1. Quantum Mechanics (Fall 2004)

Two spin-half particles are in a state with total spin zero. Let $\hat{\mathbf{n}}_{a}$ and $\hat{\mathbf{n}}_{b}$ be unit vectors in two arbitrary directions. Calculate the expectation value of the product of the spin of the first particle along $\hat{\mathbf{n}}_{a}$ and the spin of the second along $\hat{\mathbf{n}}_{b}$. That is, if \mathbf{s}_{a} and \mathbf{s}_{b} are the two spin operators, calculate

$$
\langle\psi| \mathbf{s}_{a} \cdot \hat{\mathbf{n}}_{a} \mathbf{s}_{b} \cdot \hat{\mathbf{n}}_{b}|\psi\rangle
$$

Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.
2. Quantum Mechanics (Fall 2004)

The van der Waals interaction between two neutral atoms is due to dipole-dipole interactions. Consider the following simplified 1-D model. Each atom consists of a fixed nucleus of charge $+e$ and electron of charge $-e$, bound by a harmonic spring. Two such oscillators are a distance $R(\gg$ size of the atom) apart. The Hamiltonian of the system consists of the two harmonic oscillator terms plus a dipole-dipole perturbation.
(a) Write the perturbation part of the Hamiltonian.
(b) Calculate the correction to the energy of the unperturbed ground state. This is the van der Waals interaction potential. (Hint: it should come out $\propto 1 / R^{6}$.)

3. Quantum Mechanics (Fall 2004)

A positron has the same mass m as the electron, but the opposite charge. Consider a set of states containing one electron and one positron. A complete set of these states can be labeled $\left|\mathbf{r}_{+}, \mathbf{r}_{-}\right\rangle$, where \mathbf{r}_{+}and \mathbf{r}_{-}are the positions of the positron and electron, respectively. Normalize these states so that

$$
\left\langle\mathbf{r}_{+}, \mathbf{r}_{-} \mid \mathbf{r}_{+}^{\prime}, \mathbf{r}_{-}^{\prime}\right\rangle=\delta_{3}\left(\mathbf{r}_{+}^{\prime}-\mathbf{r}_{+}\right) \delta_{3}\left(\mathbf{r}_{-}^{\prime}-\mathbf{r}_{-}\right)
$$

Then if the system is in any state $|\psi\rangle$, the wave function is

$$
\psi\left(\mathbf{r}_{+}, \mathbf{r}_{-}\right)=\left\langle\mathbf{r}_{+}, \mathbf{r}_{-} \mid \psi\right\rangle
$$

In this problem ignore spin.
(a) In terms of $\psi\left(\mathbf{r}_{+}, \mathbf{r}_{-}\right)$, what is the probability that at least one of the two particles is farther than a distance b from the origin?
(b) Write down the Hamiltonian for this electron-positron system, including the electrostatic (Coulomb) interactions between the two particles.
(c) Let $\mathbf{r}=\mathbf{r}_{+}-\mathbf{r}_{-}$and $\mathbf{R}=\frac{1}{2}\left(\mathbf{r}_{+}+\mathbf{r}_{-}\right)$. Write the Hamiltonian in terms of the new coordinates and their canonically conjugate momenta \mathbf{p} and \mathbf{P}.
(d) The bound electron-positron system is called positronium. For states with zero total momentum, write a formula for the possible negative values of the energy ${ }^{1}$. What is the approximate numerical value, in electron volts, of the ground state energy?
(e) Define the charge conjugation operator C on this system by

$$
C\left|\mathbf{r}_{+}, \mathbf{r}_{-}\right\rangle=\left|\mathbf{r}_{-}, \mathbf{r}_{+}\right\rangle
$$

Show that C commutes with the Hamiltonian. What is the eigenvalue of C on the state of lowest energy?

