufficiently low temperatures.

Solution to Question 8

(a) We take the edge of the metal where the electrons are being emitted to be orthogonal
to the z-direction. The condition for an electron to be able to escape the metal to the outside
is that its kinetic energy in the z-direction can overcome the potential energy outside the
metal, so that we then must have,

P2
= >W 0.19
| o (0.19)
where m is the electron mass, and p, is the electron momentum in the z-direction.
(b) The density of electrons inside the metal in an infinitesimal phase space volume ¢V d3p
(where dV is the spacial volume element) is given by,
dv d®p 1
(2mh)3 efP?/2m—p) 4 1
The factor of 2 arises from the two spin states of the electron, and we have p? = p2 + pf, +p2.
The electric current density is then given by the thermal expectation value of the observable,

[y
2 (0.21)

(0.20)

per unit volume, restricted to the range p, > v2mW. Thus the current density I = I, is
given by the following integral,

e 1 o o0 o0 s
Iz = 2 T T Ao > ' .
m (27h)3 /m dp /_oo dp /;oo apy eB(P/2m—p) 4 | (0.22)
Changing variables to the following dimensionless combinations s, defined by,
_a( P it
s=p <2m W) t=f~ (0.23)




The integral for I, reduces to,

1
2h3 T (kT) / ds / U — T T (0.24)

(c) For sufficiently low temperatures, namely T <« W — u, we may drop the 1 in the
denominator, and carry out the integrals over s and ¢ explicitly. We are then left w1th the
following approximate formula,

I, =

W —pu
I = 2 2h3 —— (kT)? exp{— T } (0.25)
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Q12

Assume the existence of magnetic charge related to the magnetic field by the local reaction

v'B:/uO:Dm'

(a). Using the Gauss’s theorem, obtain the magnetic field B of a point magnetic charge at
the origin.
(b). In the absence of the magnetic charge, the curl of the electric field is given by the

Faraday’s law, V x E = —%. Show that this law is incompatible with the magnetic

charge density that is a function of time.
(c). Assuming that magnetic charge is conserved, derive the local relation between the

magnetic charge current density J . and the magnetic density p, .

(d). Modify Faraday’s law as given in part (b) to obtain a law consistent with the
presence of the magnetic charge density that is a function of position and time.

Solution
(a) LV BdV = ﬁ B-dS = 42r2B(r) =u,0,,

o HolOm =
B(r)="2r1
(r) 2r?

oB

&=V (VxE)=0

0= = =
b) —V-B=V.
()at

On the other hand, 2§ = o %
ot ot

Thus the Faraday’s law is incompatible with the magnetic charge density that is a function of
time.

© %medv 3,5 =—§V-J,av

Pu, +V.J =0
ot
This is the continuity equation for magnetic charge.

(d) If we modify Faraday’s law, V xE = —u,J . —%

- ovV-B - op
and —4V-J ——=—4,|V-J_+—-21=0
,Uo m 6’[ ,uo{ m 6tJ

Hence

V-B=—u,V-J_=pu, agtm which is consistent with the second equation in (b).

Q|



Q13

An un-polarized plane electromagnetic wave is scattered by a free electron. Derive the
differential cross-section for scattering in the non-relativistic limit (Thompson scattering).

Solution
Consider an incident plane wave

= _ —i(wt-k-X) 3
E, =Ege 2
The force on the free electron is

= = —iat ~ = — — eE é _i
F=—eE ~-€eEe 6 =mX=-Mmo’Xx X=—"Le™
M
2 ~
. . - " e°El8y -
The induced dipole moment is p = —eX =-—22%¢*
Mo
N k2 eikr
The scattered electric field is E, = [(f x p) xA]
drgy 1
2
. . .. do k* 2 Y s 4
The differential cross section is —o =< | 9 5 | [ix&[ where w=ck.
(47[50) Mo
~ ~ ~ |2
X y 7
A A2 A ~ . A . 2
A& =|n, n, n,l-= ‘— %n, cosg+ yn, sin g+ Z(n, cosg—n, sin ¢)‘
sing cos¢g O

= nf(cos2 ¢ +sin’ ¢)+ N cos” ¢+ njsin® g—2n,n, singcosg
Using < cos® ¢ >=<sin*¢>=1/2 and <cos¢gsing >=0, we have
A x & =n? +%(nf + ni): cos’ 0+%sin2 0 :%(1+ cos® 6)

Thus we obtain d—a = 1 [
dQ

(47[80 )2

2 2 2 2
e 1+cos”@ 1+cos Hrz
mc? 2 2

2
is the classical electron radius.

Where r, =

4re, mc?
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