Name:

Physics \& Astronomy Comprehensive Exam, UCLA, Fall 2013

1. Classical Mechanics

Consider the double pendulum shown below with equal string lengths l and unequal masses m and $2 m$, (constrained to move in the plane shown, gravitational acceleration g). Find the frequencies of the normal modes for small oscillations about the equilibrium position (θ_{1} and θ_{2} <<1).

2. Classical Mechanics

A photon of energy E_{1} collides at an angle θ with another photon of energy E_{2}. Find the minimum value of E_{1} (given E_{2} and θ) permitting the formation of a pair of particles of mass m. With this expression, calculate the minimum energy a gamma ray must have to create an electron-positron pair by colliding with a typical photon from the cosmic microwave background (one significant figure is sufficient). [Treat the photon here as a relativistic quantum particle.]

3. Quantum Mechanics: Scattering

Consider the scattering of a spinless particle of mass m from a diatomic molecule. The incoming particle travels along the z -axis. Assume that the molecule is much heavier than the scattering particle and that there is no recoil. The two atoms in the molecule are aligned along the y-axis and localized at $\mathrm{y}=+\mathrm{b}$ and $\mathrm{y}=-\mathrm{b}$. The potential the particle feels in the presence of the molecule can be modeled by the following potential:

$$
V(\vec{x})=\alpha(\delta(y-b) \delta(x) \delta(z)+\delta(y+b) \delta(x) \delta(z))
$$

(a) Calculate the scattering amplitude in the first Born approximation.
(b) Calculate the differential cross section from (a) (Express the result in terms of the scattering angles).
(c) Calculate the total cross section. Do the integrals exactly. You might find the following integrals helpful:

$$
\int_{0}^{2 \pi} d \alpha|\cos (x \sin \alpha)|^{2}=\pi\left(1+J_{0}(2 x)\right), \quad \int_{0}^{\pi} d \alpha(\sin \alpha) J_{0}(x \sin \alpha)=\frac{a \sin x}{x}
$$

4. Quantum Mechanics

Consider a system of two spin $1 / 2$ particles, labeled a and b, with respective spin operators \mathbf{S}_{a} and \mathbf{S}_{b}. We ignore all quantum numbers but those of spin. The particles are in the state $|\Psi\rangle$ of zero total angular momentum, which we consider normalized to $\langle\Psi \mid \Psi\rangle=1$. Let \mathbf{n}_{a} and \mathbf{n}_{b} be two independent unit vectors. Compute the expectation value of the product of the spin operators projected onto the directions \mathbf{n}_{a} and \mathbf{n}_{b} respectively, namely, $\langle\Psi|\left(\mathbf{n}_{a} \cdot \mathbf{S}_{a}\right)\left(\mathbf{n}_{b} \cdot \mathbf{S}_{b}\right)|\Psi\rangle$.

5. Quantum Mechanics

Consider a one dimensional simple harmonic oscillator with the usual Hamiltonian,

$$
H_{0}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}
$$

Now consider the effect of a perturbation,

$$
V=\frac{1}{2} \varepsilon m \omega^{2} x^{2} \quad \text { with } \quad \varepsilon \ll 1 .
$$

Using perturbation theory, find the new ground state key $|0\rangle$ to order ε and the ground state energy shift to order ε^{2}. Solve this problem exactly and compare with the results obtained using perturbation theory. You may assume without proof that

$$
\left\langle u_{n^{\prime}}\right| x\left|u_{n}\right\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{n+1} \delta_{n^{\prime}, n+1}+\sqrt{n} \delta_{n^{\prime}, n-1}\right)
$$

where $\left|u_{n}\right\rangle$ is the $\mathrm{n}^{\text {th }}$ eigenstate of H_{0}.

Questions for the Comprehensive Exam Fall 2013

6. Quantum Mechanics: Perturbation theory time (in)dependent

The Hamiltonian of a particle of mass m in a 1D finite well is given by

$$
H_{0}=\frac{p^{2}}{2 m}+V(x), \quad V(x)= \begin{cases}0 & 0<x<L \\ \infty & \text { otherwise }\end{cases}
$$

A time dependent perturbation is added

$$
H_{\text {total }}=H_{0}+H^{\prime}, \quad H^{\prime}=\lambda \delta(x-L / 2) f(t)
$$

where λ is a constant and $f(t)$ is a time dependent function.
(a) Calculate the matrix elements of H^{\prime} with the eigenstates of the unperturbed Hamiltonian.
(b) In this part of the problem we consider a time independent perturbation $f(t)=1$. First, calculate the first nonzero correction of the ground state energy. Second, at which order (if any) will the first excited state receive a nonzero correction ? Please back up your answer with an argument/calculation.
(c) Now take the following time dependent function

$$
f(t)=\int_{-\infty}^{\infty} d \omega \rho(\omega)\left(e^{i \omega t}+e^{-i \omega t}\right) \quad \text { with } \quad \rho(\omega)=\sqrt{\frac{\alpha}{\pi}} e^{-\alpha \omega^{2}}
$$

If the system is in its ground state at time $t=0$, what are the possible transitions into excited states that the system can make at time $\mathrm{t}>0$? Use first order time-dependent perturbation theory.
(d) Find the transition rate into these excited states using Fermi's golden rule.

7. Quantum Mechanics: Jaynes-Cummings Model

A spin- $1 / 2$ particle (bare eigenstates $|\uparrow\rangle$ and $|\downarrow\rangle$) is constrained to move in a 1 D harmonic potential (bare eigenstates $|n\rangle$ for $n \in\{0,1,2, \ldots\}$). In the absence of coupling, the Hamiltonian is given by

$$
H_{0}=\hbar \omega_{0}\left(\hat{a}^{+} \hat{a}+1 / 2\right)+\hbar \omega_{q} \hat{\sigma}_{z} / 2
$$

where $\hbar \omega_{0}$ is the harmonic oscillation energy spacing and $\hbar \omega_{q}$ is the energy difference between $|\uparrow\rangle$ and $|\downarrow\rangle$ in the absence of coupling. Consider the case where the particle’s spin is coupled to its motion through the interaction Hamiltonian

$$
H_{\mathrm{int}}=\hbar \Omega\left(\hat{a}^{+} \hat{\sigma}_{-}+\hat{a} \hat{\sigma}_{+}\right) / 2
$$

where Ω is the coupling strength and the operators for the spin degree of freedom are defined by $\hat{\sigma}_{z}=|\uparrow\rangle\langle\uparrow|-|\downarrow\rangle\langle\downarrow|, \hat{\sigma}_{+}=|\uparrow\rangle\langle\downarrow|$, and $\hat{\sigma}_{-}=|\downarrow\rangle\langle\uparrow|$.
(a) Let $\Delta \equiv \omega_{0}-\omega_{q}>0$. Consider the "dispersive regime" defined by $\Delta \gg \Omega / 2$. Find the energies and eigenstates of $H=H_{0}+H_{\text {int }}$. You may treat $H_{\text {int }}$ as a perturbation and keep only the first nonzero-order terms, and you may consider coupling between nearly-degenerate states only. Do not bother to normalize the eigenstates.
(b) Consider the "resonant regime" where $\Delta \rightarrow 0$ and ω_{0} and ω_{q} are both equal to some frequency ω. Find the energies and eigenstates of $H=H_{0}+H_{\mathrm{int}}$. You may treat H_{int} as a perturbation and use first-order degenerate perturbation theory, considering coupling between nominally degenerate states only. Hint: consider the state $|\psi\rangle=\frac{1}{\sqrt{2}}\left(|\downarrow, n\rangle+e^{i \varphi}|\uparrow, n-1\rangle\right)$.

8. Statistical Mechanics

We propose to evaluate the Richardson effect, namely the electric current density of electrons which is produced by heating up a metal in the presence of an external electric potential. The potential energy of an electron just outside the metal is denoted $W>0$. The potential energy for electrons inside the metal is taken to be 0 . The electrons are considered otherwise non-interacting, and filled up to chemical potential μ with $\mu<W$. Since we consider the problem to be at sufficiently low temperature, μ may be identified with the Fermi energy.
(a) State the condition on the momentum of an electron that can escape from the metal to the outside as a function of W and μ.
(b) Derive a general expression for the current density I of electrons leaving the metal.
(c) Obtain an approximation of your result in (b) valid for sufficiently low temperatures.

9. Statistical Mechanics

The flexing modes of a thin plate at wave number k have an angular frequency ω such that: $\omega^{2}=\gamma k^{4}$. Consider such waves propagating in one dimension around a thin ring of radius R. What is the contribution to the heat capacity of these azimuthal modes? The plate is in thermal equilibrium at a low temperature T. You may write your answer in terms of:
$Z(x)=\int_{-\infty}^{+\infty} \frac{y^{x}}{e^{y}-1} d y \quad$ where x is a pure number.