[^0]4. Quantum Mechanics (Fall 2004)

Let H be the Hamiltonian for the hydrogen atom, including spin. $\hbar \mathbf{L}=\mathbf{r} \times \mathbf{p}$ and $\hbar \mathbf{s}$ are the orbital and spin angular momentum, respectively, and $\mathbf{J}=\mathbf{L}+\mathbf{s}$. Conventionally, the states are labeled $|n, l, j, m\rangle$ and they are eigenstates of $H, \mathbf{L}^{2}, \mathbf{J}^{2}$, and J_{z}.
(a) If the electron is in the state $|n, l, j, m\rangle$, what values will be measured for these four observables in terms of \hbar, c, the fine-structure constant α, and the electron mass m ?
(b) What are the restrictions on the possible values of n, l, j, and m ?
(c) Let $\mathbf{J}_{ \pm}=J_{x} \pm i J_{y}$. What are
(i) $\left\langle 3,1, \frac{3}{2}, \frac{3}{2}\right| J_{+}\left|3,1, \frac{3}{2},-\frac{1}{2}\right\rangle=$?
(ii) $\left\langle 3,1, \frac{3}{2}, \frac{3}{2}\right| J_{+}\left|3,1, \frac{3}{2}, \frac{1}{2}\right\rangle=$?
(iii) $\left\langle 2,1, \frac{3}{2}, \frac{3}{2}\right| p_{z}\left|2,1, \frac{3}{2}, \frac{1}{2}\right\rangle=$?
(iv) $\left\langle 2,1, \frac{1}{2},-\frac{1}{2}\right| \mathbf{L}^{2}\left|2,1, \frac{1}{2},-\frac{1}{2}\right\rangle=$?
(v) $\left\langle 3,2, \frac{3}{2},-\frac{1}{2}\right| \mathbf{J}^{2}\left|3,2, \frac{3}{2},-\frac{1}{2}\right\rangle=$?
(vi) $\left\langle 3,1, \frac{3}{2}, \frac{3}{2}\right| J_{z}\left|3,1, \frac{3}{2}, \frac{1}{2}\right\rangle=$?
(d) What is $\left\langle 1,0, \frac{1}{2}, \frac{1}{2}\right| p_{i} p_{j}\left|1,0, \frac{1}{2}, \frac{1}{2}\right\rangle=$?
(e) For given n, l, j, and m, what are the conditions on $n^{\prime}, l^{\prime}, j^{\prime}$, and m^{\prime} so that

$$
\left\langle n^{\prime}, l^{\prime}, j^{\prime}, m^{\prime}\right| \mathbf{s} \cdot \mathbf{r}|n, l, j, m\rangle \neq 0 ?
$$

5. Quantum Mechanics (Fall 2004)

The Hamiltonian for a one-dimensional harmonic oscillator is

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2}
$$

Let $\left|\psi_{n}\right\rangle, n=0,1,2, \ldots$, be the usual energy eigenstates.
(a) Suppose the system is in a state $|\phi\rangle$ that is some linear combination of the two lowest states only:

$$
|\phi\rangle=c_{0}\left|\psi_{0}\right\rangle+c_{1}\left|\psi_{1}\right\rangle
$$

and suppose it is known that the expectation value of the energy is $\hbar \omega$. What are $\left|c_{0}\right|$ and $\left|c_{1}\right|$?
(b) Choose c_{0} to be real and positive, but let c_{1} have any phase: $c_{1}=\left|c_{1}\right| e^{i \theta_{1}}$. Suppose further that not only is the expectation value of H known to be $\hbar \omega$, but the expectation value of x is also known:

$$
\langle\phi| x|\phi\rangle=\frac{1}{2} \sqrt{\frac{\hbar}{m \omega}}
$$

What is θ_{1} ?
(c) Now suppose the system is in the state $|\phi\rangle$ described above at time $t=0$. That is, $|\psi(0)\rangle=|\phi\rangle$. What is $|\psi(t)\rangle$ at a later time t ? Calculate the expectation value of x as a function of t. With what angular frequency does it oscillate?
6. Statistical Mechanics and Thermodynamics (Fall 2004)

If the specific heat of a gas of non-interacting fermions in d dimensions varies with temperature as $C \sim T^{\alpha}$ for $k_{B} T \ll E_{F}$, then what is α ? What is α for a system of non-interacting bosons?
7. Statistical Mechanics and Thermodynamics (Fall 2004)

Some organic molecules have a triplet excited state at energy $k_{B} \Delta$ above a singlet ground state.
(a) Find an expression for the magnetic moment in a field B in terms of Δ, B, the temperature T, the Bohr magneton μ_{B}, and the gyromagnetic ratio g.
(b) Show that the susceptibility for $T \gg \Delta$ is given by $N\left(g \mu_{B}\right)^{2} / 2 k_{B} T$, where N is the total number of molecules in the system.
(c) With the help of a diagram of energy levels versus field and a rough sketch of entropy versus field, explain how this system might be cooled by adiabatic magnetization (not demagnetization).
8. Electricity and Magnetism (Fall 2004)

