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Physics & Astronomy Comprehensive Exam, UCLA, Fall 2013 
 

1. Classical Mechanics 
 
Consider the double pendulum shown below with equal string lengths l and unequal masses m 
and 2m, (constrained to move in the plane shown, gravitational acceleration g). Find the 
frequencies of the normal modes for small oscillations about the equilibrium position (1 and 2 
<< 1). 
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Questions for the Comprehensive Exam Fall 2013 
 

2.  Classical Mechanics 
 
A photon of energy E1 collides at an angle   with another photon of energy E2. Find the 
minimum value of E1 (given E2 and ) permitting the formation of a pair of particles of mass m. 
With this expression, calculate the minimum energy a gamma ray must have to create an 
electron-positron pair by colliding with a typical photon from the cosmic microwave background  
(one significant figure is sufficient). [Treat the photon here as a relativistic quantum particle.] 
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Questions for the Comprehensive Exam Fall 2013 
 
3. Quantum Mechanics: Scattering 
 
Consider the scattering of a spinless particle of mass m from a diatomic molecule. The incoming 
particle travels along the z-axis. Assume that the molecule is much heavier than the scattering 
particle and that there is no recoil. The two atoms in the molecule are aligned along the y-axis 
and localized at y = +b and y = -b. The potential the particle feels in the presence of the 
molecule can be modeled by the following potential: 
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(a) Calculate the scattering amplitude in the first Born approximation. 
(b) Calculate the differential cross section from (a) (Express the result in terms of the scattering 
angles). 
(c) Calculate the total cross section. Do the integrals exactly. You might find the following 
integrals helpful: 
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Questions for the Comprehensive Exam Fall 2013 
 
4. Quantum Mechanics 
 
Consider a system of two spin 1/2 particles, labeled a and b, with respective spin operators Sa 
and Sb. We ignore all quantum numbers but those of spin. The particles are in the state | of 
zero total angular momentum, which we consider normalized to | = 1. Let na and nb be two 
independent unit vectors. Compute the expectation value of the product of the spin operators 
projected onto the directions na and nb respectively, namely, |(na Sa)( nb Sb)|. 
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Questions for the Comprehensive Exam Fall 2013 
 
5. Quantum Mechanics 
 
Consider a one dimensional simple harmonic oscillator with the usual Hamiltonian, 
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Now consider the effect of a perturbation, 
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xmV        with    << 1.  

Using perturbation theory, find the new ground state key |0 to order   and the ground state 
energy shift to order 2 . Solve this problem exactly and compare with the results obtained using 
perturbation theory. You may assume without proof that 
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where nu  is the nth eigenstate of H0. 
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Questions for the Comprehensive Exam Fall 2013 

 
6. Quantum Mechanics: Perturbation theory time (in)dependent 
 
The Hamiltonian of a particle of mass m in a 1D finite well is given by 
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A time dependent perturbation is added 
   tfLxHHHHtotal 2/','0    

where  is a constant and f(t) is a time dependent function. 
(a) Calculate the matrix elements of H’ with the eigenstates of the unperturbed Hamiltonian. 
(b) In this part of the problem we consider a time independent perturbation f(t) = 1. First, 
calculate the first nonzero correction of the ground state energy. Second, at which order (if any) 
will the first excited state receive a nonzero correction ? Please back up your answer with an 
argument/calculation. 
(c) Now take the following time dependent function 
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If the system is in its ground state at time t = 0, what are the possible transitions into excited 
states that the system can make at time t > 0 ? Use first order time-dependent perturbation theory. 
(d) Find the transition rate into these excited states using Fermi's golden rule. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

jlee
Text Box
Name:  



 7

Questions for the Comprehensive Exam Fall 2013 
 
7. Quantum Mechanics: Jaynes-Cummings Model 
 
A spin-½ particle (bare eigenstates   and  ) is constrained to move in a 1D harmonic 

potential (bare eigenstates n  for  ,...2,1,0n ). In the absence of coupling, the Hamiltonian is 

given by 
  2/ˆ2/1ˆˆ00 zqaaH      

where 0  is the harmonic oscillation energy spacing and q  is the energy difference between 

  and   in the absence of coupling. Consider the case where the particle’s spin is coupled to 

its motion through the interaction Hamiltonian   
  2ˆˆˆˆint 

   aaH   

where   is the coupling strength and the operators for the spin degree of freedom are defined by 

z̂  , ̂ , and ̂ . 