10. Statistical Mechanics

A liquid is in equilibrium with its vapor at temperature and pressure: $T_{v} ; P_{v}$. The surface between liquid and vapor is flat. The temperature of the vapor is increased to $T_{v}+\Delta T$ while keeping its pressure fixed. The liquid remains at temperature and pressure: $T_{v} ; P_{v}$. Evaluate the net flux of gas to the liquid. You may treat the vapor as an ideal noble gas with atoms of mass m.

11. Electromagnetism: A spherical capacitor

The gap between two spherical conducting shells of radii $R_{1}<R_{2}$ is filled with a spatially inhomogeneous dielectric. As a result, the dielectric constant depends on the polar angle θ (measured from the north pole of the sphere) as:

$$
\varepsilon(\theta)=\varepsilon_{1}+\varepsilon_{2} \cos ^{4} \theta
$$

Both ε_{1} and ε_{2} are constants.
(a) When charged so that the inner and outer spheres have charges $+Q$ and $-Q$ respectively, show that the internal electric field is purely radial. Determine how that radial electric field E_{r} depends on the polar angles, θ and ϕ.
(b) Calculate the capacitance C of the system.

12. Electromagnetism

Assume the existence of magnetic charge related to the magnetic field by the local reaction $\vec{\nabla} \cdot \vec{B}=\mu_{0} \rho_{m}$.
(a). Using the Gauss's theorem, obtain the magnetic field \vec{B} of a point magnetic charge at the origin.
(b). In the absence of the magnetic charge, the curl of the electric field is given by the Faraday's law, $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$. Show that this law is incompatible with the magnetic charge density that is a function of time.
(c). Assuming that magnetic charge is conserved, derive the local relation between the magnetic charge current density \vec{J}_{m} and the magnetic density ρ_{m}.
(d). Modify Faraday's law as given in part (b) to obtain a law consistent with the presence of the magnetic charge density that is a function of position and time.

13. Electromagnetism

An un-polarized plane electromagnetic wave is scattered by a free electron. Derive the differential cross-section for scattering in the non-relativistic limit (Thompson scattering).

14. Electromagnetism

A plane electromagnetic wave of frequency ω is normally incident on an infinitesimally-thin planar sheet with a resistivity $Z_{s}=Z_{0}=377$ ohms per square ($4 \pi / c$ in cgs units). The medium on both sides of the sheet is vacuum, and the sheet is non-magnetic.
(a) Calculate the power coefficients of reflection (R), absorption (A), and transmission (T).
(b) What value of the resistivity Z_{m} would maximize A ? What is the maximal value of A, and why is this the limit?

Classical Mechanics Q1: double pendulum

Consider the double pendulum with unequal masses shown at left. For small oscillations about the equilibrium position $v_{1} \rightarrow 0, v_{2} \rightarrow 0$, find the normal mode frequencies. You may assume $v_{1} \ll 1, v_{2} \ll 1$.

Solution 1 Lagrange differential equation method double pendrium

$$
\begin{aligned}
K & =\frac{1}{2} m\left[l \frac{d}{d t} \sin \left(v_{1}\right)\right]^{2}+\frac{1}{2} \cdot 2 m\left[l \frac{d}{d t} \sin \left(l_{1}\right)+l \frac{d}{d t} \sin \left(f_{2}\right)\right]^{2} \\
& \approx \frac{1}{2} m l^{2} \dot{i}_{1}^{2}+\frac{1}{2} m l^{2}\left[2 \dot{v}_{1}^{2}+4 \dot{v}_{1} \dot{v}_{2}+2 \dot{v}_{2}^{2}\right] \\
& =\frac{1}{2} m l^{2}\left(3 \dot{v}_{1}^{2}+4 \dot{v}_{1} \dot{v}_{2}+2 \dot{j}_{2}^{2}\right) \\
U & =(m+2 m) g\left(l-l \cos \left(v_{1}\right)\right)+2 m g\left(l-l \cos \left(v_{2}\right)\right) \\
& \approx \frac{3}{2} m g l d_{1}^{2}+m g l \dot{v}_{2}^{2} \\
& \therefore L=\frac{1}{2} m l^{2}\left(3 \dot{l}_{1}^{2}+4 \dot{v}_{1} \dot{v}_{2}+2 \dot{v}_{2}^{2}\right)-\frac{3}{2} m g l v_{1}^{2}-m g l v_{2}^{2}
\end{aligned}
$$

The momenta are

$$
\begin{aligned}
& p_{1}=\frac{\partial L}{\partial \dot{v}_{1}}=3 m l^{2} \dot{\theta}_{1}+2 m l^{2} \dot{v}_{2} \\
& p_{2}=\frac{\partial L}{\partial \dot{q}_{2}}=2 m l^{2} \dot{\theta}_{2}+2 m l^{2} \dot{\theta}_{1}
\end{aligned}
$$

we con write the equations of motion:

$$
\begin{gathered}
\frac{d p_{1}}{d t}=\frac{\partial L}{\partial q_{1}} \\
\frac{d}{d t}\left[3 w l^{2} \dot{v}_{1}+2 v_{1} \varepsilon^{2} \dot{v}_{2}\right]=-3 \operatorname{rgg} x v_{1}
\end{gathered}
$$

(I)

$$
3 \ddot{v}_{1}+2 \ddot{q}_{2}=-3 \frac{g}{l} v_{1}
$$

and $\quad \frac{d p_{2}}{d t}=\frac{\partial L}{\partial v_{2}}$

$$
\begin{gathered}
\frac{d}{d t}\left[2 w l^{k} \dot{v}_{2}+2 q w l^{k} \dot{v}_{1}\right]=-2 \psi h g v_{2} \\
2 \ddot{v}_{2}+2 \ddot{v}_{1}=-2 \frac{g}{g} v_{2}
\end{gathered}
$$

(II) $\quad \ddot{j}_{2}+\ddot{i}_{1}=-\frac{g}{l} v_{2}$
assume $\quad v_{1}(t)=A_{1} e^{i \omega t} \quad v_{2}(t)=A_{2} e^{i \omega t}$
from (5) we have

$$
\begin{aligned}
-\omega^{2} A_{1} \cdot 3-2 \omega^{2} A_{2} & =-3 A_{1} \frac{g}{l} \\
A_{1}\left(3 \frac{g}{l}-3 \omega^{2}\right) & =2 \omega^{2} A_{2} \\
\therefore A_{2} & =A_{1}\left(\frac{3}{2} \frac{g}{2} \frac{1}{\omega^{2}}-\frac{3}{2}\right)
\end{aligned}
$$

from (II) we have

$$
\begin{aligned}
&-A_{2} \omega^{2}-A_{1} \omega^{2}=-A_{2} \frac{g}{l} \\
& A_{1} \omega^{2}=A_{2}\left(\frac{g}{l}-\omega^{2}\right) \\
&=A_{1}\left(\frac{3}{2} \frac{9}{l} \frac{1}{\omega^{2}}-\frac{3}{2}\right)\left(\frac{g}{l}-\omega^{2}\right) \\
& \therefore \quad \omega^{2}=\frac{3}{2}\left(\frac{9}{l}\right)^{2} \frac{1}{\omega^{2}} \\
& \underbrace{-\frac{3}{2} \frac{9}{l}-\frac{3}{2} \frac{g}{l}}_{-3 \frac{9}{l}}+\frac{3}{2} \omega^{2} \\
& 0=\frac{3}{2}\left(\frac{g}{l}\right)^{2} \frac{1}{\omega^{2}}-3 \frac{9}{l}+\frac{1}{2} \omega^{2} \\
& 0=\frac{3}{2}\left(\frac{9}{l}\right)^{2}-3 \frac{9}{l} \omega^{2}+\frac{1}{2} \omega^{4} \\
& 0=\frac{3}{2}-3 \frac{l}{g} \omega^{2}+\frac{1}{2}\left(\frac{l}{g} \omega^{2}\right)^{2}
\end{aligned}
$$

So $\quad \frac{l}{9} \omega^{2}=\frac{3 \pm \sqrt{9-3}}{1}=3 \pm \sqrt{6}$

$$
\begin{aligned}
& \omega_{+}=\sqrt{\frac{g}{l}} \sqrt{3+\sqrt{6}} \\
& \omega_{-}=\sqrt{\frac{g}{2}} \sqrt{3-\sqrt{6}}
\end{aligned}
$$

