1. Quantum Mechanics (Fall 2003)

Two identical spin- $\frac{1}{2}$ particles interact via the Hamiltonian

$$
H=J\left(S_{1}^{x} S_{2}^{x}+S_{1}^{y} S_{2}^{y}+k S_{1}^{z} S_{2}^{z}\right)+\mu\left(S_{1}^{z}+S_{2}^{z}\right) B
$$

(a) Find the energy levels of this system assuming that the particles are in an anti-symmetric spatial wavefunction.
(b) Repeat for a symmetric spatial wavefunction.
2. Quantum Mechanics (Fall 2003)

A free particle of mass m, travelling with momentum p parallel to the z-axis, scatters off the potential

$$
V=V_{0}[\delta(\mathbf{r}-a \hat{\mathbf{z}})-\delta(\mathbf{r}+a \hat{\mathbf{z}})] .
$$

Compute the differential cross section, $d \sigma / d \Omega$ in the Born approximation.
3. Quantum Mechanics (Fall 2003)

Consider a particle moving in the potential

$$
V(x)= \begin{cases}\frac{1}{2} m \omega^{2} x^{2} & \text { if } x>0 \\ \infty & \text { otherwise }\end{cases}
$$

(a) What is the lowest energy eigenvalue?
(b) What is $\left\langle x^{2}\right\rangle$?

4. Quantum Mechanics (Fall 2003)

An operator A, corresponding to an observable α, has two normalized eigenfunctions ϕ_{1} and ϕ_{2}, with distinct eigenvalues a_{1} and a_{2}, respectively. An operator B, corresponding to an observable β, has normalized eigenfunctions χ_{1} and χ_{2}, with distinct eigenvalues b_{1} and b_{2}, respectively. The eigenfunctions are related by:

$$
\begin{aligned}
& \phi_{1}=\left(2 \chi_{1}+3 \chi_{2}\right) / \sqrt{13} \\
& \phi_{2}=\left(3 \chi_{1}-2 \chi_{2}\right) / \sqrt{13}
\end{aligned}
$$

An experimenter measures α to be $42 \hbar$. The experimenter proceeds to measure β, followed by measuring α again. What is the probability the experimenter will measure α to be $42 \hbar$ again?
5. Quantum Mechanics (Fall 2003)

A sample of hydrogen atoms in the ground state is placed between the plates of a parallel plate capacitor. A voltage pulse is applied to the capacitor at $t=0$ to produce a homogeneous electric field, \mathcal{E}, between the plates of:

$$
\begin{array}{lll}
\mathcal{E} & =0, & \\
\mathcal{E}=\mathcal{E}_{0} \exp (-t / \tau), & & (t>0)
\end{array}
$$

where τ is a constant. A long time compared to τ passes.
(a) To first order, calculate the fraction of atoms in the $2 p(m=0)$ state.
(b) To first order, what is the fraction of atoms in the $2 s$ state?

You may find the following helpful. The normalized radial wavefunctions of the hydrogen atom are:

$$
\begin{aligned}
& R_{10}(r)=2\left(\frac{Z}{a}\right)^{3 / 2} \exp \left(-\frac{Z r}{a}\right) \\
& R_{20}(r)=\frac{1}{\sqrt{2}}\left(\frac{Z}{a}\right)^{3 / 2}\left(1-\frac{Z r}{2 a}\right) \exp \left(-\frac{Z r}{2 a}\right) \\
& R_{21}(r)=\frac{1}{2 \sqrt{6}}\left(\frac{Z}{a}\right)^{5 / 2} r \exp \left(-\frac{Z r}{2 a}\right)
\end{aligned}
$$

where r is the radial coordinate, a is the Bohr radius, and $Z=1$ for a hydrogen atom. The first spherical harmonics are:

$$
Y_{00}(\theta, \phi)=\frac{1}{\sqrt{4 \pi}} \quad Y_{10}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos \theta \quad Y_{1 \pm 1}(\theta, \phi)=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta \exp (\pm i \phi)
$$

A useful integral may be:

$$
\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}
$$

6. Statistical Mechanics and Thermodynamics (Fall 2003)

Consider a gas of non-conserved Bosons in three dimensions. The energy-verses-momentum relationship for each of these exotic particles is $E=A p^{2}$.
(a) Calculate the grand partition function of this gas. Assume a spin degeneracy factor of 1.
(b) Find the energy of this gas as a function of temperature. The energy goes as a simple power law in the temperature. What is the power?
(c) Find the pressure as a function of temperature. What power law describes the temperature dependence of the pressure?
7. Statistical Mechanics and Thermodynamics (Fall 2003)

A gas of noninteracting particles fills a cylindrical container that has cross-sectional area A and height H. Each particle has mass m, and is subject to the gravitational field at the surface of the Earth. The circular bottom and top of the container are parallel to the surface of the Earth. There are N particles in the container, and the temperature of the container is T.
area $=\mathbf{A}$

(a) Find the partition function of the gas.
(b) What is the pressure of the gas at the top of the container?
(c) What is the pressure of the gas at the bottom of the container?
(d) Finally, what is the difference between the pressure at the bottom of the container and the pressure at the top of the container? Interpret the answer that you get.
8. Electricity and Magnetism (Fall 2003)

Consider a vacuum diode which is a parallel plate capacitor (in vacuum) with plate area A and plate separation d. The cathode plate, which is at $\phi=0$, is heated as to thermionically emit electrons which then travel to the anode plate (at $\phi=V$) (this arrangement acts as a diode due to the fact that in reverse bias, no charges will flow). Assume a steady-state bias V and diode current I. You may model the electrons in the diode as a cold fluid with density $n(x)$ and velocity $v(x)$. You may assume that the electrons are born from the cathode with zero velocity.
(a) Find the 1-D potential distribution in the diode, $\phi(x)$. (Hint: Try a power law solution.)
(b) Find the diode current as a function of bias voltage V.
(c) What unphysical result is caused by the assumption that electrons are born from the cathode with zero velocity?
9. Electricity and Magnetism (Fall 2003)

(a) A two-wire transmission line has inductance L and capacitance C per unit length (and no resistance). Show that the impedance of this transmission line $Z=V / I$ is real and equal to $\sqrt{L / C}$.
Note: Assume AC signals are transmitted on the line, $I=I_{0} \exp (i k x-i \omega t)$.
(b) Two long transmission lines are connected together. The first has impedance Z_{1} and the second has impedance $Z_{2} \neq Z_{1}$. A wave $V_{i} \exp (i k x-i \omega t)$ travels on the first transmission line and encounters the second. What are the relative amplitudes of the reflected and transmitted waves $\left(V_{r} / V_{i}, V_{t} / V_{i}\right)$?

(c) Reflection due to impedance mismatch between two transmission lines can be eliminated through adding series or parallel resistance between the lines. For the transmission lines in (b), how would you connect a resistor (and what is its values) in order to match the impedances and eliminate the reflected wave? (Consider both $Z_{1}>Z_{2}$ and $Z_{1}<Z_{2}$.)
10. Electricity and Magnetism (Fall 2003)

Consider a wedge formed by two conducting half-planes, as depicted in the figure. One plane is maintained at electrostatic potential V_{1} while the other is at V_{2}. What is the electrostatic potential in the region between the two half-planes?

11. Electricity and Magnetism (Fall 2003)

The dispersion relation for a photon in an ionized plasma (in $C G S$ units) is,

$$
k^{2} c^{2}=\omega^{2}-4 \pi n e^{2} / m_{e}
$$

where k is the photon wavenumber, $c=\left(3.0 \times 10^{10} \mathrm{~cm} / \mathrm{s}\right)$, and ω is the radiation frequency in radians/s. Here, n is the electron number density, $e=\left(4.8 \times 10^{-10} \mathrm{esu}\right)$ is the electron charge, and $m_{e}=\left(9.11 \times 10^{-28} \mathrm{~g}\right)$ is the electron mass.
(a) Explain why electromagnetic waves with frequencies below about (10 MHz) can't be received from space on Earth.
(b) Pulsars are objects observed in our galaxy which regularly emit a short burst of electromagnetic waves containing a wide range of frequencies all at once. If a pulsar is located $\left(1.0 \times 10^{22} \mathrm{~cm}\right)$ away and the density of electrons in the space between us and the pulsar is a uniform $\left(0.01 \mathrm{~cm}^{-3}\right)$, what is the difference of the arrival times at Earth of the radiation emitted near $(6 \mathrm{kHz})$ compared to $(10 \mathrm{kHz})$? (You may assume the measurement happens far enough above the Earth so that the effect in part (a) can be ignored. You may leave your answer as an expression without substituting the numbers.)
12. Electricity and Magnetism (Fall 2003)
(a) Consider and infinitely long electron beam with N electrons, a flat top radial profile with radius a, and velocity v_{b}. What is the force on an electron at the edge of the beam $(r=a)$?
(b) In reality no beam is infinitely long. Suppose the beam density has the form

$$
n_{b}=\frac{N}{\pi^{3 / 2} \sqrt{2} \sigma_{z} a^{2}} \exp \left(-\frac{z^{2}}{2 \sigma_{z}^{2}}\right)
$$

for $r<a$ and is 0 for $r>a$ and its velocity is $\mathbf{v}_{\mathbf{b}}=v_{b} \hat{\mathbf{z}}$. In the relativistic limit, what is the force (both in r and in z) for an electron at $r=a$ and at $z=0$ and at $z=\sqrt{2} \sigma_{z}$?
Hint: One way to solve this problem is to start with the wave equations for the scalar and vector potentials, ϕ and \mathbf{A}, in the Lorentz gauge. Rewrite them in terms of the variables $x, y, \xi=z-v_{b} t$. Then simplify them in the limit $v_{b} \rightarrow c$. Use these equations to solve the problem.
(c) For the electron beam at SLAC, $N=\left(2 \times 10^{10}\right), \sigma_{z}=(0.6 \mathrm{~mm}), a=(25 \mu \mathrm{~m})$, and the electrons have an energy of (50 GeV). Do the approximations used in part (b) hold for such a beam?
13. Statistical Mechanics and Thermodynamics (Fall 2003)

Consider a hypothetical system made up of N "partitions", a small section of which is shown in the figure below (the system is a closed ring, in order to eliminate end effects).

Each "cell" contains two atoms, one in the top half of the cell and one in the bottom half of the cell. Each atom occupies one of two positions in its half of the cell, to the left or to the right. The energies associated with an individual partition are given by the following rules: (i) Unless exactly two atoms are associated with a partition, the energy of that configuration is infinite (e.g., $\epsilon_{k}=\epsilon_{m}=+\infty$). (ii) If two atoms are on the same side of a partition, then the energy of that configuration is zero (e.g., $\epsilon_{l}=0$). (iii) If two atoms are on opposite sides of a partition, then the energy of the configuration is ϵ (e.g., $\epsilon_{i}=\epsilon_{n}=\epsilon$).
(a) What are the energy levels possible for a system of N partitions and associated atoms? What is the degeneracy of each level? What is the canonical partition function for the system?
(b) Compute the free energy per particle in the thermodynamic limit and show that there is a discontinuity at a temperature T_{c} (i.e., the system exhibits a phase transition). Find T_{c}.
14. Statistical Mechanics and Thermodynamics (Fall 2003)

Consider a system of classical spins in d dimensions which are confined to point at angles $\theta=0,2 \pi / 3,4 \pi / 3$ in a plane, i.e., $\mathbf{s}_{i}=\left(\cos \theta_{i}, \sin \theta_{i}\right)$, with θ_{i} taking the three values above. The spins interact according to the Hamiltonian:

$$
H=-J \sum_{\langle i, j\rangle} \mathbf{s}_{i} \cdot \mathbf{s}_{j}
$$

where $\langle i, j\rangle$ are nearest neighbors. Using mean-field theory, find the critical temperature, T_{c}, below which the spins order.

Selected Answers Fall 2003
4) $P=\frac{97}{169}$
5) $\left(\right.$ a) $\left|c_{j}\right|^{2}=\frac{2^{15}}{3^{10}} \frac{a_{0}^{2} e^{2} \varepsilon_{0}^{2}}{\hbar^{2}\left(\omega^{2}+\frac{1}{\tau^{2}}\right)} \quad, \omega^{2}=\left[\frac{13 e v\left(1-\frac{1}{4}\right)}{\hbar}\right]^{2}$
(b) ϕ
8) $)_{(a)} \phi(x)=v\left(\frac{x}{d}\right)^{4 / 3}$
(b) $j=\frac{-\phi^{\prime \prime}}{4 \pi} \sqrt{\frac{2 e}{m \phi}}=\frac{-V^{3 / 2}}{9 \pi d^{2}} \sqrt{\frac{2 e}{m}}$
(c) $j=$ enr is infinte
9) (a) use $\delta V, \delta Q$, 关 (b) $V_{r}=\frac{z_{2}-z_{1}}{z_{2}+z_{1}} V_{i}$ and $v_{t}=\frac{2 z_{2}}{z_{2}+z_{1}} V_{i}$
(c) case: $z_{1}>z_{2}, R$ in seris $R=z_{1}-z_{2}$

$$
z_{2}>z_{1} \text {, Rin parallel } R=\frac{z_{1} z_{2}}{z_{2}-z_{1}}
$$

11) (a) ionosphere $\left(n \sim 5 \times 10^{13} \mathrm{e}^{-} / \mathrm{cm}^{3}\right)$
(b) 5×10^{3} years
12) (1) 2 energy levels: $0 \leftarrow 2$-fold degencrate
$n \in \leftrightarrow 2^{n}$-fold degensate

$$
Z=2+2^{V} \exp [-N \beta \epsilon]
$$

(2)

$$
\begin{aligned}
& \frac{A}{N}=-\frac{B}{N} \ln Z=-K T \ln z+\epsilon-\frac{k T}{N} \ln \left(1+\frac{2}{\left[2 e^{-B t}\right]^{N}}\right) \\
& T_{c}=\frac{\epsilon}{k \ln 2}
\end{aligned}
$$

1. Quantum Mechanics (Fall 2003)

Two identical spin- $\frac{1}{2}$ particles interact via the Hamiltonian

$$
H=J\left(S_{1}^{x} S_{2}^{x}+S_{1}^{y} S_{2}^{y}+k S_{1}^{z} S_{2}^{z}\right)+\mu\left(S_{1}^{z}+S_{2}^{z}\right) B
$$

(a) Find the energy levels of this system assuming that the particles are in an anti-symmetric spatial wavefunction.
(b) Repeat for a symmetric spatial wavefunction.