(a) Let 00  q . Consider the “dispersive regime” defined by 2/ . Find the 

energies and eigenstates of int0 HHH  . You may treat intH  as a perturbation and keep only 

the first nonzero-order terms, and you may consider coupling between nearly-degenerate states 
only. Do not bother to normalize the eigenstates.  
(b) Consider the “resonant regime” where 0 and 0 and q are both equal to some 

frequency  . Find the energies and eigenstates of int0 HHH  . You may treat intH  as a 

perturbation and use first-order degenerate perturbation theory, considering coupling between 

nominally degenerate states only. Hint: consider the state  1,,
2

1
 nen i . 
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Questions for the Comprehensive Exam Fall 2013 
 
8. Statistical Mechanics 
 
We propose to evaluate the Richardson effect, namely the electric current density of electrons 
which is produced by heating up a metal in the presence of an external electric potential. The 
potential energy of an electron just outside the metal is denoted W > 0. The potential energy for 
electrons inside the metal is taken to be 0. The electrons are considered otherwise non-interacting, 
and filled up to chemical potential μ with μ < W. Since we consider the problem to be at 
sufficiently low temperature, μ may be identified with the Fermi energy. 
(a) State the condition on the momentum of an electron that can escape from the metal to the 
outside as a function of W and μ. 
(b) Derive a general expression for the current density I of electrons leaving the metal. 
(c) Obtain an approximation of your result in (b) valid for sufficiently low temperatures. 
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Questions for the Comprehensive Exam Fall 2013 
 
9. Statistical Mechanics 
 
The flexing modes of a thin plate at wave number k have an angular frequency ω such that: 

42 k  . Consider such waves propagating in one dimension around a thin ring of radius R. 
What is the contribution to the heat capacity of these azimuthal modes?  The plate is in thermal 
equilibrium at a low temperature T. You may write your answer in terms of: 
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Questions for the Comprehensive Exam Fall 2013 
 
10. Statistical Mechanics 
 
A liquid is in equilibrium with its vapor at temperature and pressure: vv PT ; . The surface 

between liquid and vapor is flat. The temperature of the vapor is increased to  TTv   while 

keeping its pressure fixed. The liquid remains at temperature and pressure: vv PT ; . Evaluate the 

net flux of gas to the liquid. You may treat the vapor as an ideal noble gas with atoms of mass m. 
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Questions for the Comprehensive Exam Fall 2013 
 
11. Electromagnetism: A spherical capacitor 
 
The gap between two spherical conducting shells of radii R1 < R2 is filled with a spatially 
inhomogeneous dielectric. As a result, the dielectric constant depends on the polar angle  
(measured from the north pole of the sphere) as: 

 4
21 cos)(   

Both 1  and 2  are constants. 
(a) When charged so that the inner and outer spheres have charges +Q and -Q respectively, show 
that the internal electric field is purely radial. Determine how that radial electric field Er depends 
on the polar angles,  and . 
(b) Calculate the capacitance C of the system. 
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Questions for the Comprehensive Exam Fall 2013 
 
12. Electromagnetism 
 
Assume the existence of magnetic charge related to the magnetic field by the local reaction 

mB 0


.  

(a). Using the Gauss’s theorem, obtain the magnetic field B


of a point magnetic charge at 
the origin.  
(b). In the absence of the magnetic charge, the curl of the electric field is given by the 

Faraday’s law, 
t

B
E








. Show that this law is incompatible with the magnetic 

charge density that is a function of time.  
(c). Assuming that magnetic charge is conserved, derive the local relation between the 

magnetic charge current density mJ


 and the magnetic density m .  

(d). Modify Faraday’s law as given in part (b) to obtain a law consistent with the 
presence of the magnetic charge density that is a function of position and time. 
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Questions for the Comprehensive Exam Fall 2013 
 
13. Electromagnetism 
 
An un-polarized plane electromagnetic wave is scattered by a free electron. Derive the 
differential cross-section for scattering in the non-relativistic limit (Thompson scattering). 
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Questions for the Comprehensive Exam Fall 2013 
 
14. Electromagnetism 
 
A plane electromagnetic wave of frequency   is normally incident on an infinitesimally-thin 
planar sheet with a resistivity Zs = Z0 = 377 ohms per square (4/c in cgs units).  The medium on 
both sides of the sheet is vacuum, and the sheet is non-magnetic.   
(a) Calculate the power coefficients of reflection (R), absorption (A), and transmission (T).  
(b) What value of the resistivity Zm would maximize A? What is the maximal value of A, and 
why is this the limit? 
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Question: Scattering