Solution 2 Matrix method

$$
\begin{aligned}
K & =\frac{1}{2} m l^{2}\left(3 \dot{v}_{1}^{2}+4 \dot{v}_{1} \dot{d}_{2}+2 \dot{v}_{2}^{2}\right) \\
V & =\frac{3}{2} m g l v_{1}^{2}+m g l \dot{v}_{2}^{2} \\
& =\frac{1}{2} \cdot 3 m g l \cdot v_{1}^{2}+\frac{1}{2} \cdot 2 m g l \cdot \dot{v}_{2}^{2}
\end{aligned}
$$

we identify

$$
\begin{aligned}
& \begin{array}{l}
M_{11}=3 m l^{2} \\
M_{22}=2 m l^{2} \\
M_{12}=M_{21}=2 m l^{2}
\end{array} \quad \tilde{M}=\left(\begin{array}{ll}
3 m l^{2} & 2 m l^{2} \\
2 m l^{2} & 2 m l^{2}
\end{array}\right)=m l^{2}\left(\begin{array}{ll}
3 & 2 \\
22
\end{array}\right) \\
& K_{11}=3 m g l \\
& K_{22}=2 m g l \\
& K_{12}=K_{21}=0
\end{aligned} \quad \tilde{K}=m g l\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)
$$

we are looking for the solution to

$$
(\tilde{K}-\lambda \tilde{M}) \vec{a}=0 \quad \lambda \equiv \omega^{2}
$$

we construct the characteristic equation by taking the determinant:

$$
\begin{aligned}
& \left|\begin{array}{ll}
3 m g l-\omega^{2} \cdot 3 m l^{2} & -\omega^{2} 2 m l^{2} \\
-\omega^{2} 2 m l^{2} & 2 m g l-\omega^{2} \cdot 2 m l^{2}
\end{array}\right|=0 \\
& \left(3 g-3 l \omega^{2}\right)\left(2 g-2 l \omega^{2}\right)-4 l^{2} \omega^{4}=0
\end{aligned}
$$

$$
\begin{gathered}
6 g^{2}-6 g l \omega^{2}-6 g l \omega^{2}+6 l^{2} \omega^{4}-4 l^{2} \omega^{4}=0 \\
2 l^{2} \omega^{4}-12 g l \omega^{2}+6 g^{2}=0 \\
\frac{l^{2}}{g^{2}} \omega^{4}-6 \frac{l}{g} \omega^{2}+3=0 \\
\text { so } \omega^{2} \frac{l}{g}=\frac{6 \pm \sqrt{36-12}}{2}=3 \pm \sqrt{6} \\
\omega_{+}=\sqrt{\frac{g}{l}} \sqrt{3+\sqrt{6}} \\
\omega_{-}=\sqrt{\frac{g}{l}} \sqrt{3-\sqrt{6}}
\end{gathered}
$$

Without loss of generality we take photon 1 to betraveling in the \hat{z} direction and photon 2 to have its momentum in the $x z$ place. Then the 4-womenta are

$$
\begin{aligned}
P_{1} & =\left(P_{x}, P_{y}, P_{2}, \frac{E}{c}\right)=\left(0,0, \frac{E_{1}}{c}, \frac{E_{1}}{c}\right) \\
P_{2} & =\left(\frac{\sin \theta \Xi_{2}}{c}, 0, \frac{\cos \theta E_{2}}{c}, \frac{E_{2}}{c}\right) \\
P_{t}=P_{1}+P_{2} & =\left(\frac{\sin \theta E_{2}}{c}, 0, \frac{\cos \theta E_{2}+E_{1}}{c}, \frac{E_{1}+E_{2}}{c}\right)
\end{aligned}
$$

The total $|\vec{D}|=\frac{1}{C} \sqrt{\pi \cap^{2} \theta E_{2}^{2}+\cos ^{2} \theta E_{2}^{2}+E_{1}^{2}+2 E_{2} \cos \theta}$

$$
=\frac{1}{2} \sqrt{E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2} \cos \theta}
$$

At threshold $m_{3}=m_{4}$ are not moving relative to each other. \Rightarrow They have the same momenta.
$P_{B}=P_{4}$ such that $|\vec{p}|=P$ and $E=\sqrt{P^{2} c^{2}+m^{2} c^{4}}$
Conservation of \vec{P} implies $2 p=\frac{1}{C} \sqrt{E_{1}^{2}+E_{2}^{2}+2 E_{1} \Phi_{2} \operatorname{coS} \theta}$ conservation of E implies $2 \sqrt{p^{2} c^{2}+m^{2} c 4}=E_{1}+E_{2}$

$$
\begin{aligned}
4 p^{2} c^{2}= & E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2} \cos \theta \\
4\left(p^{2} c^{2}+m^{2} c^{4}\right) & =E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2} \\
4 m^{2} c^{4} & =2 E_{1} E_{2}(1-\cos \theta) \Rightarrow E_{1} E_{2}=\frac{2 m^{2} c^{4}}{1-\cos \theta} \\
& E_{1}=\frac{2 m^{2} c^{4}}{E_{2}(1-\cos \theta)}
\end{aligned}
$$

El will be minturted for a kead-on collision

$$
\cos \theta=-1 \Leftrightarrow \theta=\pi
$$

In twi case $E_{1}=\frac{m^{2} c^{4}}{E_{2}}=\frac{\left(m c^{2}\right)^{2}}{E_{2}}$

$$
\begin{aligned}
& m_{c} c^{2} \cong 0.5 \times 10^{6} \mathrm{eV} \\
& E_{2} \simeq 3 \mathrm{~K} \cdot \frac{\frac{1}{40} \mathrm{eV}}{300 \mathrm{~K}}=\frac{1}{4600} \mathrm{eV}^{2} \\
& E_{1}=\frac{0.25 \times 10^{12}\left(\mathrm{eV}^{2}\right)^{2}}{\frac{1}{4000} \mathrm{eV}}=10^{15} \mathrm{e}^{V}
\end{aligned}
$$

Question: Scattering

Consider the scattering of a spinless particle of mass m from a diatomic molecule. The incoming particle travels along the z-axis. Assume that the molecule is much heavier than the scattering particle and that there is no recoil. The two atoms in the molecule are aligned along the y -axis and localized at $y=b$ and $y=-b$. The potential the particle feels in the presence of the molecule can be modeled by the following potential:

$$
V(\vec{x})=\alpha(\delta(y-b) \delta(x) \delta(z)+\delta(y+b) \delta(x) \delta(z))
$$

a) Calculate the scattering amplitude in the first Born approximation.
b) Calculate the differential cross section from a) (Express the result in terms of the scattering angles).
c) Calculate the total cross section. Do the integrals exactly. You might find the following integrals helpful:

$$
\int_{0}^{2 \pi} \alpha \cos (x \sin \alpha)^{2}=\pi\left(1+J_{0}(2 x)\right), \quad \int_{0}^{\pi} d \alpha \sin \alpha J_{0}(x \sin \alpha)=\frac{2 \sin x}{x}
$$

Solution:

a) The scattering amplitude in the first Born approximation is given by

$$
\begin{equation*}
f^{(1)}\left(\overrightarrow{k^{\prime}}, \vec{k}\right)=-\frac{2 m(2 \pi)^{3 / 2}}{4 \pi \hbar^{2}} \int d^{3} y e^{-i\left(\vec{k}^{\prime}-\vec{k}\right) \vec{y}} V(\vec{y}) \tag{0.1}
\end{equation*}
$$

We have

$$
\begin{equation*}
\vec{k}=\hat{e}_{z} k, \quad \overrightarrow{k^{\prime}}=k\left(\hat{e}^{z} \cos \theta+\hat{e}_{x} \sin \theta \cos \phi+\hat{e}_{y} \sin \theta \sin \phi\right) \tag{0.2}
\end{equation*}
$$

Plugging in the potential and evaluating the integral over y gives

$$
\begin{align*}
f^{(1)}\left(\vec{k}^{\prime}, \vec{k}\right) & =-\frac{2 m(2 \pi)^{3 / 2} \alpha}{4 \pi \hbar^{2}}\left(e^{i k b \sin \theta \sin \phi}+e^{-i k b \sin \theta \sin \phi}\right) \tag{0.3}\\
& =-\frac{m \alpha(2 \pi)^{3 / 2}}{\hbar^{2} \pi} \cos (k b \sin \theta \sin \phi) \tag{0.4}
\end{align*}
$$

b) The differential cross section can be calculated from the scattering amplitude by

$$
\begin{align*}
\frac{d \sigma}{d \Omega} & =|f(\theta, \phi)|^{2} \\
& =\frac{\alpha^{2} m^{2} 8 \pi}{\hbar^{4}}|\cos (k b \sin \theta \sin \phi)|^{2} \tag{0.5}
\end{align*}
$$

c) The total cross section is given by

$$
\begin{align*}
\sigma_{t o t} & =\int d \Omega|f(\theta, \phi)|^{2} \\
& =\frac{\alpha^{2} m^{2} 8 \pi}{\hbar^{4}} \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{2 \pi} d \phi|\cos (k b \cos \theta \cos \phi)|^{2} \\
& =\frac{\alpha^{2} m^{2} 8 \pi^{2}}{\hbar^{4}} \int_{0}^{\pi} d \theta \sin \theta\left(1+\pi J_{0}(2 k b \sin \theta)\right) \\
& =\frac{\alpha^{2} m^{2} 8 \pi^{2}}{\hbar^{4}}\left(2+\frac{\sin (2 b k)}{b k}\right) \tag{0.6}
\end{align*}
$$