The total wave function is the product of the spatial and spin wave functions. Since electrons are fermions, they must have antisymmetric total wavefunctions, which means the spin part and the spatial part have opposite parity.

$$
\begin{aligned}
H & =J\left(S_{1}^{x} S_{2}^{x}+S_{1}^{y} S_{2}^{y}+k S_{1}^{z} S_{2}^{z}\right)+\mu\left(S_{1}^{2}+S_{2}^{2}\right) B \\
& =J\left[\overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}+(k-1) S_{1}^{2} S_{2}^{2}\right]+\mu\left(S_{1}^{2}+S_{2}^{2}\right) B \\
& =J\left[\frac{1}{2}\left(\vec{S}^{2}-\vec{S}_{1}^{2}-\vec{S}_{2}^{2}\right)+(k-1) S_{1}^{2} S_{2}^{2}\right]+M\left(S_{1}^{2}+S_{2}^{2}\right) B \\
& =J\left[\frac{1}{2} \vec{S}^{2}-\frac{3}{4} \hbar^{2}+(k-1) S_{1}^{2} S_{2}^{z}\right]+\mu\left(S_{1}^{z}+S_{2}^{2}\right) B
\end{aligned}
$$

since \vec{S}_{i}^{2} has eigenvalue $s_{i}\left(s_{i}+1\right) \hbar^{2}$ and $s_{i}=\frac{1}{2}$

$$
\begin{aligned}
& =J\left[\frac{1}{2} \vec{S}^{2}-\frac{3}{4} \hbar^{2}+(K-1) \frac{1}{2}\left(S_{2}^{2}-S_{12}^{2}-S_{2 z}^{2}\right)\right]+M S_{2} B \\
& =J\left[\frac{1}{2} \vec{S}^{2}-\frac{3}{4} \hbar^{2}+(K-1) \frac{1}{2}\left(S_{2}^{2}-\frac{\hbar^{2}}{2}\right)\right]+M S_{2} B
\end{aligned}
$$

because in an energy eigenstate \vec{S}_{1} and \vec{s}_{2} must be in the z-direction, Now we see that the states $\left.1 \mathrm{~s}_{1} \mathrm{~s}_{2} 5 \mathrm{~m}\right\rangle$ are energy eigenstates:

$$
\begin{array}{ll}
\left.|0\rangle=\frac{1}{\sqrt{2}}(1+-\rangle-|-+\rangle\right) & ||1\rangle=1++\rangle \\
\left.\left||0\rangle=\frac{1}{\sqrt{2}}(1+-\rangle+1-+\right\rangle\right) & |1-1\rangle=1->
\end{array}
$$

and the first is the only antisymmetric one.
a. Antis ymmetric spatid wavetunc tron \Rightarrow symmetric spin wave function

$$
\begin{aligned}
& E_{|11\rangle}=J\left[\frac{1}{2}\left(2 \hbar^{2}\right)-\frac{3}{4} \hbar^{2}+(K-1) \frac{\hbar^{2}}{4}\right]+\mu \hbar B=\frac{1}{4} \hbar^{2} J K+\mu \hbar B \\
& E_{\| 0\rangle}=J\left[\frac{1}{2}\left(2 \hbar^{2}\right)-\frac{3}{4} \hbar^{2}+(K-1)\left(-\frac{\hbar^{2}}{4}\right)\right]+O=\frac{1}{4} \hbar^{2} J(2-K) \\
& E_{| |-1\rangle}=J\left[\frac{1}{2}\left(2 \hbar^{2}\right)-\frac{3}{4} \hbar^{2}+(K-1)\left(\frac{\hbar^{2}}{4}\right)\right]-\mu \hbar B=\frac{1}{4} \hbar^{2} J K-\mu \hbar B
\end{aligned}
$$

b. Symmetric spatial wavefunction \Rightarrow antisymmetric spin wavetunction

$$
E_{100\rangle}=J\left[\frac{1}{2}(0)-\frac{3}{4} \hbar^{2}+(k-1)\left(-\frac{\hbar^{2}}{4}\right)\right]+0=-\frac{1}{4} \hbar^{2} J(k+2)
$$

2. Quantum Mechanics (Fall 2003)

A free particle of mass m, travelling with momentum p parallel to the z-axis, scatters off the potential

$$
V=V_{0}[\delta(\mathbf{r}-a \hat{\mathbf{z}})-\delta(\mathbf{r}+a \hat{\mathbf{z}})]
$$

Compute the differential cross section, $d \sigma / d \Omega$ in the Born approximation.

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\left|f^{(1)}(\theta, \phi)\right|^{2} \text { where } f^{\prime \prime}\left(\vec{k}^{\prime}, \vec{k}\right)=-\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}} \int e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{x}^{\prime}} V\left(\vec{x}^{\prime}\right) d^{3} x^{\prime} \\
& \vec{k}=k \hat{z} \Rightarrow f^{(\prime)}\left(\vec{k}^{\prime}, \vec{k}\right)=-\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}} \int e^{i k z^{\prime}-i \vec{k}^{\prime} \cdot \vec{x}^{\prime}} V_{0}\left[\delta^{3}\left(\vec{x}^{\prime}-a^{\hat{z}}\right)-\delta^{3}\left(\vec{x}^{\prime}+a^{2}\right)\right] d^{3} x^{\prime} \\
&=-\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}} V_{0}\left[e^{i k a-i k_{2}^{\prime} a}-e^{-i k a+i k_{z}^{\prime} a}\right] \\
&=-\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}} V_{0}\left[2 i \sin \left(\left(K-k_{z}^{\prime}\right) a\right)\right]
\end{aligned}
$$

Now $K_{2}^{\prime}=K^{\prime} \cos (\theta)=K \cos (\theta)$ since $K^{\prime}=K$ by conservation of energy assuming the scattering body is much larger.

$$
\begin{aligned}
& f^{(1)}(\theta, \phi)=-\frac{i m V_{0}}{\pi \hbar^{2}} \sin (a k(1-\cos (\theta))) \\
& \frac{d \sigma}{d \Omega}=\left|f^{(1)}(\theta, \phi)\right|^{2}=\frac{m^{2} V_{0}^{2}}{\pi^{2} \hbar^{4}} \sin ^{2}(a k(1-\cos (\theta))) \\
&=\frac{m^{2} V_{0}^{2}}{\pi^{2} \hbar^{4}} \sin ^{2}\left(2 a k \sin ^{2}(\theta / 2)\right)
\end{aligned}
$$

3. Quantum Mechanics (Fall 2003)

Consider a particle moving in the potential

$$
V(x)= \begin{cases}\frac{1}{2} m \omega^{2} x^{2} & \text { if } x>0 \\ \infty & \text { otherwise }\end{cases}
$$

(a) What is the lowest energy eigenvalue?
(b) What is $\left\langle x^{2}\right\rangle$?

See Griffith Problem 2.42
a. We assume that the solvitions to the half harmonic 05 cillator are a subset of the solutions to the full harmonic oscillator. Onlythe odd solutions are permissible.
To find the lowest odd solution we use the fact that $a\left|\psi_{0}\right\rangle=0$
Recall $a=\frac{1}{\sqrt{2 m \omega \hbar}}(m \omega x+i p)$

$$
\begin{aligned}
0=a\left|\psi_{0}\right\rangle & =\frac{1}{\sqrt{2 m \omega \hbar}}\left(m w x\left|\psi_{0}\right\rangle+\hbar \frac{\partial}{\partial x}\left|\psi_{0}\right\rangle\right) \\
\Rightarrow & \frac{\partial}{\partial x}\left|\psi_{0}\right\rangle=-\frac{m w}{\hbar} x\left|\psi_{0}\right\rangle \\
\Rightarrow & \left|\psi_{0}\right\rangle=A e^{-\frac{m w}{2 \hbar} x^{2} \quad \text { which is even }} \\
\left|\psi_{1}\right\rangle=a^{+}\left|\psi_{0}\right\rangle & =\frac{1}{\sqrt{2 m \omega \hbar}}(m \omega x-i p)\left|\psi_{0}\right\rangle \\
& \propto m \omega x e^{-\frac{m \omega}{2 \hbar} x^{2}-\hbar \frac{\partial}{\partial x} e^{-\frac{m w}{2 \hbar} x^{2}}}-\frac{m w}{-m \omega} x^{2}
\end{aligned}
$$

$$
=m \omega x e^{-\frac{m \omega}{2 \hbar} x^{2}}+m \omega x e^{-\frac{m \omega}{2 \hbar} x^{2}} \text { which is odd }
$$

So the lowest energy eigenvalue is $E_{1}=\left(1+\frac{1}{2}\right) \hbar \omega=\frac{3}{2} \hbar \omega$
b. $\left|\psi_{1}\right\rangle$ is odd so $\left|\left\langle\psi_{1} \mid \psi_{1}\right\rangle\right|^{2}$ is even which means the probability distribution for x is the same on both sides of zero for the full SHO. Therefore the standard deviation of x won't be affected by considering only the positive side. Therefore we can just calculate $\left\langle x^{2}\right\rangle$ for the full SHO.

$$
\begin{aligned}
\left\langle\Psi_{1}\right| x^{2}\left|\Psi_{1}\right\rangle & =\left\langle\Psi_{1}\right| \frac{\hbar}{2 m w}\left(a^{+}+a\right)^{2}\left|\Psi_{1}\right\rangle \\
& =\frac{\hbar}{2 m w}\left\langle\Psi_{1}\right|\left(a^{\dagger}\right)^{2}+a^{+} a+a a^{+}+a^{2}\left|\Psi_{1}\right\rangle \\
& \left.\left.=\frac{\hbar}{2 m w}\left\langle\Psi_{1}\right) 1+2\right) \Psi_{1}\right\rangle \\
& =\frac{3 \hbar}{2 m w}
\end{aligned}
$$

4. Quantum Mechanics (Fall 2003)

An operator A, corresponding to an observable α, has two normalized eigenfunctions ϕ_{1} and ϕ_{2}, with distinct eigenvalues a_{1} and a_{2}, respectively. An operator B, corresponding to an observable β, has normalized eigenfunctions χ_{1} and χ_{2}, with distinct eigenvalues b_{1} and b_{2}, respectively. The eigenfunction are related by:

$$
\begin{aligned}
\phi_{1} & =\left(2 \chi_{1}+3 \chi_{2}\right) / \sqrt{13} \\
\phi_{2} & =\left(3 \chi_{1}-2 \chi_{2}\right) / \sqrt{13}
\end{aligned}
$$

An experimenter measures α to be $42 \hbar$. The experimenter proceeds to measure β, followed by measuring α again. What is the probability the experimenter will measure α to be $42 \hbar$ again?

We know that the system starts in an eigenstate of A with eigenvalue $42 \hbar$, but we don't know if this is $\left|\phi_{1}\right\rangle$ or $\left|\phi_{2}\right\rangle$ so we will check both cases.