Consider the scattering of a spinless particle of mass m from a diatomic molecule. The
incoming particle travels along the z-axis. Assume that the molecule is much heavier than
the scattering particle and that there is no recoil. The two atoms in the molecule are aligned
along the y-axis and localized at y = b and y = −b. The potential the particle feels in the
presence of the molecule can be modeled by the following potential:

V (~x) = α
(
δ(y − b)δ(x)δ(z) + δ(y + b)δ(x)δ(z)

)
a) Calculate the scattering amplitude in the first Born approximation.

b) Calculate the differential cross section from a) (Express the result in terms of the scat-
tering angles).

c) Calculate the total cross section. Do the integrals exactly. You might find the following
integrals helpful:

∫ 2π

0
α cos(x sinα)2 = π(1 + J0(2x)),

∫ π

0
dα sinαJ0(x sinα) =

2 sinx

x

2



Solution:

a) The scattering amplitude in the first Born approximation is given by

f (1)(~k′, ~k) = −2m(2π)3/2

4πh̄2

∫
d3ye−i(

~k′−~k)~yV (~y) (0.1)

We have
~k = êzk, ~k′ = k(êz cos θ + êx sin θ cosφ+ êy sin θ sinφ) (0.2)

Plugging in the potential and evaluating the integral over y gives

f (1)(~k′, ~k) = −2m(2π)3/2α

4πh̄2

(
eikb sin θ sinφ + e−ikb sin θ sinφ

)
(0.3)

= −mα(2π)3/2

h̄2π
cos(kb sin θ sinφ) (0.4)

b) The differential cross section can be calculated from the scattering amplitude by

dσ

dΩ
= | f(θ, φ) |2

=
α2m28π

h̄4
| cos(kb sin θ sinφ)|2 (0.5)

c) The total cross section is given by

σtot =
∫
dΩ | f(θ, φ) |2

=
α2m28π

h̄4

∫ π

0
dθ sin θ

∫ 2π

0
dφ| cos(kb cos θ cosφ)|2

=
α2m28π2

h̄4

∫ π

0
dθ sin θ

(
1 + πJ0(2kb sin θ)

)
=

α2m28π2

h̄4

(
2 +

sin(2bk)

bk

)
(0.6)
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QUESTION: Perturbation theory time (in)dependent

The Hamiltonian of a particle of mass m in a one dimensional infinite well is given by

H0 =
p2

2m
+ V (x), V (x) =

{
0 0 < x < L
∞ otherwise

A time dependent perturbation is added

Htotal = H0 +H ′, H ′ = λ δ(x− L/2) f(t)

Where λ is constant and f(t) is a time dependent function.

a) Calculate the matrix elements of H ′ with the eigenstates of the unperturbed Hamiltonian.

b) In this part of the problem we consider a time independent perturbation f(t) = 1.
First, calculate the first nonzero correction of the ground state energy. Second, at which

order (if any) will the first excited state receive a nonzero correction ? Please back up your
answer with an argument/calculation.

c) Now take the following time dependent function

f(t) =
∫ ∞
−∞

dωρ(ω)
(
eiωt + e−iωt

)
with

ρ(ω) =

√
α

π
e−αω

2

If the system is in it’s ground state at time t = 0, what are the possible transitions into
excited states that the system can make at time t > 0 ? Use first order time-dependent
perturbation theory.

d) Find the transition rate into these excited states using Fermi’s golden rule.

4



Solution:

The free particle in a box has eigenfunctions

ψn(x) =

√
2

L
sin

nπx

L
, n ∈ N (0.7)

With eigenvalues of H0 given by

En =
h̄2

2m

n2π2

L2
(0.8)

a) The matrix elements are

〈n | H ′ | m〉 =
2

L
λf(t)

∫ L

0
dx sin

nπx

L
sin

mπx

L
δ(x− L/2)

=
2λf(t)

L
sin

nπ

2
sin

mπ

2

=

{
2λf(t)
L

n,m odd
0 otherwise

(0.9)

b) For the ground state one has n = 1 which is odd, hence the first nonzero correction occurs
at first order in perturbation theory and is given by

∆E
(1)
1 = 〈1 | H ′ | 1〉 =

2λ

L
(0.10)

For the first excited state one has n = 2, in the formal power series of time independent non
degenerate perturbation theory the m-th order contribution to the energy E2 is given by

∆E
(m)
2 = 〈2(0) | H ′ | 2(m−1)〉 (0.11)

Where | 2(m−1)〉 is the wave function correction to order m − 1. No matter which form

| 2(m−1)〉 takes, the inner product always vanishes since ψ2(x) has a zero at x = L/2. Hence
the first excited state is not corrected to all orders in perturbation theory.