Fall 2013 Comprehensive Exam Questions

Question 4:Quantum Mechanics

Consider a system of two spin $1 / 2$ particles, labelled a and b, with respective spin operators \mathbf{S}_{a} and \mathbf{S}_{b}. We ignore all quantum numbers but those of spin. The particles are in the state $|\Psi\rangle$ of zero total angular momentum, which we consider normalized to $\langle\Psi \mid \Psi\rangle=1$. Let \mathbf{n}_{a} and \mathbf{n}_{b} be two independent unit vectors. Compute the expectation value of the product of the spin operators projected onto the directions \mathbf{n}_{a} and \mathbf{n}_{b} respectively, namely,

$$
\begin{equation*}
\langle\Psi|\left(\mathbf{n}_{a} \cdot \mathbf{S}_{a}\right)\left(\mathbf{n}_{b} \cdot \mathbf{S}_{b}\right)|\Psi\rangle \tag{0.1}
\end{equation*}
$$

Solution to Question 4:

Recall that the normalized spin 0 state $|\Psi\rangle$ of the two-spin system, in a basis where the spin operators S_{a}^{z} and S_{b}^{z} are diagonal with eigenstates $| \pm\rangle_{a}$ and $| \pm\rangle_{b}$, is given by,

$$
\begin{equation*}
|\Psi\rangle=\frac{1}{2}\left(|+\rangle_{a} \otimes|-\rangle_{b}-|-\rangle_{a} \otimes|+\rangle_{b}\right) \tag{0.2}
\end{equation*}
$$

Also recall that the spin operators in this basis are given by $S_{a}^{i}=\hbar \sigma_{a}^{i} / 2$ and $S_{b}^{i}=\hbar \sigma_{b}^{i} / 2$, where σ_{a}^{i} and σ_{b}^{i} are the standard Pauli matrices acting in the Hilbert spaces for a and b.

The expectation value to be calculated is linear in \mathbf{n}_{a} and linear in \mathbf{n}_{b}. It is also invariant under rotations, since the state $|\Psi\rangle$ is invariant under rotations. Thus, the outcome must be proportional to the only possible rotation invariant bilinear in \mathbf{n}_{a} and \mathbf{n}_{b},

$$
\begin{equation*}
\langle\Psi|\left(\mathbf{n}_{a} \cdot \mathbf{S}_{a}\right)\left(\mathbf{n}_{b} \cdot \mathbf{S}_{b}\right)|\Psi\rangle=C \mathbf{n}_{a} \cdot \mathbf{n}_{b} \tag{0.3}
\end{equation*}
$$

The coefficient C is independent of \mathbf{n}_{a} and \mathbf{n}_{b}. To evaluate it, we may choose any convenient assignment of \mathbf{n}_{a} and \mathbf{n}_{b} such that their inner product is non-zero. We take $\mathbf{n}_{a}=\mathbf{n}_{b}=$ $(0,0,1)$. It is now straightforward to evaluate C by first computing, by inspection,

$$
\begin{equation*}
\dot{S}_{a}^{z} S_{b}^{z}|\Psi\rangle=-\left(\frac{\hbar}{2}\right)^{2}|\Psi\rangle \tag{0.4}
\end{equation*}
$$

Since $|\Psi\rangle$ is normalized, we thus find,

$$
\begin{equation*}
C=-\left(\frac{\hbar}{2}\right)^{2} \tag{0.5}
\end{equation*}
$$

By the way, it is also easy to double check that the expectation value vanishes when $\mathbf{n}_{a} \cdot \mathbf{n}_{b}=0$, by taking for example $\mathbf{n}_{a}=(1,0,0)$ and $\mathbf{n}_{b}=(0,0,1)$. We then find,

$$
\begin{equation*}
S_{a}^{x} S_{b}^{z}|\Psi\rangle=-\left(\frac{\hbar}{2}\right)^{2} \frac{1}{2}\left(|-\rangle_{a} \otimes|-\rangle_{b}+|+\rangle_{a} \otimes|+\rangle_{b}\right) \tag{0.6}
\end{equation*}
$$

whose inner product with $|\Psi\rangle$ vanishes term by term.

Problem 3
Consider a one-dimensional simple harmonic oscillator with the usual Hamiltonian,

$$
\mu_{0}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}
$$

Now, consider the effect of a perturbation,

$$
V=\frac{1}{2} \in m \omega^{2} x^{2} \quad \text { with } \quad \in \ll 1
$$

Find using perturbation theory, the new ground state bet $|0\rangle$ to order ϵ and the ground state energy shift to order ϵ^{2}. Solve this prover exactly and compare with the results obtained using perturbation the or.

You may assume without proof that

$$
\left\langle u_{n^{\prime}}\right| x\left|u_{n}\right\rangle=\sqrt{\frac{\hbar}{2 m} \omega}\left(\sqrt{n+1} \delta_{n^{\prime}, n+1}+\sqrt{n} \delta_{n^{\prime}, n-1}\right)
$$

where $\left|v_{n}\right\rangle$ is the n^{k} eigenstate of H_{0}.

Sole:-
The new ground state, 107 is given by

$$
|0\rangle=\left|0^{(0)}\right\rangle+\sum_{\vec{k} \neq 0}\left|k^{0}\right\rangle \frac{V_{k \sigma}}{E_{0}^{(0)}-E_{k}^{(0)}}+\ldots .
$$

L the ground state energy shift Δ_{0} by

$$
\Delta_{0}=V_{00}+\sum_{k \neq 0} \frac{\left|V_{k 0}\right|^{2}}{E_{0}^{(0)}-E_{k}^{(0)}}+\cdots
$$

Now

$$
\begin{aligned}
& V_{00}=\frac{\epsilon m \omega^{2}\left\langle 0^{(0)}\right| x^{2}\left|0^{(0)}\right\rangle}{2}=\sum_{n} \frac{\epsilon m \omega^{2}}{2}\left\langle 0^{(0)}\right| x\left|n^{(0)}\right\rangle\left\langle n^{(0)}\right| x\left|0^{(0)}\right\rangle \\
& =\sum_{n} \frac{\epsilon-m \omega^{2}}{2}\left(\sqrt{\frac{\hbar}{2 m \omega}} \delta_{n, 1} \times \sqrt{\frac{\hbar}{2 m \omega}} \delta_{1, n}\right) \\
& =\epsilon \frac{\hbar \omega}{4}
\end{aligned}
$$

For $k \neq 0$,

$$
\begin{aligned}
& V_{k 0}=\frac{\epsilon m \omega^{2}}{2} \sum_{n}\left\langle k^{(0)}\right| x\left|n^{(0)}\right\rangle\left\langle n^{(0)}\right| x|0\rangle \\
= & \frac{\epsilon m \omega^{2}}{2} \times\left(\frac{\hbar}{2 m \omega}\right) \times \sum_{n} \sqrt{2} \cdot \delta_{k_{j}, 2} \times \delta_{1, n} \\
= & \frac{\epsilon \hbar \omega}{2 \sqrt{2}} \delta_{k, 2}
\end{aligned}
$$

Thus, $|0\rangle=\left|0^{(0)}\right\rangle-\frac{\epsilon}{4 \sqrt{2}}\left|2^{(0)}\right\rangle+O\left(\epsilon^{2}\right)$

$$
\Delta_{0}=E_{0}-E_{0}^{(0)}=\hbar \omega\left[\frac{\epsilon}{4}-\frac{\epsilon^{2}}{16}+O\left(\epsilon^{3}\right)\right]
$$

The exact solution for $H_{0}+V$ is obtained by sulestitution $\omega \rightarrow \omega \sqrt{1+\epsilon}$ in the solution for H_{0}

Thus ground state energy

$$
=\frac{\hbar \omega}{2} \sqrt{1+\epsilon}=\frac{\hbar \omega}{2}\left[1+\frac{\epsilon}{2}-\frac{\epsilon^{2}}{8}+\cdots\right]
$$

The ground state wave function of H_{0} is

$$
\begin{aligned}
&\langle x \mid 0\rangle=\frac{1}{\pi^{1 / 4}} \frac{1}{\sqrt{x_{0}}} e^{-x^{2} / 2 x_{0}^{2}} \quad \text { where } \\
& x_{0}=\sqrt{\frac{\hbar}{m w}}
\end{aligned}
$$

Hence the G.S wavefn of $H_{0}+V$ is obtained by $x_{0} \rightarrow \frac{x_{0}}{(1+\epsilon)^{1 / 4}}$
hence $\langle x \mid 0\rangle \rightarrow \frac{1}{\pi 1^{1 / 4} \sqrt{x_{0}}}(1+\epsilon)^{1 / 8} \exp \left[-\left(\frac{x^{2}}{2 x_{0}^{2}}\right)(1+\epsilon)^{1 / 2}\right]$

$$
\approx \frac{1}{\pi 1 / 4} \frac{1}{\sqrt{x_{0}}} e^{-\frac{x^{2}}{2 x_{0}^{2}}}+\frac{\epsilon}{\pi 1 / 4 \sqrt{x_{0}}} e^{-x^{2} / 2 x_{0}^{2}}\left[\frac{1}{8}-\frac{1}{4} \frac{x^{2}}{x_{0}^{2}}\right]
$$