$P_{2}\left(x_{1} ; \psi_{1}\right)=\left|\left\langle x_{1} \mid \psi_{1}\right\rangle\right|^{2}=\left|\left\langle x_{1} \mid \phi_{1}\right\rangle\right|^{2}=\frac{4}{13}$
$P_{2}\left(x_{2} ; \psi_{1}\right)=\left|\left\langle x_{2} \mid \psi_{1}\right\rangle\right|^{2}=\left|\left\langle x_{2} \mid \phi_{1}\right\rangle\right|^{2}=\frac{9}{13}$
$P_{3}\left(\phi_{1} ; \psi_{2}\right)=P_{2}\left(x_{1} ; \psi_{1}\right) P_{3}\left(\phi_{1} ; x_{1}\right)+P_{2}\left(x_{2} ; \psi_{1}\right) P_{3}\left(\phi_{1} ; x_{2}\right)$
$=\frac{4}{13}\left|\left\langle\phi_{1} \mid x_{1}\right\rangle\right|^{2}+\frac{9}{13}\left|\left\langle\phi_{1} \mid x_{2}\right\rangle\right|^{2}$
$=\left(\frac{4}{13}\right)^{2}+\left(\frac{9}{13}\right)^{2}=\frac{16}{169}+\frac{81}{169}=\frac{97}{169}$

$P_{2}\left(x_{1} ; \psi_{1}\right)=\left|\left\langle x_{1} \mid \psi_{1}\right\rangle\right|^{2}=\left|\left\langle x_{1} \mid \phi_{2}\right\rangle\right|^{2}=\frac{9}{13}$
$P_{2}\left(x_{2} ; \Psi_{1}\right)=\left|\left\langle x_{2} \mid \Psi_{1}\right\rangle\right|^{2}=\left|\left\langle x_{2} \mid \phi_{2}\right\rangle\right|^{2}=\frac{4}{13}$
$P_{3}\left(\Phi_{2} ; \psi_{2}\right)=P_{2}\left(x_{1} ; \psi_{1}\right) P_{3}\left(\phi_{2} ; x_{1}\right)+P_{2}\left(x_{2} ; \psi_{1}\right) P_{3}\left(\phi_{2} ; x_{2}\right)$
$=\frac{9}{13}\left|\left\langle\phi_{2} \mid x_{1}\right\rangle\right|^{2}+\frac{4}{13}\left|\left\langle\phi_{2} \mid x_{2}\right\rangle\right|^{2}$
$=\left(\frac{9}{13}\right)^{2}+\left(\frac{4}{13}\right)^{2}=\frac{81}{169}+\frac{16}{169}=\frac{97}{169}$
So in ether case the probability is $\frac{97}{169}$

5. Quantum Mechanics (Fall 2003)

A sample of hydrogen atoms in the ground state is placed between the plates of a parallel plate capacitor. A voltage pulse is applied to the capacitor at $t=0$ to produce a homogeneous electric field, ε, between the plates of:

$$
\begin{array}{ll}
\varepsilon=0, & (t<0) \\
\varepsilon=\varepsilon_{0} \exp (-t / \tau), & (t>0)
\end{array}
$$

where τ is a constant. A long time compared to τ passes.
(a) To first order, calculate the fraction of atoms in the $2 p(m=0)$ state.
(b) To first order, what is the fraction of atoms in the $2 s$ state?

You may find the following helpful. The normalized radial wavefunctions of the hydrogen atom are:

$$
\begin{gathered}
R_{10}(r)=2\left(\frac{Z}{a}\right)^{3 / 2} \exp \left(-\frac{Z r}{a}\right) \\
R_{20}(r)=\frac{1}{\sqrt{2}}\left(\frac{Z}{a}\right)^{3 / 2}\left(1-\frac{Z r}{2 a}\right) \exp \left(-\frac{Z r}{2 a}\right) \\
R_{21}(r)=\frac{1}{2 \sqrt{6}}\left(\frac{Z}{a}\right)^{5 / 2} r \exp \left(-\frac{Z r}{2 a}\right)
\end{gathered}
$$

where r is the radial coordinate, a is the Bohr radius, and $Z=1$ for a hydrogen atom. The first spherical harmonics are:

$$
Y_{00}(\theta, \phi)=\frac{1}{\sqrt{4 \pi}} \quad Y_{10}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos (\theta) \quad Y_{1 \pm 1}(\theta, \phi)=\mp \sqrt{\frac{3}{8 \pi}} \sin (\theta) \exp (\pm i \phi)
$$

A useful integral may be:

$$
\begin{aligned}
& \int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} \\
& \text { a. } P(f)=\left|\left\langle\psi_{f} \mid \psi\right\rangle\right|^{2} \text { where }\left\langle\psi_{f} \mid \psi\right\rangle=\delta_{f i}-\frac{i}{\hbar} \int_{0}^{t}\left\langle\Phi_{f}\right| H^{\prime}\left(t^{\prime}\right)\left|\Phi_{i}\right\rangle e^{i \omega_{f i} t^{\prime}} d t^{\prime} \\
& \text { and } H^{\prime}(t)=e \phi=-e E_{Z}=-e E_{0} e^{-t / \tau} z \text { so } \\
& \langle 210| H^{\prime}\left(t^{\prime}\right)|100\rangle=-e E_{0} e^{-t / \tau}\langle 210| z|100\rangle \\
& \langle z| 0|z| 100\rangle=\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} R_{21}(r) Y_{10}(\theta, \phi) r \cos (\theta) R_{10}(r) Y_{00}(\theta, \phi) r^{2} \sin (\theta) d r d \theta d \phi \\
& =\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{1}{2 \sqrt{6}} a^{-5 / 2} r e^{-r / 2 a} \sqrt{\frac{3}{4 \pi}} \cos (\theta) r \cos (\theta) 2 a^{-3 / 2} e^{-r / a} \frac{1}{\sqrt{4 \pi}} r^{2} \sin (\theta) d r d \theta d \phi \\
& =\frac{2 \pi}{4 \pi} \frac{1}{\sqrt{2}} a^{-4} \int_{0}^{\pi} \cos ^{2}(\theta) \sin (\theta) d \theta \int_{0}^{\infty} r^{4} e^{-3 r / 2 a} d r \\
& =\frac{a^{-4}}{2 \sqrt{2}}\left(\frac{2}{3}\right) 4!=\frac{2^{8}}{\sqrt{2} 3^{5}} a \\
& \text { Therefore } \left.P(|2| 0\rangle)=\left\lvert\,-\frac{i}{\hbar}\left(-e E_{0} \frac{2^{8}}{\sqrt{2} 3^{5}} a\right) \int_{0}^{t} e^{-t^{\prime} / \tau} e^{i \omega_{f i} t^{\prime}} d t^{\prime}\right.\right)^{2} \\
& =\frac{2^{15}}{3^{10}} \frac{a^{2} e^{2} E_{0}^{2}}{\hbar^{2}}\left|\int_{0}^{t} e^{-t^{\prime} / \tau+i \omega_{f i} t^{\prime}} d t^{\prime}\right|^{2}=\frac{2^{15}}{3^{10}} \frac{a^{2} e^{2} E_{0}^{2}}{\hbar^{2}}\left|\frac{e^{-t / \tau} e^{i \omega_{f_{i} t} t}-e^{0}}{-\frac{1}{\tau}+i \omega_{f_{i}}}\right|^{2} \\
& =\frac{2^{15}}{3^{10}} \frac{a^{2} e^{2} E_{0}^{2}}{\hbar^{2}} \frac{1}{\left(\frac{1}{\tau}\right)^{2}+w_{4 i}^{2}} \text { where } \omega_{4 i}=\frac{E_{2}-E_{1}}{\hbar}=-\frac{3 E_{1}}{4 \hbar} \\
& \text { b. } P(|200\rangle)=0 \text { to first order by the } m \text {-selection rule. }
\end{aligned}
$$

6. Statistical Mechanics and Thermodynamics (Fall 2003)

Consider a gas of non-conserved Bosons in three dimensions. The energy-verses-momentum relationship for each of these exotic particles is $E=A p^{2}$.
(a) Calculate the grand partition function of this gas. Assume a spin degeneracy factor of 1.
(b) Find the energy of this gas as a function of temperature. The energy goes as a simple power law in the temperature. What is the power?
(c) Find the pressure as a function of temperature. What power law describes the temperature dependence of the pressure?

See Reif Page 347
a. $Z \equiv \sum_{N^{\prime}} Z\left(N^{\prime}\right) e^{-\alpha N^{\prime}} \cong Z(N) e^{-\alpha N} \Delta^{*} N^{\prime}$ since narrowly peaked

$$
\begin{aligned}
& \Rightarrow \ln (Z)=\ln (Z(N))-\alpha N \quad\left(\Delta^{*} N^{\prime} \text { is not important if we take log }\right) \\
& \Rightarrow Z=Z(N) e^{-\alpha N}=\left(\sum_{R} e^{-\beta E_{R}}\right) e^{-\alpha N} \\
&=\sum_{R} e^{-\beta\left(\epsilon_{1} n_{1}+\epsilon_{2} n_{2}+\ldots\right)} e^{-\alpha\left(n_{1}+n_{2}+\ldots\right)} \\
&=\sum_{n_{1} n_{2}, \ldots} e^{-\left(\alpha+\beta \epsilon_{1}\right) n_{1}-\left(\alpha+\beta \epsilon_{2}\right)-\ldots} \\
&=\left(\sum_{n_{1}} e^{-\left(\alpha+\beta \epsilon_{1}\right) n_{1}}\right)\left(\sum_{n_{2}} e^{-\left(\alpha+\beta \epsilon_{1}\right) n_{2}}\right) \ldots \\
&=\left(\frac{1}{\left.1-e^{-\left(\alpha+\beta \epsilon_{1}\right)}\right)\left(1-e^{-\left(\alpha+\beta \epsilon_{2}\right)}\right) \ldots}\right. \\
& \Rightarrow \ln (Z)=-\sum_{r} \ln \left(1-e^{-\left(\alpha+\beta \epsilon_{r}\right)}\right) \\
&=-\sum_{r} \ln \left(1-e^{\left.-\beta \epsilon_{r}\right)} \operatorname{since} \alpha=0\right. \text { for non-conserved particles } \\
& \Rightarrow \ln (Z)=-\int_{0}^{\infty} \ln \left(1-e^{-\beta \epsilon}\right) \rho(\epsilon) d \epsilon \\
& \rho(\epsilon) d \epsilon=\rho(\vec{n}) d^{3} n=\frac{1}{8} 4 \pi n^{2} d n \\
& \Rightarrow \ln =A p^{2}=A \hbar^{2} \frac{\pi^{2} n^{2}}{L^{2}} \\
& \Rightarrow n^{2}= \frac{L^{2}}{A \hbar^{2} \pi^{2}} \epsilon \Rightarrow n^{-1 / 2} \frac{L}{\hbar \pi \sqrt{A}} \epsilon^{1 / 2} \Rightarrow d n=\frac{L}{\hbar \pi \sqrt{A}} \frac{\epsilon^{-1 / 2}}{2} d \epsilon \\
& \Rightarrow \rho(\epsilon)=\frac{\pi}{2} n^{2} d n=\frac{\pi}{4}\left(\frac{L}{\hbar \pi \sqrt{A}}\right)^{3} \epsilon^{1 / 2} d \epsilon \\
& \Rightarrow \ln (Z)=-\frac{\pi}{4}\left(\frac{L}{\hbar \pi \sqrt{A}}\right)^{3} \int_{0}^{\infty} \epsilon^{1 / 2} \ln \left(1-e^{-\beta \epsilon}\right) d \epsilon
\end{aligned}
$$

b. Note that $\alpha=0 \Rightarrow \ln (z)=\ln (z)$ so

$$
\begin{aligned}
E & =-\frac{\partial \ln (z)}{\partial \beta}=\frac{\pi}{4}\left(\frac{L}{\hbar \pi \sqrt{A}}\right)^{3} \int_{0}^{\infty} \frac{\epsilon^{1 / 2}}{1-e^{-\beta \epsilon} \epsilon e^{-\beta \epsilon} d \epsilon} \\
& =\frac{\pi}{4}\left(\frac{L}{\hbar \pi \sqrt{A}}\right)^{3} \int_{0}^{\infty} \frac{\epsilon^{3 / 2}}{e^{\beta \epsilon}-1} d \epsilon \quad \text { Let } x=\beta \epsilon \\
& =\frac{\pi}{4}\left(\frac{L}{\hbar \pi \sqrt{A}}\right)^{3} \frac{1}{\beta^{5 / 2}} \int_{0}^{\infty} \frac{x^{3 / 2}}{e^{x}-1} d x \Rightarrow E \propto T^{5 / 2}
\end{aligned}
$$

C. The pressure of a photon gas like this is $p=\frac{1}{3} \frac{E}{V}$ so $p \propto T^{5 / 2}$

7. Statistical Mechanics and Thermodynamics (Fall 2003)

A gas of noninteracting particles fills a cylindrical container that has cross-sectional area A and height H. Each particle has mass m, and is subject to the gravitational field at the surface of the Earth. The circular bottom and top of the container are parallel to the surface of the Earth. There are N particles in the container, and the temperature of the container is T.