c) The generate time dependent wave function van be expanded as

| ψ(t)〉 =
∑
n

cn(t)e−i
1
h̄
Ent | n〉 (0.12)

With

cn(t) = cn(0)− i

h̄

∑
m6=n

∫ t

0
dt′〈n | H ′ | m〉e−i

(Em−En)t′
h̄ cm(t′) (0.13)

5



In first order time dependent perturbation theory cm(t′) gets replaced by cm(0). Since the
initial condition sets cm(0) = 0 for m 6= 1 the only nonzero matrix element occurs for
oddn = 1, 3, 5, · · ·, because of (0.23). Hence the only transitions can occur to states with
odd n.

d) For an interaction of the form

H ′ = V (eiωt + e−iωt) (0.14)

Fermi’s Golden rule gives the transition rate

Γ(ω)1→2k+1 =
2π

h̄
| 〈1|V | 2k + 1〉|2

(
δ(E2k+1 − E1 − h̄ω) + δ(E2k+1 − E1 + h̄ω)

)
(0.15)

With
V = λδ(x− L/2) (0.16)

One finds from part a)

| 〈1|V | 2k + 1〉|2 =
4λ2

L2
(0.17)

The total rate then becomes

Γtot =
∫ ∞
−∞

dωρ(ω)Γ(ω)1→2k+1

=
2π

h̄

{
ρ
(1

h̄
(E2k+1 − E1)

)
+ ρ

(
− 1

h̄
(E2k+1 − E1)

)}
| 〈0|V | 2k + 1〉|2

=
2π

h̄

4λ2

L2

√
α

π
2e−

α
h̄2 (E2k+1−E1)2

(0.18)
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Q12 
 
Assume the existence of magnetic charge related to the magnetic field by the local reaction 

mB ρµ0=⋅∇


.  

(a). Using the Gauss’s theorem, obtain the magnetic field B


of a point magnetic charge at 
the origin.  
(b). In the absence of the magnetic charge, the curl of the electric field is given by the 

Faraday’s law, 
t
BE
∂
∂

−=×∇



. Show that this law is incompatible with the magnetic 

charge density that is a function of time.  
(c). Assuming that magnetic charge is conserved, derive the local relation between the 

magnetic charge current density mJ


 and the magnetic density  mρ .  

(d). Modify Faraday’s law as given in part (b) to obtain a law consistent with the 
presence of the magnetic charge density that is a function of position and time. 

 
Solution 
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(b) ( ) 0=×∇⋅∇−=
∂
∂
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On the other hand, 
t

B
t

m

∂
∂

=⋅∇
∂
∂ ρµ0


 

Thus the Faraday’s law is incompatible with the magnetic charge density that is a function of 
time. 
 

(c)  ∫∫ ∫ ⋅∇−=⋅−=
∂
∂

S mV S mm dVJSdJdV
t


ρ  

0=⋅∇+
∂
∂

m
m J
t

ρ
 

This is the continuity equation for magnetic charge. 
 

(d) If we modify Faraday’s law, 
t
BJE m ∂
∂

−−=×∇



0µ  

and   000 =







∂
∂

+⋅∇−=
∂
⋅∇∂

−⋅∇−
t

J
t
BJ m

mm
ρµµ





 

Hence 
t

JB
t

m
m ∂

∂
=⋅∇−=⋅∇

∂
∂ ρµµ 00


 which is consistent with the second equation in (b). 

 



Q13 
 
An un-polarized plane electromagnetic wave is scattered by a free electron. Derive the 
differential cross-section for scattering in the non-relativistic limit (Thompson scattering). 
 
Solution 
Consider an incident plane wave  

0
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⋅−−= ω  

The force on the free electron is 
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The induced dipole moment is tie
m

eEexep ω

ω
−−=−=

2
00

2 ˆ
 

The scattered electric field is  

The differential cross section is   
( )

2

0

2

2

2

2
0

4

ˆˆ
4

en
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qk

d
d

×



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
=

Ω ωπε
σ

  where ck=ω . 

( ) φφφφφφ
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Using 2/1sincos 22 >=>=<< φφ  and 0sincos >=< φφ , we have 

( ) )cos1(
2

1
sin

2

1
cos

2

1
ˆˆ 2222222

0 θθθ +=+=++=× yxz nnnen  

Thus we obtain       
( )

2
222
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2

2
0 2

cos1

2

cos1
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1
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e
d
d θθ
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σ +

=
+
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
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
=

Ω
 

Where  
2

0

2 1

4 mc
ere πε

≡  is the classical electron radius. 
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