Now, $\left\langle x \mid 2^{(0)}\right\rangle=\frac{1}{\sqrt{2}}\left(a^{+}\right)^{2}|0\rangle$, with

$$
a^{+}=\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i p}{m \omega}\right)=\frac{1}{\sqrt{2} x_{0}}\left(x-x_{0}^{2} \frac{d}{d x}\right)
$$

Thus, $\left\langle x \mid 2^{(0)}\right\rangle=\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} x_{0}\right)^{2}\left(x-x_{0}^{2} \frac{d}{d x}\right)^{2}\langle x \mid 0\rangle$

$$
\begin{aligned}
& =\frac{1}{2 \sqrt{2}} \frac{1}{\pi} 1 / 4 \frac{1}{\sqrt{x_{0}}} e^{-x^{2} / 2 x_{0}^{2}}\left[-2+4\left(\frac{x}{x_{0}}\right)^{2}\right] \\
& \therefore\langle x \mid 0\rangle=\left\langle x \mid 0^{(0)}\right\rangle-\frac{\epsilon}{4 \sqrt{2}}\left\langle x / 2^{(0)}\right\rangle
\end{aligned}
$$

QUESTION: Perturbation theory time (in)dependent

The Hamiltonian of a particle of mass m in a one dimensional infinite well is given by

$$
H_{0}=\frac{p^{2}}{2 m}+V(x), \quad V(x)=\left\{\begin{array}{cc}
0 & 0<x<L \\
\infty & \text { otherwise }
\end{array}\right.
$$

A time dependent perturbation is added

$$
H_{\text {total }}=H_{0}+H^{\prime}, \quad H^{\prime}=\lambda \delta(x-L / 2) f(t)
$$

Where λ is constant and $f(t)$ is a time dependent function.
a) Calculate the matrix elements of H^{\prime} with the eigenstates of the unperturbed Hamiltonian.
b) In this part of the problem we consider a time independent perturbation $f(t)=1$.

First, calculate the first nonzero correction of the ground state energy. Second, at which order (if any) will the first excited state receive a nonzero correction? Please back up your answer with an argument/calculation.
c) Now take the following time dependent function

$$
f(t)=\int_{-\infty}^{\infty} d \omega \rho(\omega)\left(e^{i \omega t}+e^{-i \omega t}\right)
$$

with

$$
\rho(\omega)=\sqrt{\frac{\alpha}{\pi}} e^{-\alpha \omega^{2}}
$$

If the system is in it's ground state at time $t=0$, what are the possible transitions into excited states that the system can make at time $t>0$? Use first order time-dependent perturbation theory.
d) Find the transition rate into these excited states using Fermi's golden rule.

Solution:

The free particle in a box has eigenfunctions

$$
\begin{equation*}
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}, \quad n \in N \tag{0.7}
\end{equation*}
$$

With eigenvalues of H_{0} given by

$$
\begin{equation*}
E_{n}=\frac{\hbar^{2}}{2 m} \frac{n^{2} \pi^{2}}{L^{2}} \tag{0.8}
\end{equation*}
$$

a) The matrix elements are

$$
\begin{align*}
\langle n| H^{\prime}|m\rangle & =\frac{2}{L} \lambda f(t) \int_{0}^{L} d x \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} \delta(x-L / 2) \\
& =\frac{2 \lambda f(t)}{L} \sin \frac{n \pi}{2} \sin \frac{m \pi}{2} \\
& =\left\{\begin{array}{cc}
\frac{2 \lambda f(t)}{L} & n, m \text { odd } \\
0 & \text { otherwise }
\end{array}\right. \tag{0.9}
\end{align*}
$$

b) For the ground state one has $n=1$ which is odd, hence the first nonzero correction occurs at first order in perturbation theory and is given by

$$
\begin{equation*}
\Delta E_{1}^{(1)}=\langle 1| H^{\prime}|1\rangle=\frac{2 \lambda}{L} \tag{0.10}
\end{equation*}
$$

For the first excited state one has $n=2$, in the formal power series of time independent non degenerate perturbation theory the m-th order contribution to the energy E_{2} is given by

$$
\begin{equation*}
\Delta E_{2}^{(m)}=\left\langle 2_{(0)}\right| H^{\prime}\left|2^{(m-1)}\right\rangle \tag{0.11}
\end{equation*}
$$

Where $\left|2^{(m-1)}\right\rangle$ is the wave function correction to order $m-1$. No matter which form $\left|2^{(m-1)}\right\rangle$ takes, the inner product always vanishes since $\psi_{2}(x)$ has a zero at $x=L / 2$. Hence the first excited state is not corrected to all orders in perturbation theory.
c) The generate time dependent wave function van be expanded as

$$
\begin{equation*}
|\psi(t)\rangle=\sum_{n} c_{n}(t) e^{-i \frac{1}{\hbar} E_{n} t}|n\rangle \tag{0.12}
\end{equation*}
$$

With

$$
\begin{equation*}
c_{n}(t)=c_{n}(0)-\frac{i}{\hbar} \sum_{m \neq n} \int_{0}^{t} d t^{\prime}\langle n| H^{\prime}|m\rangle e^{-i \frac{\left(E_{m}-E_{n}\right) t^{\prime}}{\hbar}} c_{m}\left(t^{\prime}\right) \tag{0.13}
\end{equation*}
$$

In first order time dependent perturbation theory $c_{m}\left(t^{\prime}\right)$ gets replaced by $c_{m}(0)$. Since the initial condition sets $c_{m}(0)=0$ for $m \neq 1$ the only nonzero matrix element occurs for $\operatorname{odd} n=1,3,5, \cdots$, because of (0.23). Hence the only transitions can occur to states with odd n.
d) For an interaction of the form

$$
\begin{equation*}
H^{\prime}=V\left(e^{i \omega t}+e^{-i \omega t}\right) \tag{0.14}
\end{equation*}
$$

Fermi's Golden rule gives the transition rate

$$
\begin{equation*}
\left.\Gamma(\omega)_{1 \rightarrow 2 k+1}=\frac{2 \pi}{\hbar}|\langle 1| V| 2 k+1\right\rangle\left.\right|^{2}\left(\delta\left(E_{2 k+1}-E_{1}-\hbar \omega\right)+\delta\left(E_{2 k+1}-E_{1}+\hbar \omega\right)\right) \tag{0.15}
\end{equation*}
$$

With

$$
\begin{equation*}
V=\lambda \delta(x-L / 2) \tag{0.16}
\end{equation*}
$$

One finds from part a)

$$
\begin{equation*}
|\langle 1| V| 2 k+1\rangle\left.\right|^{2}=\frac{4 \lambda^{2}}{L^{2}} \tag{0.17}
\end{equation*}
$$

The total rate then becomes

$$
\begin{align*}
\Gamma_{t o t} & =\int_{-\infty}^{\infty} d \omega \rho(\omega) \Gamma(\omega)_{1 \rightarrow 2 k+1} \\
& \left.=\frac{2 \pi}{\hbar}\left\{\rho\left(\frac{1}{\hbar}\left(E_{2 k+1}-E_{1}\right)\right)+\rho\left(-\frac{1}{\hbar}\left(E_{2 k+1}-E_{1}\right)\right)\right\}|\langle 0| V| 2 k+1\right\rangle\left.\right|^{2} \\
& =\frac{2 \pi}{\hbar} \frac{4 \lambda^{2}}{L^{2}} \sqrt{\frac{\alpha}{\pi}} 2 e^{-\frac{\alpha}{\hbar^{2}}\left(E_{2 k+1}-E_{1}\right)^{2}} \tag{0.18}
\end{align*}
$$

Quantum Mechanics 11 Jaynes-Cummings Model
A two-level system with bare eigenstates $|\uparrow\rangle$ and $|\downarrow\rangle$ ("a quit") has on energy splitting $\omega_{q}(\pi \equiv 1)$. Consider the coupling between the quibit and a harmonic oscillator (bare eigenstates $|n\rangle$ for $n \in\{0,1,2, \ldots\}$) with energy splitting ω_{0}, which described by the Hamiltonian

$$
\begin{aligned}
& H=H_{0}+H_{\text {int }} \\
& H_{0}=\omega_{0}\left(\hat{a}^{+} \hat{a}+\frac{1}{2}\right)+\frac{1}{2} \omega_{q} \hat{\sigma}_{z} \\
& H_{\text {int }}=\frac{\Omega}{2}\left(\hat{a}^{+} \hat{\sigma}_{-}+\hat{a} \hat{\sigma}_{+}\right)
\end{aligned}
$$

Where Ω is the coupling strength, \hat{a}^{\dagger} and \hat{a} are the harmonic oscillator raising and lowering operators, and the spin- $\frac{1}{2}$ operators are defined as $\hat{\sigma}_{z} \equiv|\uparrow X \uparrow|-|\downarrow X \downarrow|, \hat{\sigma}_{+} \equiv|\uparrow X \downarrow|, \hat{\sigma}_{-} \equiv|\downarrow X \uparrow|$.
a.) Consider the "dispersive regime", defined by $\omega_{0}-\omega_{q} \gg \frac{\Omega}{2}$.