Consider a sphere of radius a with uniform magnetization \mathbf{M}, pointing in the z-direction. What are the magnetic induction \mathbf{B} and magnetic field \mathbf{H} inside the sphere?
9. Electricity and Magnetism (Fall 2004)

A wire carrying current I is connected to a circular capacitor of capacitance C, as depicted in the figure. What is the magnetic field outside the wire, far from the capacitor (as a function of the distance r from the wire)? Using Maxwell's equations, explain why there is a magnetic field outside the capacitor. What is this magnetic field?

10. Electricity and Magnetism (Fall 2004)

The upper half-space is filled with a material of permittivity ϵ_{1}, while the lower half space is filled with a different material with permittivity ϵ_{2}. Their interface is located at the $z=0$ plane. A point charge q is located at $\mathbf{r}_{q}=d \hat{\mathbf{z}}$ on the z-axis in medium 1. Find the electrostatic potential everywhere.
11. Electricity and Magnetism (Fall 2004)

Using general principles, find the radiated power in vacuum of a non-relativistic point charge q whose position is $\mathbf{r}(t)$. You do not need to find dimensionless proportionality constants (i.e., only find the dependence on $q, \mathbf{r}(t)$, and universal constants).
12. Electricity and Magnetism (Fall 2004)
(a) Show that the annihilation of an electron and a positron can produce a single massive particle (say, X), but not a single photon.
(b) A positron beam of energy E can be made to annihilate against electrons by hitting electrons at rest in a fixed-target machine or by hitting electrons moving in the opposite direction with the same energy E in an electron-positron collider (colliding-beam accelerator). Show that the minimum energy $E_{\text {min }}$ of a positron beam needed to produce neutral particles X of mass $M \gg m_{e}$ (where m_{e} is the electron rest mass) is much greater in a fixed-target machine than in a collider.
13. Statistical Mechanics and Thermodynamics (Fall 2004)

Consider the Landau-Ginzburg free energy functional for a magnet with magnetization M :

$$
F(M)=\frac{1}{2} r M^{2}+u M^{4}-h M
$$

M takes values $M \in[-\infty, \infty]$. (The rotational symmetry of the magnet is broken by the crystal so that M is a scalar, not a vector.) $r=a\left(T-T_{c}\right)$, u is only weakly dependent on T, and h is the magnetic field. We will make the mean-field approximation that M is equal to the value which minimizes $F(M)$, and $F(M)$ is given by its minimum value.
(a) For $T>T_{c}$ and $h=0$, what value of M minimizes F ? For $T<T_{c}$ and $h=0$, what value of M minimizes F ?
(b) For $h=0$, the specific heat takes the asymptotic form $C \sim\left|T-T_{c}\right|^{-\alpha}$ as $T \rightarrow T_{c}$. What is α ?
(c) At $T=T_{c}, M \sim h^{\delta}$. What is δ ?
14. Statistical Mechanics and Thermodynamics (Fall 2004)

Consider black body radiation at temperature T. What is the average energy per photon in units of $k T$?
You may find the following formulae useful:

$$
\int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=\frac{\pi^{4}}{15} \approx 6.5 ; \quad \int_{0}^{\infty} \frac{x^{2} d x}{e^{x}-1} \approx 2.4
$$

1. Quantum Mechanics (Fall 2004)

Two spin-half particles are in a state with total spin zero. Let $\hat{\mathbf{n}}_{a}$ and $\hat{\mathbf{n}}_{b}$ be unit vectors in two arbitrary directions. Calculate the expectation value of the product of the spin of the first particle along $\hat{\mathbf{n}}_{a}$ and the spin of the second along $\hat{\mathbf{n}}_{b}$. That is, if \mathbf{s}_{a} and \mathbf{s}_{b} are the two spin operators, calculate

$$
\langle\psi| \mathbf{s}_{a} \cdot \hat{\mathbf{n}}_{a} \mathbf{s}_{b} \cdot \hat{\mathbf{n}}_{b}|\psi\rangle
$$

Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

Pick axes:

$$
\begin{aligned}
&\left.|\psi\rangle=\frac{1}{\sqrt{2}}(|+-\rangle-1-+\rangle\right) \\
&\langle\psi| \vec{s}_{a} \cdot \hat{n}_{a} \vec{s}_{b} \cdot \hat{n}_{b}|\psi\rangle=\frac{\hbar^{2}}{4}\langle\psi| \vec{\sigma}_{a} \cdot \hat{n}_{a} \vec{\sigma}_{b} \cdot \hat{n}_{b}|\psi\rangle \\
&=\left.\frac{\hbar^{2}}{4}\left\langle\psi \left\lvert\,\left(\cos \theta \sigma_{a z}+\sin \theta \sigma_{a x}\right) \sigma_{b z} \frac{1}{\sqrt{2}}[1+-\rangle-1-+\right.\right\rangle\right] \\
&= \frac{\hbar^{2}}{4} \frac{1}{2}[\langle+-1-\langle-+1][(+\cos \theta|+-\rangle+\sin \theta|--\rangle)(-1) \\
&-(-\cos \theta|-+\rangle+\sin \theta|++\rangle)(+1)] \\
&= \frac{\hbar^{2}}{4} \frac{1}{2}[-\cos \theta\langle+-1+-\rangle-\cos \theta\langle-+1-+\rangle] \\
&=-\frac{\hbar^{2}}{4} \cos \theta
\end{aligned}
$$

2. Quantum Mechanics (Fall 2004)

The van der Walls interaction between two neutral atoms is due to dipole-dipole interactions. Consider the following simplified 1-D model. Each atom consists of a fixed nucleus of charge $+e$ and electron of charge $-e$, bound by a harmonic spring. Two such oscillators are a distance R (\gg size of the atom) apart. The Hamiltonian of the system consists of the two harmonic oscillator terms plus a dipole-dipole perturbation.
(a) Write the perturbation part of the Hamiltonian.
(b) Calculate the correction to the energy of the unperturbed ground state. This is the van der Wails interaction potential. (Hint: it should come out $\propto 1 / R^{6}$.)
a)

$$
\begin{aligned}
& H=H_{1}+H_{2}+H^{\prime} \\
& H^{\prime}=-\vec{p}_{2} \cdot \vec{E}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& =-\vec{p}_{2} \cdot\left[K \frac{3\left(\hat{p}_{1} \cdot \hat{R}\right) \hat{R}-\vec{p}_{1}}{R^{3}}\right]=-K \frac{3 p_{1 x} p_{2 x}-p_{1 x} p_{2 x}}{R^{3}}=-2 K \frac{d_{1 x} d_{2 x} e^{2}}{R^{3}} \\
& =\mp 2 K \frac{e^{2}}{R^{3}} d_{1} d_{2} \\
& \text { - } \Rightarrow \text { aligned } \\
& +\Rightarrow \text { antialigned }
\end{aligned}
$$

b) States $\left|n_{1} n_{2}\right\rangle \quad n_{1}, n_{2} \in \mathbb{V}=\{0,1,2, \ldots\}$

$$
\begin{aligned}
& d_{i}=d_{0}\left(a_{i}^{+}+a_{i}\right) \quad d_{0}=\sqrt{\frac{\hbar}{2 m \omega}} \quad H^{\prime}=\mp 2 K \frac{e^{2}}{R^{3}} d_{0}^{2}\left(a_{1}^{+}+a_{1}\right)\left(a_{2}^{+}+a_{2}\right) \\
& \Delta E_{00}^{(1)}=\langle 00| H^{\prime}|00\rangle=0 \quad \text { since the } a^{+} s \text { and } a^{\prime} s \text { only connect } \\
& \quad \text { states with } \Delta n_{i}= \pm 1 . \\
& \Delta E_{\infty}^{(2)}=-\sum_{m \neq 0} \sum_{k \neq 0} \frac{\left.\left|\langle m k| H^{\prime}\right| 00\right\rangle\left.\right|^{2}}{E_{m k}^{0}-E_{\infty}^{0}}=-\left(\frac{2 K e^{2} d_{0}^{2}}{R^{3}}\right)^{2} \sum_{m} \sum_{k} \frac{\left.\left|\langle m k|\left(a_{1}^{+}+a_{1}\right)\left(a_{2}^{+}+a_{2}\right)\right| 00\right\rangle\left.\right|^{2}}{\hbar \omega(m+k-1)} \\
&=-\left(\frac{2 k e^{2} \hbar}{2 m \omega R^{3}}\right)^{2} \frac{1}{\hbar \omega}\left[\frac{|\langle\|| 1|\rangle\left.\right|^{2}}{(1+1-1)}\right]=-\frac{K^{2} e^{4} \hbar}{m^{2} \omega^{3} R^{6}}
\end{aligned}
$$

(No need for degenerate perturbation theory in this case.)