$\operatorname{area}=\mathbf{A}$

(a) Find the partition function of the gas.
(b) What is the pressure of the gas at the top of the container?
(c) What is the pressure of the gas at the bottom of the container?
(d) Finally, what is the difference between the pressure at the bottom of the container and the pressure at the top of the container? Interpret the answer that you get.
$a \cdot \gamma=\sum_{r} e^{-\beta E_{r}} \cong \frac{1}{h^{3}} \iint_{p^{2} / 2} e^{-\left(\frac{p^{2}}{2 m}+m g z\right) \beta} d^{3} p d^{3} x$

$$
=\frac{1}{h^{3}} A \iint e^{-\left(\rho^{2} / 2 m+m g z\right) \beta} 4 \pi p^{2} d \rho d z
$$

$$
=\frac{1}{h^{3}} 4 \pi A\left(\frac{2 m}{B}\right)^{3 / 2} \int_{0}^{\infty} u^{2} e^{-u^{2}} d u \int_{z_{0}}^{z_{1}} e^{-m g \beta z} d z
$$

$$
=\frac{1}{h^{3}} 4 \pi A\left(\frac{2 m}{\beta}\right)^{3 / 2} \frac{\sqrt{\pi}}{4}\left(-\frac{1}{m g \beta}\right)\left(e^{-m g \beta z_{1}}-e^{-m g \beta z_{0}}\right)
$$

$$
=\frac{A}{m g \beta}\left(\frac{2 m \pi}{\beta h^{2}}\right)^{3 / 2}\left(e^{-m g \beta z_{0}}-e^{-m g \beta z_{1}}\right)
$$

$$
\Rightarrow \ln (z)=\ln \left(\frac{z^{N}}{N!}\right)=N \ln \left(\frac{A}{m g \beta}\right)+\frac{3}{2} N \ln \left(\frac{2 m \pi}{\beta h^{2}}\right)+N \ln \left(e^{-m g \beta z_{0}}-e^{-m g B z_{1}}\right)-N \ln (N)
$$

b. $P_{\text {top }}=\frac{1}{\beta} \frac{\partial \ln (z)}{\partial V_{\text {top }}}=\frac{1}{B} \frac{\partial \ln (z)}{\partial z_{1}} \frac{\partial z_{1}}{\partial V}=\frac{1}{\beta A} \frac{\partial \ln (z)}{\partial Z_{1}}=\frac{N}{B A} \frac{m g \beta e^{-m g \beta z_{1}}}{e^{-m g \beta z_{0}}-e^{-m g \beta z_{1}}}$

$$
=\frac{m g N}{A} \frac{1}{e^{m g B\left(z_{1}-z_{0}\right)-1}}=\frac{m g N}{A} \frac{1}{e^{m g B H}-1}
$$

C. $P_{\text {bot }}=\frac{1}{\beta} \frac{\partial \ln (z)}{\partial V_{\text {bot }}}=\frac{1}{\beta} \frac{\partial \ln (z)}{\partial z_{0}} \frac{\partial z_{0}}{\partial V}=-\frac{1}{\beta A} \frac{\partial \ln (z)}{\partial z_{0}}=\frac{-N}{\beta A} \frac{-m g \beta e^{-m g \beta z_{0}}}{e^{-m g \beta z_{0}}-e^{-m g \beta z_{1}},}$

$$
=\frac{m g N}{A} \frac{1}{1-e^{m g B\left(z_{0}-z_{1}\right)}}=\frac{m g N}{A} \frac{1}{1-e^{-m g B H}}
$$

d. $\Delta_{p}=p_{\text {bot }}-p_{\text {top }}=\frac{m g N}{A g B H}\left(\frac{1}{1-e^{-m g g H}}-\frac{1}{e^{m g \beta H}-1}\right)$

$$
=\frac{m g N}{A}\left(\frac{e^{m g B H}}{e^{m g H}-1}-\frac{1}{e^{m g B H}-1}\right)=\frac{m g N}{A}=\frac{m g N}{V} H=n m g H
$$

The increased pressure at the bottom of the container is due to the force from the weight of the gas above it.

8. Electricity and Magnetism (Fall 2003)

Consider a vacuum diode which is a parallel plate capacitor (in vacuum) with plate area A and plate separation d. The cathode plate, which is at $\phi=0$, is heated as to thermionically emit electrons which then travel to the anode plate (at $\phi=V$) (this arrangement acts as a diode due to the fact that in reverse bias, no charges will flow). Assume a steady-state bias V and diode current I. You may model the electrons in the diode as a cold fluid with density $n(x)$ and velocity $v(x)$. You may assume that the electrons are born from the cathode with zero velocity.
(a) Find the 1-D potential distribution in the diode, $\phi(x)$. (Hint: Try a power law solution.)
(b) Find the diode current as a function of bias voltage V.
(c) What unphysical result is caused by the assumption that electrons are born from the cathode with zero velocity?
a. We use $I=\int \vec{J} \cdot d \vec{a}, \vec{J}(x)=\rho(x) \vec{v}(x)$, and $\rho(x)=e n(x)$ to write $I(x)=\int \vec{J}(x) \cdot d \vec{a}=A J(x)=A \rho(x) v(x)=A$ en $(x) v(x)$ By conservation of energy, $\frac{1}{2} m v^{2}(x)=e \phi(x)$ where $\phi(0)=0, \phi(d)=V$ So by Gauss' Law $\nabla^{2} \phi=-\frac{\rho}{\epsilon_{0}} \quad \Rightarrow$

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=-\frac{I}{\epsilon_{0} A V(x)}=\frac{1}{\epsilon_{0}} \frac{I}{A} \sqrt{\frac{m}{2 e \phi(x)}}
$$

Now assume a power law solution: $\phi(x)=C x^{n}$ $\phi(d)=V \Rightarrow V=C d^{n} \Rightarrow C=V d^{-n} \Rightarrow \phi(x)=V\left(\frac{x}{d}\right)^{n}$
Now we find n by matching exponents of x :

$$
\begin{aligned}
& \frac{\partial^{\prime} \phi}{\partial x^{2}}=\frac{\partial^{2}}{\partial x^{2}}\left(\frac{V}{d^{n}} x^{n}\right)=n \frac{V}{d^{n}} \frac{\partial}{\partial x}\left(x^{n-1}\right)=n(n-1) \frac{V}{d^{n}} x^{n-2} \\
& \frac{\partial^{n} \phi}{\partial x^{2}}=-\frac{1}{\epsilon_{0}} \frac{I}{A} \sqrt{\frac{m}{2 e d(x)}}=-\frac{1}{\epsilon_{0}} \frac{I}{A} \sqrt{\frac{m}{2 e} V^{-1 / 2} d^{n / 2} x^{-n / 2}} \\
& \quad \Rightarrow n-2=-n / 2 \Rightarrow \frac{3}{2} n=2 \Rightarrow n=\frac{4}{3} \\
& \text { Therefore } \phi(x)=V\left(\frac{x}{d}\right)^{4 / 3}
\end{aligned}
$$

b. $\frac{\partial 2 \phi}{\partial x^{2}}=-\frac{1}{\epsilon_{0}} \frac{x}{A} \sqrt{\frac{m}{2 e \phi}(x)}=n(n-1) \frac{v}{d^{n}} x^{n-2}=\frac{4}{9} \frac{V}{d^{4 / 3}} x^{-2 / 3}$

$$
\text { At } x=d,-\frac{1}{\epsilon_{0}} \frac{I}{A} \sqrt{\frac{m}{2 e V}}=\frac{4}{9} V d^{-2}
$$

$$
\Rightarrow I=-\frac{4}{q} \epsilon_{0} V \frac{A}{d^{2}} \sqrt{\frac{2 e V}{m}}=-\frac{4}{q} \epsilon_{0} V^{3 / 2} \frac{A}{d^{2}} \sqrt{\frac{2 e}{m}}
$$

c. $I=A e n(x) v(x)$ must be independent of x, so it is nonzero everywhere if the current is nonzero, so if $v(x)=0$, then $n(x)=\infty$, which is unphysical.
9. Electricity and Magnetism (Fall 2003)

(a) A two-wire transmission line has inductance L and capacitance C per unit length (and no resistance). Show that the impedance of this transmission line $Z=V / I$ is real and equal to $\sqrt{L / C}$ (Note: Assume AC signals are transmitted on the line, $I=I_{o} \exp (i k x-i \omega t)$).
(b) Two long transmission lines are connected together. The first has impedance Z_{1} and the second has impedance $Z_{2} \neq Z_{1}$. A wave $V_{i} \exp (i k x-i \omega t)$ travels on the first transmission line and encounters the second. What are the relative amplitudes of the reflected and transmitted waves $\left(V_{r} / V_{i}, V_{t} / V_{i}\right)$?

(c) Reflection due to impedance mismatch between two transmission lines can be eliminated through adding series or parallel resistance between the lines. For the transmission lines in (b), how would you connect a resistor (and what is its values) in order to match the impedances and eliminate the reflected wave? (Consider both $Z_{1}>Z_{2}$ and $Z_{1}<Z_{2}$.)
a. $Q=C V \Rightarrow I=\frac{d Q}{d t}=C \frac{d V}{d t}=C \frac{d}{d t}\left(-\frac{d \Phi_{B}}{d t}\right)=-C \frac{d^{2}}{d t^{2}}(L I)$ $=-C L(-i \omega)^{2} I \Rightarrow C L \omega^{2}=-1 \Rightarrow \omega= \pm i \sqrt{\frac{1}{C L}}$
$\Rightarrow V=-\frac{d \Phi_{B}}{d t}=-L \frac{d I}{d t}=i \omega L I= \pm \sqrt{\frac{L}{c}} I \Rightarrow Z=\frac{V}{I}=\sqrt{\frac{L}{c}}$
b. Recall $Z=\sqrt{\frac{\mu}{\epsilon}}$ and $v=\frac{c}{n}$ so $n=\frac{c}{v}=\sqrt{\frac{\mu \epsilon}{\mu_{0} \epsilon_{0}}} \cong \frac{Z_{0}}{Z}$ since $\mu^{Z} \cong \mu_{0}$

Then for normal incidence $\frac{E_{0}^{r}}{E_{0}}=\frac{n^{\prime}-n}{n^{\prime}+n}$ and $\frac{E_{0}^{+}}{E_{0}}=\frac{2 n}{n^{\prime}+n}$
$\Rightarrow \frac{V_{r}}{v_{i}}=\frac{n_{2}-n_{1}}{n_{2}+n_{1}}=\frac{\frac{1}{z_{2}}-\frac{1}{z_{1}}}{\frac{1}{z_{2}}+\frac{1}{z_{1}}}=\frac{z_{1}-z_{2}}{z_{1}+z_{2}}, \frac{V_{+}}{v_{i}}=\frac{2 n_{1}}{n_{2}+n_{1}}=\frac{2 \frac{1}{z_{1}}}{\frac{1}{z_{2}}+\frac{1}{z_{1}}}=\frac{2 z_{2}}{z_{1}+z_{2}}$
C. We want to make the total impedance after Z_{1}, equal to Z_{1}, and since Z is real this just means equating the resistances, where z_{1} and z_{2} are themselves resistances. Case $Z_{1}>Z_{2}$: Series resistor $R=Z_{1}-Z_{2}$
Case $Z_{1}>Z_{2}$: Series resistor $R=\frac{1}{Z_{2}}=\frac{1}{Z_{1}} \Rightarrow R=\frac{Z_{1} Z_{2}}{Z_{2}-Z_{1}}$
10. Electricity and Magnetism (Fall 2003)

Consider a wedge formed by two conducting half-planes, as depicted in the figure. One plane is maintained at electrostatic potential V_{1} while the other is at V_{2}. What is the electrostatic potential in the region between the two half-planes?

We solve Laplace's equation in cylindrical coordinates

$$
\nabla^{2} \Phi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \phi^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}=0
$$

We seek solutions of the form $\Phi(r, \phi)=R(r) Q(\Phi)$

$$
\begin{aligned}
& \frac{Q}{r} \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)+\frac{R}{r^{2}} \frac{\partial^{2} Q}{\partial \phi^{2}}=0 \\
\Rightarrow & \left.\frac{r}{R} \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)+\frac{1}{Q} \frac{\partial^{2} Q}{\partial \phi^{2}}=0 \quad \text { (by multiplying by } \frac{r^{2}}{R Q}\right) \\
\Rightarrow & r \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)=\lambda R \quad \text { and } \quad \frac{\partial^{2} Q}{\partial \phi^{2}}=-\lambda Q \quad \text { (by independence of variables) }
\end{aligned}
$$

When r ranges from 0 to ∞, only the $\lambda=0$ eigenvalue is possible

$$
\Rightarrow R(r)=A+B \ln (r) \text { and } Q(\phi)=C+D \phi
$$

$$
\begin{aligned}
& B . C . \Phi(r=\infty)<\infty \Rightarrow B=0 \Rightarrow \Phi(r, \phi)=C+D \phi \\
& \Phi(r, 0)=V_{1} \Rightarrow C=V_{1} \quad \Phi(r, \theta)=V_{2} \Rightarrow V_{1}+D \theta=V_{2} \\
& \Rightarrow D=\frac{V_{2}-V_{1}}{\theta} \quad \text { Therefore } \Phi(r, \theta)=V_{1}+\frac{V_{2}-V_{1}}{\theta} \phi
\end{aligned}
$$

11. Electricity and Magnetism (Fall 2003)

The dispersion relation for a photon in an ionized plasma (in CGS units) is,

$$
k^{2} c^{2}=\omega^{2}-4 \pi n e^{2} / m_{e}
$$

where k is the photon wavenumber, $c=3.0 \times 10^{10} \mathrm{~cm} / \mathrm{s}$, and ω is the radiation frequency in radians /s. Here, n is the electron number density, $e=4.8 \times 10^{-10}$ esp is the electron charge, and $m_{e}=9.11 \times 10^{-28} \mathrm{~g}$ is the electron mass.
(a) Explain why electromagnetic waves with frequencies below about 10 MHz can't be received from space on Earth.
(b) Pulsars are objects observed in our galaxy which regularly emit a short burst of electromagnetic waves containing a wide range of frequencies all at once. If a pulsar is located $1.0 \times 10^{22} \mathrm{~cm}$ away and the density of electrons in the space between us and the pulsar is a uniform $0.01 \mathrm{~cm}^{-3}$, what is the difference of the arrival times at Earth of the radiation emitted near 6 kHz compared to 10 kHz ? (You may assume the measurement happens far enough above the Earth so that the effect in part (a) can be ignored. You may leave your answer as an expression without substituting the numbers.)
a. For low frequencies the value of the dispersion relation will become negative, which means that k becomes imaginary, corresponding to evanescent waves which have an exponentially decaying amplitude.
b. Let $L=1.0 \times 10^{22} \mathrm{~cm}, f_{1}=6 \mathrm{kHz}, f_{2}=10 \mathrm{kHz}, w_{1}=2 \pi f_{1}, w_{2}=2 \pi \mathrm{f}_{2}$, $t_{1}=\frac{L}{V_{1}}=\frac{L}{C} Q$ and $t_{2}=\frac{L}{V_{2}}=\frac{L}{C} n_{2} \quad h=0.01 \mathrm{~cm}^{-3}$
where $n_{i}=\frac{c}{v}=\sqrt{\frac{\epsilon \mu}{\epsilon_{0} \mu_{0}}} \cong \sqrt{\frac{\epsilon(\omega)}{\epsilon_{0}}}$ since $\mu_{\cong}^{\mu_{0}}$
But $v=\frac{\omega}{k} \Rightarrow n_{i}=\sqrt{\frac{c^{2}}{v^{2}}}=\sqrt{\frac{k^{2} c^{2}}{\omega^{2}}}=\sqrt{1-\frac{4 \pi n e^{2}}{\omega^{2} m_{e}}}=$
Therefore $\Delta t=\left|t_{2}-t_{1}\right|=\left|\sqrt{1-\frac{4 \pi n e^{2}}{\omega_{2}^{2} m_{e}}}-\sqrt{1-\frac{4 \pi n e^{2}}{\omega_{1}^{2} m_{e}}}\right|$