Find the energies and eigenstates of H . You may treat $H_{\text {int }}$ as a perturbation and use $1^{\text {st }}$-nonzero-order terms. Consider coupling between nearly-degenerate states only. Let $\Delta \equiv \omega_{0}-\omega_{q}>0$. Don't bother to normalize the eigenstates.
b.) Consider the "resonant regime," defined by $\omega_{q} x \omega_{0} \equiv \omega$. Find the energies and eigenstates of H . You may treat $H_{\text {int }}$ as a perturbation and use $1^{\text {st }}$-order degenerate perturbation theory. Hint: consider the state $\frac{1}{\sqrt{2}}\left(|t, n\rangle+e^{i \varphi}|t, n-1\rangle\right)$ consider coupling between degenerate states only.

Solution to Quantum Mechanics: Jaynes-Cummings Model
a4.) Solution \#1: plain-old perturbation theory

$$
\begin{aligned}
& E_{i, n}^{0}=n \omega_{0}+\frac{\omega_{0}}{2}-\frac{\omega_{q}}{2}=n \omega_{0}+\frac{\Delta}{2} \\
& E_{i, n-1}^{0}=n \omega_{0}-\frac{\Delta}{2}
\end{aligned}
$$

Apply Merzbacher 8.37 or Sakurai 5.1.11

$$
\left.\begin{array}{rl}
E_{+, n} & =\frac{1}{2}\left[2 n \omega_{0}+\sqrt{(-\Delta)^{2}+4\left|\frac{\Omega}{2} \sqrt{n}\right|^{2}}\right] \\
& =n \omega_{0}+\frac{1}{2} \Delta \sqrt{1+\frac{4 \left\lvert\, \frac{\Omega}{3} \sqrt{n} R^{2}\right.}{\Delta^{2}}} \\
& \approx 1+\frac{n \Omega^{2}}{2 \Delta^{2}}
\end{array}\right] \begin{gathered}
n \omega_{0}+\frac{1}{2} \Delta+\frac{n / \pi^{2} \frac{n \Omega^{2}}{4 \Delta}}{E_{-, n}} \\
\end{gathered}
$$

Un-normalized eigenstates:

$$
\begin{aligned}
& n \text {-normalized eigenstates: } \\
& |1+, n\rangle=|\downarrow, n\rangle+\frac{\langle\uparrow, n-1| H_{i n+}|\downarrow, n\rangle}{E_{i, n}^{0}-E_{i, n-1}^{0}}=|\downarrow, n\rangle+\frac{g \sqrt{n}}{\Delta}|\uparrow, n-1\rangle \\
& |-, n\rangle=|\uparrow, n-1\rangle-\frac{9 \sqrt{n}}{\Delta}|\downarrow, n\rangle
\end{aligned}
$$

Solution to QM 1 Jaynes-Cummings Made

- Solution \# 1: eigenstates by inspection bs)

Since we are instructed to consider coupling between degenerate states only (5^{++}order), we have a series of two-level systems described by $|\downarrow, n\rangle$ and $|\uparrow, n-1\rangle$.

These have the same energy under $H_{0}(n \omega)$, so we will subtract this constant from the Hamiltonian. We note that $H_{\text {int }}$ is completely off-diogonal in this b asis

$$
\langle\downarrow, n| H_{i n+}|\downarrow, n\rangle=\langle t, n-1| H_{i n+}|\uparrow, n-1\rangle=0, \quad\langle\downarrow, n| H_{i n+}|\uparrow, n-1\rangle=\frac{\sqrt{2}}{2} \sqrt{n}
$$

So we are asked to diagonalize a 2×2 matrix that is proportional to $\hat{\sigma}_{x}$:

$$
H_{n}=\frac{\Omega}{2} \sqrt{n}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The eigenstates are therefore given by

$$
\begin{aligned}
& |+, n\rangle \equiv(|t, n\rangle+|\uparrow, n-1\rangle) \frac{1}{\sqrt{2}} \\
& |-, n\rangle \equiv(|\downarrow, n\rangle-|\uparrow, n-1\rangle) \frac{1}{\sqrt{2}}
\end{aligned}
$$

The energies can be found as follows

$$
\begin{aligned}
& H_{n}|+, n\rangle=E_{+n}|+, n\rangle=\frac{\Omega}{2} \sqrt{n}|+, n\rangle \\
& H_{n}|-, n\rangle=E_{-n}|-, n\rangle=-\frac{\Omega}{2} \sqrt{n}|-, n\rangle
\end{aligned}
$$

b) So the energies are given by $n \omega \pm \frac{\Omega}{2} \sqrt{n}$

Solution \#2: degenerate perturbation theory
b).
Using, e.g., Merzbacher 8.37 we con write

$$
E_{ \pm}=\frac{1}{2}\left[n \omega+n \omega \pm \sqrt{\left.(n \omega-n \omega)^{2}+4\left|\langle\downarrow, n| H_{\text {int }}\right| \uparrow, n-1\right\rangle\left.\right|^{2}}\right]
$$

since $\langle\downarrow, n| H_{\text {int }}|\uparrow, n-1\rangle=\frac{\Omega}{2} \sqrt{n}$, we have
bi)

$$
\left\{\begin{array}{l}
E_{+}=n \omega+\frac{\Omega}{2} \sqrt{n} \\
E_{-}=n \omega-\frac{\Omega}{2} \sqrt{n}
\end{array}\right.
$$

Another way to get this is to notice the hint about the states $| \pm\rangle \equiv \frac{1}{\sqrt{2}}(|n, \downarrow\rangle \pm|n-1, \uparrow\rangle)$. Do these states diagonalize $H_{\text {int }}$? well, $H_{\text {int }}|t, n\rangle=\frac{\pi}{2} \sqrt{n}|t, n\rangle$, so yes, they do. We con now use them to apply sakurai 5.2.11:

$$
\begin{aligned}
& \Delta_{l}^{+}=\langle+, n| H_{i n+}|+, n\rangle=\frac{\Omega}{2} \sqrt{n} \\
& \Delta^{-}=\langle-, n| H_{i n+}|-, n\rangle=-\frac{\Omega}{2} \sqrt{n}
\end{aligned}
$$

b 4.) therefore,

$$
\begin{aligned}
& E_{+}=\langle+, n| H_{0}|+, n\rangle+\frac{\Omega}{2} \sqrt{n}=n \omega+\frac{\Omega}{2} \sqrt{n} \\
& E_{-}=\langle-, n| H_{0}|-, n\rangle-\frac{\Omega}{2} \sqrt{n}=n \omega-\frac{\Omega}{2} \sqrt{n}
\end{aligned}
$$

Since we know that $|I, n\rangle$ diagonalize $H_{i n t}$, we can check to see if there also eigenstates of H_{0} :

$$
\begin{aligned}
& H_{0}| \pm, n\rangle=n \omega, \text { wo have } \\
& \left.|+, n\rangle=\frac{1}{\sqrt{2}}(1 \downarrow, n\rangle+|\uparrow, n-1\rangle\right) \\
& |-, n\rangle=\frac{1}{\sqrt{2}}(|\downarrow, n\rangle-|\uparrow, n-1\rangle)
\end{aligned}
$$

Question 8: Statistical Mechanics

We propose to evaluate the Richardson effect, namely the electric current density of electrons which is produced by heating up a metal in the presence of an external electric potential. The potential energy of an electron just outside the metal is denoted $W>0$.

The potential energy for electrons inside the metal is taken to be 0 . The electrons are considered otherwise non-interacting, and filled up to chemical potential μ with $\mu<W$. Since we consider the problem to be at sufficiently low temperature, μ may be identified with the Fermi energy.
(a) State the condition on the momentum of an electron that can escape from the metal to the outside as a function of W and μ.
(b) Derive a general expression for the current density I of electrons leaving the metal.
(c) Obtain an approximation of your result in (b) valid for sufficiently low temperatures.

Solution to Question 8

(a) We take the edge of the metal where the electrons are being emitted to be orthogonal to the z-direction. The condition for an electron to be able to escape the metal to the outside is that its kinetic energy in the z-direction can overcome the potential energy outside the metal, so that we then must have,

$$
\begin{equation*}
\frac{p_{z}^{2}}{2 m}>W \tag{0.19}
\end{equation*}
$$

where m is the electron mass, and p_{z} is the electron momentum in the z-direction.
(b) The density of electrons inside the metal in an infinitesimal phase space volume $d V d^{3} p$ (where $d V$ is the spacial volume element) is given by,

$$
\begin{equation*}
2 \frac{d V d^{3} p}{(2 \pi \hbar)^{3}} \frac{1}{e^{\beta\left(\mathbf{p}^{2} / 2 m-\mu\right)}+1} \tag{0.20}
\end{equation*}
$$

The factor of 2 arises from the two spin states of the electron, and we have $\mathbf{p}^{2}=p_{x}^{2}+p_{y}^{2}+p_{z}^{2}$. The electric current density is then given by the thermal expectation value of the observable,

$$
\begin{equation*}
\frac{e p_{z}}{m} \tag{0.21}
\end{equation*}
$$

per unit volume, restricted to the range $p_{z}>\sqrt{2 m W}$. Thus the current density $I=I_{z}$ is given by the following integral,

$$
\begin{equation*}
I_{z}=2 \frac{e}{m} \frac{1}{(2 \pi \hbar)^{3}} \int_{\sqrt{2 m W}}^{\infty} d p_{z} \int_{-\infty}^{\infty} d p_{x} \int_{-\infty}^{\infty} d p_{y} \frac{p_{z}}{e^{\beta\left(\mathbf{p}^{2} / 2 m-\mu\right)}+1} \tag{0.22}
\end{equation*}
$$

Changing variables to the following dimensionless combinations s, t defined by,

$$
\begin{equation*}
s=\beta\left(\frac{p_{z}^{2}}{2 m}-W\right) \quad t=\beta \frac{p_{x}^{2}+p_{y}^{2}}{2 m} \tag{0.23}
\end{equation*}
$$

The integral for I_{z} reduces to,

$$
\begin{equation*}
I_{z}=\frac{e m}{2 \pi^{2} \hbar^{3}}(k T)^{2} \int_{0}^{\infty} d s \int_{0}^{\infty} d t \frac{1}{e^{s+t+\beta(W-\mu)}+1} \tag{0.24}
\end{equation*}
$$

(c) For sufficiently low temperatures, namely $T \ll W-\mu$, we may drop the 1 in the denominator, and carry out the integrals over s and t explicitly. We are then left with the following approximate formula,

$$
\begin{equation*}
I_{z}=\frac{e m}{2 \pi^{2} \hbar^{3}}(k T)^{2} \exp \left\{-\frac{W-\mu}{k T}\right\} \tag{0.25}
\end{equation*}
$$

1. The gap between two spherical conducting shell e see the figure below -in filled with a spatially, inhomogereas didectric so flat the didectric constant depends ©64 the polar angle θ cs:

$$
\varepsilon(\theta)=\varepsilon_{1}+\varepsilon_{2} \cos ^{4} \theta
$$

a) when changed so that the inner and outs sphere n have changer $t Q$ and $-Q$ reprecticel, show Hat the internal electric field is purely radial e. $E=\hat{r} E_{r}$.and is indepment of the arles φ, θ.
b) Calculate the capacitance C of the system.

Ans.
a) no φ-depundure of azimuthal symity: $E_{\varphi}=0$ Consider the line-integul shows below.
$\ell_{a \rightarrow 0}$.

$$
\bar{\nabla} \times \bar{E}=0 \Rightarrow \oint \bar{E} \cdot d \vec{l}=0 \text { and } 5 / 3 \dot{u}
$$

corrector \vec{E} vanishes in the conductor, \dot{E}_{θ} mot vanish in te dielutic.
diclecture extend thuepout the gao.

$$
\Rightarrow \quad \vec{E}=\hat{r} E_{r}(r)
$$

many other dyendenes $\Rightarrow \vec{\nabla} \times \vec{E} \neq 0$.
b) Usig Gaussis law inside.

$$
2 \pi R^{2} E \int_{-1}^{+1} d(\cos \theta)\left\{\varepsilon_{1}+\varepsilon_{2} \cos ^{4} \theta\right\}=4 \pi Q
$$

$$
\begin{aligned}
& 4 \pi R^{2} E \frac{\left(1 \varepsilon_{2}+5 \varepsilon_{1}\right)}{5}=4 \pi Q \Rightarrow E=\frac{5 Q}{R^{2}\left(\varepsilon_{2}+\Delta \varepsilon_{1}\right)} \\
& \Delta V=-\int_{R_{1}}^{R_{2}} d \vec{r} \cdot \vec{E}=\frac{5 Q}{\left(\varepsilon_{2}+5 \varepsilon_{1}\right)}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& C^{\prime}=\frac{Q}{\Delta V}=\frac{\left(5 \varepsilon_{2}+\varepsilon \varepsilon_{2}\right)}{5}\left[\frac{R_{2} R_{1}}{R_{2}-R_{1}}\right]
\end{aligned}
$$

$$
\int_{-1}^{+1} x^{4} d x=\left.\frac{1}{5} x^{5}\right|_{-1} ^{+1}=2 / 5
$$

3. A small shick of Cyghl istand rotat in the $x y$ place. Fis stick has chaya $\pm g$ enbedded on either end-see figure below.
 $\vec{\omega}=\hat{z} \omega_{0}$ inital onsclan velocily. (moment of matia I.)

You obsane that its anpetan velocity in slowh decreanj: $\dot{\omega}<0$ and $\frac{|\dot{\omega}|}{\omega} \ll 1$. Prdict $\omega(t)$.
Ans. Slowis de to radiation.
Rotaty dipole $\vec{p}=1(\hat{x}+i \hat{y}) q l e$
Paver radiated $\frac{d R}{d \Omega}=\frac{c k^{4}}{8 \pi}|(\hat{r} \times \hat{p}) \times \hat{r}|^{2} ; k=w / c$

$$
\begin{align*}
(\hat{r} \times \hat{p}) \cdot \hat{r} & =\vec{p}-(\hat{r} \cdot \hat{p}) \hat{r} \\
\hat{r} \cdot \vec{p} & =2 q l[\sin \theta \cos \varphi+i \sin \theta \sin \varphi]=2 q l \sin \theta e^{i \varphi} \\
|(\hat{r} \times \hat{p}) \cdot \hat{r}|^{2} & =4 q^{2} l^{2}\left[\hat{x}+i \hat{y}-\sin \theta e^{i \varphi} \hat{r}\right] \cdot\left[\hat{x}-i \hat{y}-\sin \theta e^{-i \varphi} \hat{r}\right] \\
& =\left\{\left(2-\sin ^{2} \theta\right) \cdot 4 q^{2} A^{2}\right. \text { Aften some dgebra... }
\end{align*}
$$

$\frac{d P}{d \Omega}=\frac{\omega^{4}}{2 c^{3} \pi}\left[1+\cos ^{2} \theta\right]$; Integnte veratite unst sphere to get total ponce radiated:

$$
P=\oint \frac{d p}{d \Omega} d \Omega=\frac{2 \pi \omega^{4}}{2 c^{3} h^{4}}\left[x+\left\{x^{3}\right]_{-1}^{7}=\frac{8}{3 \omega^{3}}(q l)^{2}\right.
$$

Now $\frac{d}{d t}\left(\frac{1}{2} I \omega^{2}\right)=-P$;

$$
\begin{gathered}
\Rightarrow I \omega \dot{\omega}=-P=-A \omega^{4} \omega \\
I \dot{\omega}=-A \omega^{3} \text { or } \int_{\omega_{0}} \frac{d \omega}{\omega^{3}}=-\frac{A}{I} \int_{0}^{t} d t \\
-\left.\frac{1}{2} \frac{1}{\omega^{2}}\right|_{\omega_{0}} ^{\omega}=-\frac{A}{I} t \quad \omega_{0} \\
\frac{1}{\omega^{2}}-\frac{1}{\omega_{0}^{2}}=\frac{2 A t \Rightarrow \frac{1}{I}=\frac{I}{\omega_{0}^{2} I}+\frac{2 A t \omega_{0}^{2}}{I \omega_{0}^{2}}}{\omega(t)}=\sqrt{\frac{\omega_{0}^{2} I}{I+2 A t \omega_{0}^{2}}} ; A=\frac{8}{3 c^{3}}(q l)^{2}
\end{gathered}
$$

$+5$

Q12

Assume the existence of magnetic charge related to the magnetic field by the local reaction $\vec{\nabla} \cdot \vec{B}=\mu_{0} \rho_{m}$.
(a). Using the Gauss's theorem, obtain the magnetic field \vec{B} of a point magnetic charge at the origin.
(b). In the absence of the magnetic charge, the curl of the electric field is given by the Faraday's law, $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$. Show that this law is incompatible with the magnetic charge density that is a function of time.
(c). Assuming that magnetic charge is conserved, derive the local relation between the magnetic charge current density \vec{J}_{m} and the magnetic density ρ_{m}.
(d). Modify Faraday's law as given in part (b) to obtain a law consistent with the presence of the magnetic charge density that is a function of position and time.