Problem*1 Fall 2003

$$
\begin{aligned}
& H=J\left(S_{1}^{x} S_{2}^{x}+S_{1}^{y} S_{2}^{y}+k S_{1}^{z} S_{2}^{z}\right)+\mu\left(S_{1}^{z}+s_{2}^{z}\right) B \\
& \vec{S}_{1} \cdot \vec{s}_{2}=s_{1}^{x} s_{2}^{x}+s_{1}^{y} s_{2}^{y}+s_{1}^{z} s_{2}^{z} \\
& H=J\left(\vec{s}_{1} \cdot \vec{s}_{2}+(k-1) s_{1}^{z} s_{2}^{z}\right)+\mu\left(s_{1}^{z}+s_{2}^{z}\right) B \\
& \vec{S}^{2}=\left(\vec{s}_{1}+\vec{s}_{2}\right)^{2}-\vec{s}_{1}^{2}+2 \vec{s}_{B_{2}}+\vec{s}_{2}^{2} \\
& \vec{S}_{1} \cdot \vec{S}_{2}=\frac{1}{2}\left(\vec{S}^{2}-\vec{S}_{1}^{2}-S_{2}^{2}\right)
\end{aligned}
$$

a) autisy fismetive spotic spal wave function...
for fermiong the total wave furction must be auti-aymmetic, Herefore the spin piece nost be syminelie

$$
\begin{aligned}
& \langle H\rangle_{\text {sym }}=\langle 1 m| H|1 m\rangle \\
& =J\left(\frac{\hbar^{2}}{2}\left\{\frac{1(1+1)}{2}-2 \cdot \frac{1}{2}\left(\frac{1}{2}+1\right)\right\}+(k-1) \hbar^{2} m_{1} m_{2}\right) \\
& 3+\mu \hbar\left(m_{1}+m_{2}\right) B \\
& E=J \hbar^{2}\left(\frac{1}{4}+(k-1) m_{1} m_{2}\right)+\mu B \hbar\left(m_{1}+m_{2}\right) \\
& E_{r \uparrow}=\langle\uparrow \uparrow| H|\uparrow \uparrow\rangle=J \hbar^{2}\left(\frac{1}{4}+\frac{(k-1)}{4}\right)+\mu B \hbar=\frac{J \hbar^{2} k}{4}+\mu B \hbar \\
& E_{\downarrow \downarrow}=\langle\| H \mid \downarrow \downarrow\rangle=J \hbar^{2}\left(\frac{1}{4}+\frac{(k-1)}{4}\right)-\mu B \hbar=\frac{J \hbar^{2} k}{4}-\mu B \hbar \\
& E_{\downarrow \uparrow}=\frac{1}{2}[\langle\uparrow \downarrow| H|\uparrow \downarrow\rangle+\langle\downarrow \uparrow| H|\downarrow \uparrow\rangle]=\frac{25 K^{2}}{2}\left(\frac{1}{4}-\frac{(k-1)}{4}\right) \\
& E_{\downarrow r}=J \hbar^{2}\left(\frac{1}{4}-\frac{(k-1)}{4}\right)=\frac{J \hbar^{2}(2-k)}{4}
\end{aligned}
$$

b) for anityjuatrie state

$$
\begin{aligned}
E=J \hbar^{2}\left(-\frac{3}{4}+(k-1) m_{1} m_{2}\right) & +\mu \hbar B\left(m_{1}+m_{2}\right) \\
E_{\uparrow \downarrow}=\frac{1}{2}[\langle\uparrow \downarrow| H|\uparrow \downarrow\rangle-\langle\downarrow \uparrow| H|\downarrow \uparrow\rangle] & =J \hbar^{2}\left(\frac{-3}{4}-\frac{(k-1)}{4}\right) \\
& =J \hbar^{2}\left(-\frac{(k-2)}{4}\right)
\end{aligned}
$$

Fall 2003 \# $1(p$ of 3$)$
Two identical spin- $\frac{1}{2}$ particles interact via the Hamiltonian

$$
H=J\left(S_{1}^{x} S_{2}^{x}+s_{1}^{y} S_{2}^{y}+K s_{1}^{z} S_{2}^{z}\right)+\mu\left(S_{1}^{z}+S_{2}^{z}\right) B
$$

(a) Find the energy levels of this system assuming that the particles ane in an anti-symuetric spatial wave function.
The total wave function for electrons must be antiosymontric. So, if the spatial part is anti-symmetric, then the spin pat must be symmetric to preserve the symmetry.

Now, elis rewrite the Hamiltonian into a more user friendly form,

$$
\begin{gathered}
s^{2}=\left(s_{1}+s_{2}\right)^{2}=s_{1}^{2}+s_{2}^{2}+2 s_{1} \cdot s_{2}=s_{1}^{2}+s_{2}^{z}+2\left(s_{1}^{x} s_{2}^{x}+s_{1}^{y} s_{2}^{y}+s_{1}^{z} s_{2}^{z}\right) \\
\\
\Rightarrow \quad s_{1}^{x} s_{2}^{x}+s_{1}^{y} s_{2}^{y}=\frac{1}{2}\left(s^{2}-s_{1}^{2}-s_{2}^{2}\right)-s_{1}^{z} s_{2}^{z}
\end{gathered}
$$

() So, then the Hamiltonian becomes

$$
H=J\left[\frac{1}{2}\left(s^{2}-s_{1}^{2}-s_{2}^{2}\right)+(k-1) s_{1}^{z} s_{2}^{z}\right]+\mu B\left(s_{1}^{z}+s_{2}^{z}\right)
$$

note $s_{i}^{2}=s_{i}\left(s_{i}+1\right)=\frac{1}{2}\left(\frac{1}{2}+1\right)=\frac{3}{4}$
So,

$$
H=J\left[\frac{1}{2} s^{2}-\frac{3}{4}+(k-1) s_{1}^{z} s_{2}^{z}\right]+\mu B\left(s_{1}^{z}+s_{2}^{z}\right)
$$

What are the possible values of S ?

$$
\begin{aligned}
\left|s_{1}-s_{2}\right| & \leq S \leq\left|s_{1}+s_{2}\right| \\
\left|\frac{1}{2}-\frac{1}{2}\right| & \leq S \leq\left|\frac{1}{2}+\frac{1}{2}\right| \\
0 & \leq S \leq 1 \\
\Rightarrow S & =0 \text { or } 1
\end{aligned}
$$

Fall 2003 \#1 (p 20F3)
For $S=0, m_{s}=0$ and the only state possible is

$$
\begin{equation*}
|00\rangle=\frac{|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle}{\sqrt{2}} \tag{1}
\end{equation*}
$$

note: $|00\rangle$ is anti-symmetric... if you let $\uparrow \rightarrow \downarrow$ and $\downarrow \rightarrow \uparrow$, you get back -|00 \rangle
For $s=1, m_{s}=-1,0,1$ and the 3 states are

$$
\begin{align*}
& |1,-1\rangle=|\downarrow \downarrow\rangle \\
& |1,0\rangle=\frac{|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle}{\sqrt{2}} \tag{2}\\
& |1,1\rangle=|\uparrow \uparrow\rangle
\end{align*}
$$

note: all these states are symmetric. let $\uparrow \rightarrow \downarrow$ add $\downarrow \rightarrow \hat{\jmath}$ in $|1,0\rangle$ and youget back $|1,0\rangle \ldots$ The other two are trivially symmetric. So, for part (a), we want to find the energy levels of the $s=1$ (symmetric spin part).

So, we have

$$
\begin{aligned}
|1,-1\rangle \mid\langle |,-1|H| 1,-1\rangle & =J\left[\frac{1}{2} S(S+1)-\frac{3}{4}+(k-1) S_{1}^{z} S_{2}^{z}\right]+\left.\mu B\left(S_{1}^{z}+S_{2}^{z}\right)\right|_{S=1} \\
& =J\left[1-\frac{3}{4}+(k-1)\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)\right]+\mu B\left(-\frac{1}{2}+\frac{-1}{2}\right) \\
& =J\left[\frac{1}{4}+\frac{k}{4}-\frac{1}{4}\right]-\mu B \\
\therefore E_{1,-1} & =\frac{J K}{4}-\mu B
\end{aligned}
$$

Fall 2003 . \#1 ($1030 f 3)$

$$
\begin{aligned}
|1,0\rangle \mid\langle | 0|1+| 10\rangle= & \frac{1}{2}\left[J\left(\frac{1}{2} \cdot 2-\frac{3}{4}+(k-1)\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\right)+\mu B\left(\frac{1}{2}-\frac{1}{2}\right)+\right. \\
& \left.+J\left(1-\frac{3}{4}+(k-1)\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)\right)+\mu B\left(-\frac{1}{2}+\frac{1}{2}\right)\right] \\
= & \frac{1}{2}\left[J\left(\frac{1}{4}-\frac{k}{4}+\frac{1}{4}\right)+J\left(\frac{1}{4}-\frac{k}{4}+\frac{1}{4}\right)\right] \\
= & \frac{2 J}{2}\left(\frac{1}{2}-\frac{k}{4}\right) \\
\therefore E_{10}= & J\left(\frac{1}{2}-\frac{k}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
|1,1\rangle\langle |,||H| 1,1\rangle & \left.=J\left[\frac{1}{4}+(K-1)\left(\frac{1}{4}\right)\right]+\mu B\left(\frac{1}{2}+\frac{1}{2}\right)\right] \\
& =J\left(\frac{K}{4}\right)+\mu B \\
\Rightarrow E_{11} & =\frac{J K}{4}+\mu B
\end{aligned}
$$

b) repeat for a symmetric spatial wave function

Now, we use the antisymmetric spin part (eq (1)).
$10,0\rangle$

$$
\begin{aligned}
\langle 001+100\rangle= & \frac{J}{2}\left[-\frac{3}{4}+(K-1)\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\right]+\frac{\mu B}{2}\left(\frac{1}{2}-\frac{1}{2}\right) \\
& -\frac{5}{2}\left[-\frac{3}{4}+(K-1)\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)\right]-\frac{\mu B}{2}\left(-\frac{1}{2}+\frac{1}{2}\right) \\
\Rightarrow & E_{00}=0
\end{aligned}
$$

Problem \#2 Fall 2003

$$
\begin{aligned}
& \delta(x) \delta(y) \delta(z-a) \\
& V=V_{0}[\hat{\delta(\vec{r}-a \vec{z})}-\delta(\vec{r}+a \hat{z})] \\
& -a \hat{\mid}_{+a} \underset{z}{1} \\
& \left|\frac{d \sigma}{d \Omega}=|f(\theta, \phi)|^{2}\right. \\
& \frac{d \sigma}{d \Omega}=\frac{\mu^{2}}{4 \pi^{2} \hbar^{4}}\left|\int e^{i \overrightarrow{q^{\prime}} \cdot \vec{r}^{\prime}} V\left(\vec{r}^{\prime}\right) d^{3} r^{\prime}\right| \\
& f(\theta, \phi)=V_{0} \int e^{i \vec{q} \cdot \vec{r}^{\prime}}(\delta(\vec{r}-a \vec{z})-\delta(\vec{r}+a \vec{z})) d^{3} r^{\prime} \\
& =V_{0}\left(e^{i \vec{q} \cdot a \hat{z}}-e^{-i \vec{q} \cdot a \hat{z}}\right)=V_{0} 2 \sin (\vec{q} \cdot a \hat{z}) \\
& q_{z}=q \sin \left(\frac{\theta}{2}\right) \\
& =V_{0} 2 \sin \left(2 k \sin ^{2}(\theta / 2)\right) \\
& q=2 k \sin \left(\frac{\theta}{2}\right) \\
& \frac{d \sigma}{d \Omega}=\frac{m^{2} V_{0}^{2}}{\pi^{2} k^{4}} \sin ^{2}\left(2 k \sin ^{2}(\theta / 2)\right)
\end{aligned}
$$

Fall $2003 H 2$ (p loft)
A free particle of mass m, travelling with momentum p parallel to the z-axis, scatters off the potential

$$
V=V_{0}[\delta(\vec{r}-a \hat{z})-\delta(\vec{r}+a \hat{z})] .
$$

compute the differential cross section, $\frac{d \sigma}{d \Omega}$ in the Born approximation,
(See zettil: problem 11.2, p 618)
First rewrite the delta functions as

$$
\delta(\vec{r} \pm a \hat{z})=\delta(x) \delta(y) \delta(z \pm a)
$$

Now, we recognize that this is not a spherically symmetric potential. So the first Born approximation scattering amplitude is then (Abevs eq 8,36)