Solution

(a) $\int_{V} \vec{\nabla} \cdot \vec{B} d V=\oint_{S} \vec{B} \cdot d \vec{S}=4 \pi r^{2} B(r)=\mu_{0} q_{m}$ $\vec{B}(r)=\frac{\mu_{0} q_{m}}{4 \pi r^{2}} \hat{r}$
(b) $\frac{\partial}{\partial t} \vec{\nabla} \cdot \vec{B}=\vec{\nabla} \cdot \frac{\partial \vec{B}}{\partial t}=-\vec{\nabla} \cdot(\vec{\nabla} \times \vec{E})=0$

On the other hand, $\frac{\partial}{\partial t} \vec{\nabla} \cdot \vec{B}=\mu_{0} \frac{\partial \rho_{m}}{\partial t}$
Thus the Faraday's law is incompatible with the magnetic charge density that is a function of time.
(c) $\frac{\partial}{\partial t} \int_{V} \rho_{m} d V=-\oint_{S} \vec{J}_{m} \cdot d \vec{S}=-\oint_{S} \vec{\nabla} \cdot \vec{J}_{m} d V$
$\frac{\partial \rho_{m}}{\partial t}+\vec{\nabla} \cdot \vec{J}_{m}=0$
This is the continuity equation for magnetic charge.
(d) If we modify Faraday's law, $\vec{\nabla} \times \vec{E}=-\mu_{0} J_{m}-\frac{\partial \vec{B}}{\partial t}$
and $-\mu_{0} \vec{\nabla} \cdot J_{m}-\frac{\partial \vec{\nabla} \cdot \vec{B}}{\partial t}=-\mu_{0}\left(\vec{\nabla} \cdot J_{m}+\frac{\partial \rho_{m}}{\partial t}\right)=0$
Hence $\frac{\partial}{\partial t} \vec{\nabla} \cdot \vec{B}=-\mu_{0} \vec{\nabla} \cdot J_{m}=\mu_{0} \frac{\partial \rho_{m}}{\partial t}$ which is consistent with the second equation in (b).

Q13

An un-polarized plane electromagnetic wave is scattered by a free electron. Derive the differential cross-section for scattering in the non-relativistic limit (Thompson scattering).

Solution
Consider an incident plane wave
$\vec{E}_{i}=E_{0} e^{-i(\omega t-\vec{k} \cdot \hat{x})} \hat{e}_{0}$
The force on the free electron is
$\vec{F}=-e \vec{E}_{i} \sim-e E_{0} e^{-i \omega t} \hat{e}_{0}=m \ddot{\vec{x}}=-m \omega^{2} \vec{x} \quad \vec{x}=\frac{e E_{0} \hat{e}_{0}}{m \omega^{2}} e^{-i \omega t}$
The induced dipole moment is $\vec{p}=-e \vec{x}=-\frac{e^{2} E_{0} \hat{e}_{0}}{m \omega^{2}} e^{-i \omega t}$
The scattered electric field is $\vec{E}_{s}=\frac{k^{2}}{4 \pi \varepsilon_{0}} \frac{e^{i k r}}{r}[(\hat{n} \times \vec{p}) \times \hat{n}]$
The differential cross section is $\frac{d \sigma}{d \Omega}=\frac{k^{4}}{\left(4 \pi \varepsilon_{0}\right)^{2}}\left(\frac{q^{2}}{m \omega^{2}}\right)^{2}\left|\hat{n} \times \hat{e}_{0}\right|^{2} \quad$ where $\omega=c k$.
$\left|\hat{n} \times \hat{e}_{0}\right|^{2}=\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ n_{x} & n_{y} & n_{z} \\ \sin \phi & \cos \phi & 0\end{array}\right|^{2}=\left|-\hat{x} n_{z} \cos \phi+\hat{y} n_{z} \sin \phi+\hat{z}\left(n_{x} \cos \phi-n_{y} \sin \phi\right)\right|^{2}$
$=n_{z}^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+n_{x}^{2} \cos ^{2} \phi+n_{y}^{2} \sin ^{2} \phi-2 n_{x} n_{y} \sin \phi \cos \phi$
Using $\left\langle\cos ^{2} \phi\right\rangle=\left\langle\sin ^{2} \phi\right\rangle=1 / 2$ and $\langle\cos \phi \sin \phi\rangle=0$, we have
$\left|\hat{n} \times \hat{e}_{0}\right|^{2}=n_{z}^{2}+\frac{1}{2}\left(n_{x}^{2}+n_{y}^{2}\right)=\cos ^{2} \theta+\frac{1}{2} \sin ^{2} \theta=\frac{1}{2}\left(1+\cos ^{2} \theta\right)$
Thus we obtain $\quad \frac{d \sigma}{d \Omega}=\frac{1}{\left(4 \pi \varepsilon_{0}\right)^{2}}\left(\frac{e^{2}}{m c^{2}}\right)^{2} \frac{1+\cos ^{2} \theta}{2}=\frac{1+\cos ^{2} \theta}{2} r_{e}^{2}$
Where $r_{e} \equiv \frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{m c^{2}}$ is the classical electron radius.
$Q 14$
In cis units
(1) $D \cdot \vec{D}=4 \pi \rho$
(2) $D \cdot \vec{B}=0$

$$
\stackrel{\rightharpoonup}{D}=\varepsilon \stackrel{\rightharpoonup}{E}
$$

(3) $D \times \vec{H}=\frac{4 \pi \vec{J}}{c}+\frac{1}{c} \frac{\overrightarrow{\partial D}}{\partial t}$
(4) $D \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$
assume $\vec{E}=\vec{E}_{0} e^{i(k \cdot \vec{n}-\omega t)}$
Then (4) gives $\vec{K} \times \vec{E}=\frac{\omega}{c} \vec{B}$

$$
\Rightarrow \vec{B}=\hat{k} \times \stackrel{\rightharpoonup}{\underline{E}}
$$

Drown with finite angle of inadence for clarity

Normally $\vec{J}=\sigma \vec{E}$. Here we have a Surface current

$$
\vec{K}=\nabla_{2 D} \stackrel{\rightharpoonup}{E}
$$

where $\sigma_{20}=\frac{1}{z_{0}}=\left.\frac{1}{37 z \Omega}\right|_{\text {mks }}=\left.\frac{c}{4 \pi t}\right|_{\text {cgs }}$
The boundary conditions come from (*) and (3).
From (4)

$$
\oint \vec{E} \cdot d \vec{l}=-\frac{1}{c} \frac{\partial}{\partial t} \int \vec{B} \cdot d \vec{a}=0 \quad \vec{E} \text { is continuous }
$$

$$
\vec{E}_{i}+\vec{E}_{r}=\vec{E}_{t} \text { as drawn } \Rightarrow \bar{E}_{i}-E_{r}=E_{t}
$$

From (3) $\oint \vec{H} \cdot d \vec{l}=\oint \vec{B} \cdot d \vec{l}=\frac{4 \pi}{c} \int \vec{J} \cdot d \vec{a}+\frac{1}{c} \frac{\partial}{\partial t} \int \vec{D} \cdot d \vec{a}$
$\operatorname{using}|\vec{B}|=|\vec{E}|$

$$
B_{i}+B_{r}-B_{t}=\frac{4 \pi}{c} K=\frac{4 \pi}{c} \sigma_{2 D} E_{t} \quad \text { loop has no area }
$$

$$
\begin{aligned}
{\left[E_{i}+E_{r}-E_{t}=\delta E_{t}\right.}
\end{aligned} \text { where } \delta \equiv \frac{4 \pi}{c} \sigma_{2 D}
$$

With the boxed equations

Eliminate E_{-}

$$
\begin{array}{ll}
E_{i}+\left(E_{i}-E_{t}\right)-E_{t}=S E_{t} & E_{i}+E_{r}-\left(E_{i}-E_{r}\right)=S\left(E_{i}-E_{r}\right) \\
2\left(E_{i}-E_{t}\right)=S E_{t} & 2 E_{r}=S\left(E_{i}-E_{r}\right) \\
E_{i}=\left(\frac{S}{2}+1\right) E_{t} & E_{r}\left(1+\frac{S}{2}\right)=\frac{S}{2} E_{i} \\
\frac{E_{t}}{E_{i}}=\frac{1}{\frac{S}{2}+1} & \frac{E_{r}}{E_{i}}=\frac{S / 2}{\frac{S}{2}+1} \\
T=\left(\frac{E_{t}}{E_{i}}\right)^{2}=\frac{1}{\left(1+\frac{S}{2}\right)^{2}} & R=\left(\frac{E_{r}}{E_{i}}\right)^{2}=\left(\frac{\frac{S}{2}}{1+\frac{S}{2}}\right)^{2} \\
T+R+A=1 \quad \therefore \quad A=\frac{S}{\left(1+\frac{S}{2}\right)^{2}}
\end{array}
$$

Eliminate E_{t}

For a sheet impedance of $377 \Omega, S=1$ and

$$
T=\frac{4}{9} \quad R=\frac{1}{9} \quad A=\frac{4}{9}
$$

Tomaximize A

$$
\begin{gathered}
\frac{d A}{d s}=\frac{1}{\left(1+\frac{s}{2}\right)^{2}}-\frac{2 s \cdot \frac{1}{2}}{\left(1+\frac{s}{2}\right)^{3}}=0 \quad 1=\frac{S}{1+\frac{s}{2}} \\
1+\frac{s}{2}=S \quad \frac{s}{2}=1 \quad \delta=2
\end{gathered}
$$

So we need $\sigma_{2 D}=\frac{2}{z_{0}}$, on a sheet resistivity of $\frac{372}{2}=189 \Omega$, this gives $A=\frac{1}{2}$
Half of the electromagnetic wave's snengy is carried in the \vec{B} field, while the thin sheet only couples dissipatively to the Afield. Thus even with the bestimpedance match it con only achieve 50\% absorption.