Ar

$$
\begin{equation*}
F^{(1)}(\theta, \phi)=-\frac{2 m}{4 \pi} \int d^{3} r V(r) e^{i \vec{q} \cdot \vec{r}} \tag{1}
\end{equation*}
$$

where \vec{q} is the momentum transfer defined as

$$
\vec{q}=\vec{k}-\vec{k}^{\prime}
$$

then

$$
q^{2}=|\vec{k}|^{2}+\left|\vec{k}^{\prime}\right|^{2}-2 \vec{k} \cdot \vec{k}
$$

Since this is on elastic collision $|\vec{k}|=(\vec{k} \mid$. So,

$$
\begin{equation*}
q^{2}=2 k^{2}(1-\cos \theta)=4 k^{2} \sin ^{2}\left(\frac{\theta}{2}\right) \tag{2}
\end{equation*}
$$

Substituting our expression for VCr) into eq (1) yields

$$
\begin{aligned}
f^{(0)}(\theta, \phi) & =\frac{-2 m}{4 \pi} V_{0} \int d x \delta(x) e^{i q x} \int d y \delta(y) e^{i q, y} \int d z(\delta(z-a)-\delta(z+a)) e^{i q z} \\
& =-\frac{m V_{0}}{2 \pi}\left[e^{i q z a}-e^{-i \phi, a}\right]=\frac{-m V_{0}}{\pi} ; \sin \left(q_{z} a\right)
\end{aligned}
$$

Fall $2003 \# 2$ (p 20f 2)
but, what is q_{z} ?

from eq (2), we have an expression for q. So,

$$
q_{z}=2 k \sin ^{2}\left(\frac{\theta}{2}\right)
$$

Substituting this result into ow expression for the scattering amplitude y titis

$$
f^{(1)}(\theta, \phi)=\frac{-m v_{0}}{\pi} i \sin \left[2 k_{a} \sin ^{2}\left(\frac{\theta}{2}\right)\right]
$$

Then, the differential cross section is

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\left|f^{(1)}(\theta, \phi)\right|^{2} \\
\therefore \frac{d \sigma}{d \Omega} & =\frac{m^{2} V_{0}^{2}}{\pi^{2}} \sin ^{2}\left[2 k a \sin ^{2}\left(\frac{\theta}{2}\right)\right]
\end{aligned}
$$

Problem \# 3 Fall 2003

$$
V(x)= \begin{cases}\frac{1}{2} m \omega^{2} x^{2}, & x>0 \\ \infty, & \text { otherwise }\end{cases}
$$

$$
E_{0}=\hbar \omega\left(\frac{3}{2}\right)=\frac{3}{2} \hbar \omega
$$

b)

$$
\begin{aligned}
& x=\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2}\left(\hat{a}+a^{+}\right) \\
& x^{2}=\frac{\hbar}{2 m \omega}\left(a a+a a^{+}+\frac{a^{+} a}{N}+a^{+} a^{+}\right) \\
& {\left[a, a^{+}\right]=a a^{+}-a^{+} a=1} \\
& a a^{+}=N+1 \\
& x^{2}=\frac{\hbar}{2 m \omega}\left(a a+2 N+1+a^{+} a^{+}\right) \\
& \left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega}\langle 2 n+1)(2 N+1)|2 n+1\rangle=\frac{\hbar}{2 m \omega}[2(2 n+1)+1] \\
& \left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega}(4 n+3)=\frac{\hbar}{m \omega}\left\langle 2 n+\frac{3}{2}\right)
\end{aligned}
$$

Fall $2003 * 3(\rho 10 f 2)$
Consider a particle moving in the potential

$$
V(x)=\left\{\begin{array}{cc}
\frac{1}{2} m \omega^{2} x^{2} & x>0 \\
\infty & \text { otherwise }
\end{array}\right.
$$

(a) what is the lowest energy eigenvalue?
(see zettili problem $4.9,0253$)
This is an un symustric harmonic oscillator potential. So, we must have the wave function vanish at $x=0$. So, those solentims must be those of an ardinay (symmetric) harmonic oscillator that have odd parity since only odd solutions vanish at the origin.
So, since we already know the euryies of a symmetric harmonic oscillator

$$
E_{n}=\left(n+\frac{1}{2}\right) \omega
$$

Then the energies of this unsymmetric potential must be given by those corresponding to the odd 0 energy levers of symmetric potential. That is,

$$
\begin{aligned}
E_{n} & =\left[(2 n+1)+\frac{1}{2}\right] w \\
\therefore E_{n} & =\left[2 n+\frac{3}{2}\right] w
\end{aligned}
$$

So, the lowe st energy eigen value is

$$
E_{0}=\frac{3}{2} w
$$

(b) what is $\left\langle x^{2}\right\rangle$?
from the virial theorem for harmonic oscillators, we know that

$$
\langle v\rangle=\frac{E_{n}}{2}
$$

Fall $2003 \# 3(p 2 \circ f 2)$
$\sin u\langle V(x)\rangle=\frac{1}{2} m \omega^{2}\left\langle x^{2}\right\rangle$, Then $\left\langle x^{2}\right\rangle=\frac{2}{m w^{2}}\langle V\rangle$ and thus,

$$
\begin{aligned}
& \left\langle x^{2}\right\rangle=\frac{2}{m \omega^{2}} \frac{E_{n}}{2}=\frac{E_{n}}{m \omega^{2}} \\
\Rightarrow & \left\langle x^{2}\right\rangle=\frac{\left(2 n+\frac{3}{2}\right)}{m \omega}
\end{aligned}
$$

for lowest energy, we have

$$
\left\langle x^{2}\right\rangle=\frac{3}{2 m \omega}
$$

Problem \#4 Fall 2003

$$
\begin{gathered}
A\left(\phi_{1}+\phi_{2}\right)=a_{1}^{\prime} \phi_{1}^{\alpha}+a_{2} \phi_{2} \\
B\left(x_{1}+x_{2}\right)=b_{1} x_{1}+b_{2} x_{2} \\
\beta \\
\phi_{1}=\left(2 x_{1}+3 x_{2}\right) / \sqrt{13} \\
\phi_{2}=\left(3 x_{1}-2 x_{2}\right) / \sqrt{13}
\end{gathered}
$$

because we measure A first, then we know that often we measme A, we have an engenstate of A If $42 \hbar=a_{1}$, then we have the state ϕ_{1} when we get around to measure B

$\langle B\rangle$

$$
\begin{aligned}
& \left.P_{b_{1}}=\left|\left\langle x_{1}\right| I\right| \phi_{1}\right\rangle\left.\right|^{2}=\frac{4}{13} \rightarrow \text { path (1) } \\
& \left.P_{b_{2}}=\left|\left\langle x_{2}\right| I\right| \phi_{1}\right\rangle\left.\right|^{2}=\frac{9}{13} \rightarrow \text { path (2) }
\end{aligned}
$$

|A|) Path (1) $P_{a_{1}}=\left|\left\langle\phi_{1} \mid x_{1}\right\rangle\right|^{2}=\frac{4}{13}$
Path (2) $P_{a_{1}}=\left|\left\langle\phi_{1} \mid x_{2}\right\rangle\right|^{2}=\frac{9}{13}$

$$
\begin{gathered}
\overrightarrow{P_{\phi_{1}}=\left(\frac{4}{13}\right)^{2}+\left(\frac{9}{13}\right)^{2}} \xrightarrow{P=\left|\left|\left\langle x_{1} \mid \phi_{2}\right\rangle\right|^{2}\right|^{2}+\left|\left\langle x_{2} \mid \phi_{2}\right\rangle\right|^{4}} \text { whatif stortwith }\left|\phi_{2}\right\rangle \text { ? } \\
\left.P=\left(\frac{9}{13}\right)^{2}+\left(\frac{4}{13}\right)^{2} \right\rvert\, \\
P=\frac{97}{169}
\end{gathered}
$$

Fall $2003 \# 4 \quad c_{p} 1$ of 2$)$
An operator A, corresponding to an observable α, has two normalized eigunfuctions ϕ_{1} and ϕ_{2}, with distinct eigenvalues a_{1} and a_{2}, respectively. An operator B, corresponding to on observable β, has normalized eigenfunctious χ_{1} and χ_{2} with distinct eigenvalues b_{1} and b_{2}, respectively. The ign functions are related by

$$
\begin{aligned}
& \phi_{1}=\frac{1}{\sqrt{13}}\left(2 x_{1}+3 x_{2}\right) \\
& \phi_{2}=\frac{1}{\sqrt{13}}\left(3 x_{1}-2 x_{2}\right)
\end{aligned}
$$

An experimenter measures α to be $42 \hbar$, The experimenter proceeds to measure β, followed by α again. What is the probability the expuimentor will measure α to be $42 \hbar$ again?
we ane told that

$$
A\left|\phi_{1}\right\rangle+A\left|\phi_{2}\right\rangle=a_{1}\left|\phi_{1}\right\rangle+a_{2}\left|\phi_{2}\right\rangle
$$

have veer when the experimenter measures α to be $42 \hbar$, we do not knew if that corresponds to a_{1} or $a_{2}\left(\left|\phi_{1}\right\rangle\right.$ or $\left.\left|\phi_{2}\right\rangle\right)$. So, we ned to consider two cases:
case (1) $a_{1}=42 \hbar$
in this case, the state is in $\left|\phi_{i}\right\rangle$ after the first measurement, Then the state immediately offer is

$$
\begin{aligned}
\left|\psi_{B}\right\rangle & =\sum_{n=1}^{2}\left|x_{n}\right\rangle\left\langle x_{n} \mid \phi_{1}\right\rangle \\
& =\frac{2}{\sqrt{13}}\left|x_{1}\right\rangle+\frac{3}{\sqrt{13}}\left|x_{2}\right\rangle
\end{aligned}
$$

So, now we have two possibilities. We can be in either of these two states

$$
\left|\psi_{x_{1}}\right\rangle=\frac{2}{\sqrt{13}}\left|x_{1}\right\rangle \quad \text { or } \quad\left|\psi_{x_{2}}\right\rangle=\frac{3}{\sqrt{13}}\left|x_{2}\right\rangle
$$

Fall $2003 * 4 \quad(p 2$ of z)
So, the probability of measuring 42π again is

$$
\begin{aligned}
P & =\left|\left\langle\phi_{1} \mid \psi_{x_{1}}\right\rangle\right|^{2}+\left|\left\langle\phi_{1} \mid \psi_{x_{2}}\right\rangle\right|^{2} \\
& =\left|\frac{4}{13}\right|^{2}+\left|\frac{9}{13}\right|^{2} \\
& \therefore P=\frac{97}{169}
\end{aligned}
$$

$\operatorname{cose}(i i) \quad a_{2}=42 \hbar$
following the same procedure with

$$
|\phi\rangle_{2}=\frac{1}{\sqrt{13}}\left(3\left|x_{1}\right\rangle-2\left|x_{2}\right\rangle\right)
$$

we have

$$
\begin{aligned}
& P=\left|\left\langle\phi_{2} \mid \psi x_{1}\right\rangle\right|^{2}+\left|\left\langle\phi_{2} \mid \psi_{x_{2}}\right\rangle\right|^{2} \\
&=\left|\frac{9}{13}\right|^{2}+\left|\frac{4}{13}\right|^{2} \\
& \therefore P=\frac{97}{169}
\end{aligned}
$$

QM F'03 \#4

$$
\begin{aligned}
& A|\psi\rangle=a_{1}\left|\phi_{1}\right\rangle+a_{d}\left|\phi_{j}\right\rangle ; B|\psi\rangle=b_{1}\left|x_{1}\right\rangle+b_{2}\left|x_{2}\right\rangle . \\
& \left|\phi_{1}\right\rangle=\frac{1}{\sqrt{13}}\left(2\left|x_{1}\right\rangle+3\left|x_{2}\right\rangle\right):\left|\phi_{2}\right\rangle=\frac{1}{\sqrt{13}}\left(3\left|x_{1}\right\rangle-2\left|x_{2}\right\rangle\right)
\end{aligned}
$$

So $|\psi\rangle_{f}=\frac{4}{13}\left|x_{1}\right\rangle+\frac{9}{13}\left|x_{2}\right\rangle$
And the probability is $\frac{4^{2}+9^{2}}{13^{2}}=\frac{16+81}{169}=\frac{97}{169}$

QM F'O3\#5

H-atom is in the ground state (11008) at $x<0$.
A time. depend dent electric field is applied

$$
\varepsilon=\varepsilon_{0} e^{-t / \tau} \quad \text { for } t>0
$$

A long time passes.
a) what is the flection of atoms in the 12007 state?

$$
\begin{aligned}
& c_{t \rightarrow 2}(t)=\frac{x}{t} \int_{0}^{\infty}\left\langle 100 / H /+00 e^{\frac{\operatorname{lin}_{0} t}{t}} d x\right. \\
& r \cos \theta \\
& \left\langle 1001 H^{\prime}(200\rangle=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} \frac{2}{a_{0}^{3 / 2}} e^{-\gamma / a_{0}} \frac{1}{\sqrt{4 \pi}}\left(e_{0} z^{\psi-\tau / \tau}\right) \frac{1}{\sqrt{2}} \frac{1}{a_{0}^{3 / a}}\left(1-\frac{2}{2 \alpha_{0}}\right) e^{-\gamma / \Delta a_{0}} \frac{1}{\sqrt{4 \pi}} r^{2} d r \sin \theta d \theta \pi \phi\right. \\
& =\frac{2 e \varepsilon_{0} e^{-x / \pi}}{4 \pi a_{0}^{3}} \frac{\int_{0}^{2 \pi}}{\sqrt{2}} \alpha \phi \int_{2 \pi}^{\int_{0}^{\pi}} \cos \theta \sin \theta \alpha \theta \int_{0}^{\infty} r^{3}\left(1-\frac{2}{2 a_{0}}\right) e^{-\frac{32}{2 \alpha}} \alpha t=0 \\
& d a=\cos \theta d \theta \\
& \int_{0}^{0} a d u=0
\end{aligned}
$$

So $\langle 100| H^{\prime}|200\rangle=0$, hence there will be O atoms in the It p state.
b) What is the fraction of atoms in the $2 \rightarrow$ nate?

$$
\begin{aligned}
& \left.2_{1}:|2(1\rangle,| 21-1\right\rangle, 12|0\rangle \\
& C_{t \rightarrow 2}(t)=\frac{-i}{\hbar} \int_{0}^{\infty}\langle 100| H^{\prime}|21-1\rangle e^{i \omega_{0} t} d t
\end{aligned}
$$

So $\left.\langle 100| H^{\prime}|\lambda| 1\right\rangle=0$, similer $/ z\left\langle 1001 H^{\prime} \mid 2+1\right\rangle$ as $Y_{t, 1}=(-1) Y_{1,1}^{*}$

$$
=\frac{2 e \varepsilon_{0} e^{-x / \pi}}{V \sqrt{8^{7}} a_{0}^{4}} x+\frac{\lambda}{3} \cdot \frac{4^{\prime}}{\left(\frac{1}{2 a_{0}}\right)^{5}}=\frac{16}{\sqrt{8}} e \varepsilon_{0} e^{-x / \pi} a_{0} \frac{1^{5}}{35}
$$

So

The probabilitz is given by … $\left|C_{17 \lambda}(x)\right|^{2}=\frac{16^{2} e^{2} \varepsilon_{0}^{2} a_{0}^{2}\left(\frac{2}{3}\right)^{10} \frac{1}{\left(1 / t^{2}-i \omega_{0}\right)^{2}}=\frac{32 e^{2} c_{0}^{2} a_{0}^{2}}{\hbar^{2}}\left(\frac{2}{3}\right)^{10} \frac{1}{1 / r^{2}+u_{0}^{2}}}{1}$ $\frac{1}{1+4_{0}^{2}}$

Axd kence is the totel populetion of atoms is N the the fraction of atoms in the do \rightarrow tete is:

$$
\begin{aligned}
& =\left.\frac{i}{t} \frac{16}{\sqrt{8}} e \varepsilon_{0} a_{0}\left(\frac{\partial}{3}\right)^{5}\left(\frac{-1}{\frac{1}{7}-i \varepsilon_{0}}\right) e^{-(1 / \pi-i \pi) x}\right|_{0} ^{\infty}=\frac{i}{t} \cdot \frac{16 e \varepsilon_{0} \varepsilon_{0}\left(\frac{2}{3}\right)^{5} \frac{1}{\left(4-i \omega_{0}\right)}}{\sqrt{8}}
\end{aligned}
$$

$$
\begin{aligned}
& =2 e s e^{-\pi /} \cos ^{\alpha \pi} \frac{1}{\sqrt{04}}\left(\frac{1}{a_{0}}\right)^{5 / 2} r e^{-2 / \mu_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-2 \varepsilon_{6} e^{-x / \pi}}{a_{0}^{4} \sqrt{4 \pi} \sqrt{34}}\left(\frac{x}{\delta \pi}\right)^{1 / \alpha} \int_{0}^{2 \pi} e^{i \phi} d \phi \int_{0}^{\pi} \cos \theta \sin ^{2} \theta d \theta \int_{0}^{\theta} r^{4} e^{-\frac{3 r}{2 \alpha_{0}}} d r=0 \\
& \left.\frac{1}{i} e^{i \phi}\right|_{0} ^{2 \pi}=\frac{1}{i}[1-1]=0
\end{aligned}
$$

Fall $2003 \# 5$ (p of 2)
Asample of hydrogen atoms in the ground state is placed between the plates of a parallel capacitor. A voltage pulse is appiried to the capacitor at $t=0$ to produce a honogonems electric field, ε, between the plates of:

$$
\begin{array}{ll}
\varepsilon=0 & t<0 \\
\varepsilon=\varepsilon_{0} e^{-t / r} & t>0
\end{array}
$$

where r is a constants. A lang time compared to r passes $(t>r)$
(a) To frost order, calculate the fraction of atoms m the $2_{p}(m=0)$ state once again, this is a time deperdut perturbation problem. the general form of the transition probability is giver by zettili, eq 10.41 (see also Spring $2003 \# 1$)

$$
\begin{equation*}
\left.P_{i f}(t)=\left|-i \int_{0}^{t}\left\langle\psi_{f}\right| V^{\prime}\left(t^{\prime}\right)\right| \psi_{i}\right\rangle\left. e^{i \omega F_{i}+^{\prime}} d t^{\prime}\right|^{2} \tag{1}
\end{equation*}
$$

whee $v^{\prime}\left(t^{\prime}\right)$ is given by

$$
v^{\prime}\left(t^{\prime}\right)=e \xi_{0} e^{-t^{\prime} / \tau} z \quad \text {-rime depordut stork }
$$

So, since t $t>r$

$$
\left.P_{i F}(t)=e^{2} \varepsilon_{0}^{2}\left|\int_{0}^{\infty}\langle\psi F| z\right| \psi_{i}\right\rangle\left. e^{\left(i \psi_{i}-\frac{1}{r}\right) t^{\prime}} d t^{\prime}\right|^{2}
$$

where $w_{F_{i}}=E_{F}-E_{i}=-\frac{\alpha^{2} m}{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$
now, before we start, note that Selection rules for

$$
\begin{equation*}
\left.\angle n^{\prime} l^{\prime} n^{\prime}|z| n l m\right\rangle \neq 0 \tag{Q}
\end{equation*}
$$

tell us that $|\Delta l|=1$ and $|\Delta m|=0$ since z is odd and a rank one tensor.

Fall $2003 \# 5(p 2 \circ F 2)$
So, for pout a we wat to find the $2_{p}(m=0)$ state. So, wee want

$$
\begin{aligned}
& \langle 210| z|100\rangle=\int R_{21}^{x} y_{1}^{0^{*}} z R_{10} Y_{0}^{0} d^{3} r \quad, z=r \cos \theta \\
& \underset{\substack{\text { selection rules tellus } \\
\text { this will not vanish }}}{ }=\int\left[\frac{1}{2 \sqrt{6}} \frac{r}{a^{5 / 2}} e^{-r / 2 a}\right]\left[\sqrt{\frac{3}{4 \pi}} \cos \theta\right](\cos \theta)\left[\frac{2}{a^{3 / 2}} e^{-r / a}\right]\left[\frac{1}{\sqrt[1]{4 \pi}}\right] d^{3} r \\
& =\frac{a^{-4}}{4 \pi \sqrt{2}} \int_{0}^{2 \pi} d x \int_{0}^{\pi} d \theta \sin \theta \cos ^{2} \theta \int_{0}^{\infty} r^{4} e^{-3 r / 2 a} d r \\
& \text { let } u=\cos \theta \Rightarrow d u=\sin \theta d \theta \\
& =\frac{a^{-4}}{4 \sqrt{2} \sqrt{2}} 2 \pi\left(\int_{-1}^{1} d u u^{2}\right)\left(\frac{4^{1}}{\left(\frac{3}{2 n}\right)^{5}}\right)=\frac{a 2^{5} \cdot 2^{3} \cdot 3}{2 \sqrt{2} 3^{5}}\left[\frac{u^{3}}{3}\right]_{-1}^{1} \\
& =\frac{a 2^{8}}{\sqrt{2} 3^{5}}
\end{aligned}
$$

So, then the transition probability is

$$
P=e^{2} \varepsilon_{0}^{2} \frac{a^{2} z^{15}}{3^{10}}\left|\int_{0}^{\infty} e^{\left(i \omega_{F_{i}}-\frac{1}{\tau}\right) t^{\prime}} d t^{\prime}\right|^{2}
$$

Thus,

$$
P=\frac{2^{15}}{3^{10}} \frac{e^{2} \varepsilon_{0}^{2} a^{2}}{\omega^{2}+\left(\frac{1}{\tau}\right)^{2}} \quad \text { for } \omega=\frac{-\alpha^{2} m}{2}\left(\frac{1}{4}-1\right)=\frac{3 \alpha^{2} m}{8}
$$

(6) to first order, what is the fraction of atoms in the 25 state (1200>) selection rales tell that $\langle 200| z) 100\rangle=0$ since $|\Delta l| \neq 1$.
Thus,

$$
P_{1 s \rightarrow 2 s}=0
$$

Similar to Fall 2003 \#6. (p lof2)

Here, I want you to obtain the thermodynamic properties of a gas of massless, relativistic, non-conserved particles (such as photons). Because the particles are mashes and relativistic, the energy-versus-momentum relationship is $E=|\vec{p}| c$. The fact that they are not conserved means that you set the chemical potential equal to zero in the grand partition function.
a) Calculate the grand partition function of this gas. Assume a spin degencracy factor of 3 .
b) Find the energy of this gas as a function of temperature. The energy goes as a simple power law in the temperature. What is the power?
c) Find the pressure as a function of temperature.

$$
\varepsilon_{k}=c|\vec{p}|=\hbar_{c}|\vec{k}|
$$

(a) The grand canonical partition function is

$$
0 \phi(T, v, z)=\ln Q=-\sum_{k} \ln \left(1-z e^{-\beta \varepsilon_{n}}\right), z-e^{\beta \mu}
$$

(b) let's find the energy density $J(\varepsilon)$

The total number of states in the classical phase space is

$$
I=\int \frac{d^{3} \vec{r} d^{3} \vec{p}}{h^{3}}=\frac{4 \pi V}{h^{3}} \int_{0}^{\infty} p^{2} d p=\frac{4 \pi V}{h^{3} c^{3}} \int_{0}^{\infty} \varepsilon^{2} d \varepsilon
$$

\Rightarrow the are-particle density of states

$$
\begin{aligned}
& \partial(\varepsilon)=\frac{4 \pi i}{h^{3} c^{3}} \varepsilon^{2} \\
\Rightarrow & \phi=-\frac{4 \xi V}{(h c)^{3}} \int_{0}^{\infty} d \varepsilon \varepsilon^{2} \ln \left(1-e^{-\beta \varepsilon}\right)=\left\{\begin{array}{l}
\text { we tate into anent } \\
\text { that } \mu=0 \text { since it } \\
\text { cons no ergot to inert } \\
\text { mashes pertiete into } \\
\text { the system }
\end{array}\right.
\end{aligned}
$$

~Fall 2003* (p zof 2)
For the internal evergy:

$$
u(T, V)=\frac{4 s V}{(h c)^{3}} \int_{0}^{\infty} d \varepsilon \frac{\varepsilon^{3}}{\exp ^{\beta^{\varepsilon}}-1}
$$

We make sultitution $x=\beta \varepsilon$ and obtain

$$
\phi=\frac{P V}{L T}=\frac{1}{3} U_{\beta}=\frac{4 \pi V}{(h c)^{2}} \frac{2}{\beta^{3}} g_{1}(1) \quad \beta=\frac{1}{E_{B} T} \quad(*)
$$

reme $g_{4}(1)=\zeta(4)=\frac{54}{90}$

$$
\begin{aligned}
\Rightarrow & u=\frac{4}{15} \frac{V \pi^{5}}{(h c)^{3}} k_{B}^{4} T^{4} \\
& u \propto T^{4}
\end{aligned}
$$

(c) from $(x) \quad P=\frac{1}{3} \frac{u}{V}=\frac{8 \pi}{(h c)^{3}}(k T)^{4} \frac{\pi^{4}}{90}$

Fall $20003 \# 7$ (poof 2)
7. Statistical Mechanics

A gas of nonintersecting particles fills a cylindrical container that has a crose-sectional area A and a height h. Each particle has a mass m, and is subject to the gravitational field at the surface of the earth. The circular bottom and top of the container are parallel to the surface of the Earth. There are N particles in the container, and the temperature of the container is T.
a) Find the partition function of the gas.
b) What is the pressure of the gas at the top of the container?
c) What is the pressure of the gas at the bottom of the container?
d) Finally, what is the difference between the pressure at the bottom of the container and the pressure at the top of the container? Interpret the answer that you get.

$$
\text { area }=\mathbf{A}
$$

(a) The partition function is gives by

$$
\begin{aligned}
Z & =\frac{1}{N!} \frac{1}{h^{3 N}}\left[\int_{-\infty}^{\infty} e^{-\beta \beta / 2 m} d p\right]^{3 N} A^{N}\left[\int_{x_{0}}^{x_{1}=x_{0}+h} e^{\beta m q y} d y\right]^{N} \\
& =\frac{1}{N!} \frac{A^{N}}{h^{3 N}}(2 \pi m k T)^{3 / 2}\left[\frac{k T}{m g}\left(e^{-\beta m g x_{0}}-e^{-\beta m g\left(x_{0}+h\right)}\right]^{N}\right.
\end{aligned}
$$

(b) pressure is given by

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T, N}=K T\left(\frac{\partial \ln z}{\partial V}\right)=K T\left(\frac{\partial \ln Z}{\partial A}\right)\left(\frac{\partial A}{\partial V}\right)
$$

note: $V=A h$

Fall 2003 17 (p $20 F 2$)
where

$$
\ln z=\ln A^{N}+\ln \left[\frac{1}{N!} \frac{1}{h^{3 N}}(2 \pi m k T)^{3 / 2}\left\{e^{-\beta m g v_{0}}-e^{-\beta m g\left(x_{0}+h\right)}\right\}^{N}\right]
$$

So.

$$
\begin{aligned}
& \frac{\partial \ln z}{\partial A}=\frac{\partial}{\partial A} N \ln A=\frac{N}{A} \\
& \Rightarrow p=\frac{K T N}{A} \frac{\partial A}{\partial V}=\frac{K T N}{A} \frac{\partial}{\partial V}\left(\frac{V}{h}\right)=\frac{K T N}{A h} \\
& \therefore P_{\text {top }}=\frac{K T N}{A h}
\end{aligned}
$$

(c) What is the pressure of the gas at the bottom of the container? this is the same result as in part (b), but now we must evaluate p at $h=0$,
Dong so yields
does this make $P_{\text {bottom }} \rightarrow \infty \quad \sim$ does sense?
(d) I am not sure hour to interpert this result. It cams that if $h \rightarrow \infty$, then the pressure on the bottom should blow up, but not for a finite h, so ???

Any ideas?

Fall $2003 \# 8$ (p $10 F 3)$
Consider a vacuum diode which is parallel plate capacitor (in vacuum) with plate area A aud plate sparctiond. The cathode plate, which's at $\phi=0$, is heated as to themionically emit electrons which then travel to the anode plate $(a+\phi=v)$. Ass ane a steady state bras V and diode current I. Yare may model the electrons the diode as a cold fluid with density $n(x)$ and velocity $v(x)$. You mon assume that the electrons are ban form the cathode with zero velocity.

(this is just Fall 1998 \#5)
(a) Find the HD potentid distribution in the diode, $\phi(x)$ (hint: try a power (aw solution)

From Poisson's eq: $\left.\begin{array}{l}\nabla \cdot \vec{E}=4 \pi \rho \\ \vec{E}=-\nabla \phi\end{array}\right\} \Rightarrow \nabla^{2} \phi=-4 \pi \rho$
we also know that the current density \vec{F} is given by (eq 5,26)

$$
\vec{J}=\rho \vec{v}
$$

in $1-D$, this is

$$
\rho(x)=\frac{J(x)}{J(x)}
$$

and the eq (1) become

$$
\begin{equation*}
\frac{d^{2} \phi(x)}{d x^{2}}=\frac{-4 \pi J(x)}{v(x)} \tag{2}
\end{equation*}
$$

Fall 2003 \# 18 (20 oS)
Now, ie can get an expression for $v(x)$ by the relationship between work and change in kinetic energy. That is

$$
w=\int_{x=0}^{x=d} \vec{F}_{e} \cdot d \vec{x}, \tilde{F}_{e}=-e\left(-\frac{\partial V(x)}{\partial x}\right)=e \frac{\partial V(x)}{\partial x}
$$

and

$$
w=\frac{1}{2} m[v(x)]^{2}
$$

so,

$$
\begin{align*}
& \frac{1}{2} m v^{2}=e[V(x=d)-V(x=0)]=e V_{0}-0 \\
& \Rightarrow \quad v(x)=\sqrt{\frac{2 e \phi(x)}{m}} \tag{3}
\end{align*}
$$

we are told to assume a power law solution, so, let $\phi(x) \sim x^{y} \Rightarrow \phi(x)=A x^{y}$ we ear $f(x)$ the value of A from the baudary condition. That is

$$
\phi(x=d)=V=A d^{y} \Rightarrow A=V d^{-y}
$$

so,

$$
\begin{equation*}
\phi x=v\left(\frac{x}{d}\right)^{y} \tag{4}
\end{equation*}
$$

substituting this result into $e_{q}(3)$ piths

$$
\begin{equation*}
v(x)=\sqrt{\frac{2 e V}{m}\left(\frac{x}{d}\right)^{y}} \tag{5}
\end{equation*}
$$

substituting of (4) \& (5) into eq (2) yields

$$
\begin{align*}
& \frac{d^{2}}{d x^{2}}\left[V\left(\frac{x}{d}\right)^{y}\right]=\frac{-4 \pi J(x)}{\sqrt{\frac{2 c V}{m}\left(\frac{x}{d y}\right.}} \\
\Rightarrow & J(x)=-\frac{1}{4 \pi} \sqrt{\frac{2 e}{m}} \frac{V^{3 / 2}}{d^{3 / 2}} y(y-1) x^{[(3 y / 2)-2]} \tag{6}
\end{align*}
$$

Fall $2003 \#(p$ 3.F3)
Now, from the contibuity equation $\nabla \cdot \vec{J}+\frac{\partial f}{\partial t}=0$, we know that $5(x)$ must be constant wit x, Otherwise, charge wald be accumulating and not in motion. So, the power of x must vanish in our expression for $J(x)\left(e_{q} 6\right)$. That is,

$$
\frac{3 y}{2}-2=0 \quad \Rightarrow y=\frac{4}{3}
$$

Substituting this result in bo eq (4) yields

$$
\phi(x)=V\left(\frac{x}{d}\right)^{4 / 3}
$$

(b) Find the diode current as a function of the bids voltage V. So, we have
$I=J A$, where A is the area the current is flowing through and J is give by eq (6) with $y=\frac{4}{3}$. That is,

$$
J(x)=\frac{-V^{3 / 2}}{9 \pi d^{2}} \sqrt{\frac{2 e}{m}}
$$

(c) What unphysical result is caused by the assumption that elections are boon from the cathode with zero velocity?
The official solution soysthet this implies that $f=e a v \rightarrow \infty$, bet i do not see hows... incur tear wert

F'O3 E.M. \#9
a) Two wire transmission like with L and C per unit length, Show that $z=\sqrt{c / c}$

Fokowing Feynmanns argument:
Add an additional Z_{L}, z_{c} block of the beginning and call everything else Z_{0} :

$z_{e q}=z_{L}+\frac{z_{c} z_{0}}{z_{c}+z_{0}} \therefore$ now $z_{\text {eq }}=z_{0}$ as the line is infinitely

$$
z_{L}+\frac{z_{c} z_{0}}{z_{c}+z_{0}}=z_{0} \Rightarrow z_{c} z_{c}+z_{L} z_{0}+z_{c} z_{0}=z_{c} z_{0}+z_{0}^{\alpha}
$$

so $\quad z_{0}^{2}-z_{L} z_{0}-z_{L} z_{C}=0$
similar to $a x^{2}+b x+c=0 ; a=1 ; b=-z_{L} ; c=-z_{L} z_{c}$
so

$$
z_{0}=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}=\frac{z_{L}}{2} \pm \frac{1}{2} \sqrt{z_{c}^{2}+4 z_{c} z_{c}}
$$

now let's substitute in: $Z_{L}=i \omega L ; Z_{C}=\frac{1}{i \omega c}$

$$
z_{c}^{2}=-\omega^{2} ; z_{c} z_{c}=4 / c
$$

kexce

$$
z_{0}= \pm \frac{\sqrt{-\omega^{2} L^{2}+44 / c}}{2}+\frac{i^{\prime} \omega L}{2}
$$

The real part of z_{0} is what matters:

$$
\begin{aligned}
\operatorname{Re}\left(z_{0}\right)= \pm \frac{\sqrt{-a L^{2}+4 L / C}}{2}= & \pm \sqrt{L l C} \text { for } \omega^{2}<\frac{4}{L C} \\
& \text { (according to Feynman })
\end{aligned}
$$

so $\quad z_{0}=\sqrt{\frac{L}{C}}$
b) What are the relative amplitudes of the reflected one transmitted waves ($\left.v_{r} / v_{i}, v_{t} / v_{i}\right)$?

$$
\begin{align*}
& -z_{1} \rightarrow-z_{2} \\
& \overrightarrow{I_{i}} \overrightarrow{I t} \text { so } \\
& \text { so } \\
& I_{i}-I_{r}=I_{t} \text { also } V_{i}+V_{l}=V_{e} \\
& \frac{z_{i}}{z_{1}}+\frac{I_{z}}{z_{1}}=\frac{I_{z}}{z_{2}} \tag{d}
\end{align*}
$$

(2) $\Rightarrow \quad I_{i}+I_{r}=\frac{Z_{1}}{Z_{2}} I_{e}$ but from (1) $I / E I+\frac{I}{2}$

$$
\left.\begin{array}{rl}
\Rightarrow x I_{1}=I_{2}\left(\frac{z_{1}}{z_{\lambda}}-1\right) \\
I_{i}+I_{2}=\frac{z_{1}}{z_{2}}\left(I_{i}-I_{2}\right) \Rightarrow I_{i}\left(\frac{z_{1}-z_{2}}{z_{2}}\right. \\
z_{2}-1
\end{array}\right)=I_{2}\left(\widetilde{z_{1}+z_{2}} \frac{z_{2}}{z_{2}}+1\right) .
$$

now

$$
I_{t}=I_{i}-I_{r}=I_{i}-\frac{z_{1}-z_{2}}{z_{1}+z_{d}} I_{i}=\frac{z_{1}+z_{2}-z_{1}+z_{d} z_{i}}{z_{1}+z_{2}}=\frac{2 z_{2}}{z_{1}+z_{2}} I_{i}
$$

c)

For $z_{1}<z_{2}$
R is in parattel with z_{d}

$$
z_{1}=\frac{A z_{2}}{A+z_{2}} \Rightarrow z_{1} p_{1}+z_{1} z_{2}=A z_{2} \Rightarrow R=\frac{z_{1} z_{2}}{z_{2}-z_{1}}
$$

For $z_{1} 2 z_{2}$ A is in series with z_{α} :

$$
z_{1}=p_{1}+z_{\alpha} \Rightarrow a=z_{1}-z_{2}
$$

Fall 2003 \# $10(p$ of 1$)$
consider a wedge formed by two conducting half-planes, as depicted in the Figure, One plane is maintavued at electrostatic potential V_{1} while the other is at V_{z}. What r the electrostatic potential in the region between the two half-planes?

(see Spring $2005 \# 8$ and Spring 2003 \#9)
since ϕ is restricted (does not range to 2π), the general solution to the potential is given by

$$
I(r, \phi)=\left(a_{0}+b_{0} \ln r\right)\left(c_{0}+d_{0} \phi\right)
$$

Now, apply the boundary conditions.

$$
\Phi(r, \phi=0)=V_{2}=\left(a_{0}+b_{0} \ln r\right) c_{0}
$$

the only way to satisfy this eq is for bo $=0 \sin c V_{2} \neq V_{2}(r)$.

$$
\Rightarrow V_{2}=a_{0} c_{0}
$$

- $\underline{(r, \phi=\theta)=V_{1}=a_{0}\left(c_{0}+d_{6} \theta\right)=V_{2}+a_{0} d_{0} \theta}$

$$
\Rightarrow \quad d_{0} d_{0}=\frac{v_{1}-V_{2}}{\theta}
$$

Thus,

$$
\begin{aligned}
& \Phi(r, \theta)=a_{0} c_{0}+b_{0} d_{0} \phi \\
& \therefore \Phi(r, \theta)=V_{2}+\frac{V_{1}-V_{2}}{\theta} \phi
\end{aligned}
$$

Problem \# II Fall 2003

$$
\begin{aligned}
& k^{2} c^{2}=\omega^{2}-4 \pi n e^{2} / m_{e} \\
& c=3 \times 10^{10} \quad m e=9.11 \times 10^{-28} \quad e=4.8 \times 10^{-10}
\end{aligned}
$$

a) For Transmission

$$
w^{2}-\frac{4 \pi n e^{2}}{m_{e}} \geqslant 0
$$

otherwise K is imaginary and the radiation is absorbed
$\Rightarrow \frac{4 \pi n e^{2}}{m e}=\omega^{2}$ is the frequency where transmission stops.

$$
\begin{aligned}
& n=\frac{\omega^{2} m e}{4 \pi e^{2}}=\frac{\left(2 \pi 10^{7}\right)^{2}\left(9.11 \times 10^{-28}\right)}{4 \pi\left(4.8 \times 10^{-10}\right)^{2}} \\
& n \approx \frac{\pi}{25} \frac{10^{14} \times 10^{-27}}{10^{-20}}=\frac{\pi}{25} 10^{7}
\end{aligned}
$$

So from the information given, one might
conclude that Radiation with frequencies below 10 mHz cant be recieved from space be cause the earth is surrounded by a plasma of density $n \approx \frac{\pi}{25} 10^{7}$
I looked on the internet, and indeed this is the case.

$$
\text { b) } \begin{aligned}
k & =\frac{w}{v} \quad n=0.01 \mathrm{~cm}^{-3} \quad d=1 \times 10^{22} \mathrm{~cm} \\
d & =v t \quad t=\frac{d}{v} \quad \omega_{2}=10 \mathrm{kHz} w_{1}=6 \mathrm{kHz} \\
\frac{1}{v} & =\frac{1}{c} \sqrt{1-\frac{4 \pi n e^{2}}{w^{2} M e}} \\
t & =\frac{d}{v}=\frac{d}{c} \sqrt{1-\frac{4 \pi n e^{2}}{w^{2} m e}} \\
t_{2}-t_{1} & =\frac{d}{c}\left\{\sqrt{1-\frac{4 \pi n e^{2}}{\omega_{2}^{2} m e}} \sqrt{1-\frac{4 \pi n e^{2}}{w_{1}^{2} m_{e}}}\right\}
\end{aligned}
$$