3. Quantum Mechanics (Fall 2004)

A positron has the same mass m as the electron, but the opposite charge. Consider a set of states containing one electron and one positron. A complete set of these states can be labeled $\left|\mathbf{r}_{+}, \mathbf{r}_{-}\right\rangle$, where \mathbf{r}_{+}and \mathbf{r}_{-}are the positions of the positron and electron, respectively. Normalize these states so that

$$
\left\langle\mathbf{r}_{+}, \mathbf{r}_{-} \mid \mathbf{r}_{+}^{\prime}, \mathbf{r}_{-}^{\prime}\right\rangle=\delta_{3}\left(\mathbf{r}_{+}^{\prime}-\mathbf{r}_{+}\right) \delta_{3}\left(\mathbf{r}_{-}^{\prime}-\mathbf{r}_{-}\right)
$$

Then if the system is in any state $|\psi\rangle$, the wave function is

$$
\psi\left(\mathbf{r}_{+}, \mathbf{r}_{-}\right)=\left\langle\mathbf{r}_{+}, \mathbf{r}_{-} \mid \psi\right\rangle
$$

In this problem ignore spin.
(a) In terms of $\psi\left(\mathbf{r}_{+}, \mathbf{r}_{-}\right)$, what is the probability that at least one of the two particles is farther than a distance b from the origin?
(b) Write down the Hamiltonian for this electron-positron system, including the electrostatic (Coulomb) interactins between the two particles.
(c) Let $\mathbf{r}=\mathbf{r}_{+}-\mathbf{r}_{-}$and $\mathbf{R}=\frac{1}{2}\left(\mathbf{r}_{+}+\mathbf{r}_{-}\right)$. Write the Hamiltonian in terms of the new coordinates and their canonically conjugate momenta \mathbf{p} and \mathbf{P}.
(d) The bound electron-positron system is called positronium. For states with zero total momentum, write a formula for the possible negative values of the energy ${ }^{1}$. What is the approximate numerical value, in electron volts, of the ground state energy?
(e) Define the charge conjugation operator C on this system by

$$
C\left|\mathbf{r}_{+}, \mathbf{r}_{-}\right\rangle=\left|\mathbf{r}_{-}, \mathbf{r}_{+}\right\rangle
$$

Show that C commutes with the Hamiltonian. What is the eigenvalue of C on the state of lowest energy?
a) At least one particle farther than $r=b$ \Rightarrow Not (both particles closer than $r=b) \quad V_{b} \equiv$ sphere, radius b, at origin

$$
P=1-\int_{V_{L}} \int_{V_{b}}\left|\psi\left(\vec{r}_{+}, \vec{r}_{-}\right)\right|^{2} d v_{1} d v_{2}=1-\iint_{\text {all angles }} \int_{0}^{b} \int_{0}^{b}\left|\psi\left(\vec{r}_{+}, \vec{r}_{-}\right)\right|^{2} r_{+}^{2} d r_{+} r_{-}^{2} d r_{-} d \Omega_{+} d \Omega_{-}
$$

b) $H=\frac{\vec{p}_{+}^{2}}{2 m}+\frac{\vec{p}_{-}^{2}}{2 m}-k \frac{e^{2}}{\left|\vec{r}_{+}-\vec{r}_{-}\right|}$
c) $H=\frac{\vec{p}^{2}}{2 M}+\frac{\vec{p}^{2}}{2 \mu}-k \frac{e^{2}}{r} \quad M=2 m, \quad \mu=\frac{1}{2} m$
d) $E_{n}=-\frac{\mu K^{2} e^{4}}{2 \hbar^{2} n^{2}}=-\frac{m K^{2} e^{4}}{4 \hbar^{2}} \frac{1}{n^{2}} \approx-\frac{1}{2}(13.6 \mathrm{eV}) \frac{1}{n^{2}} \quad E_{1} \approx(6.8 \mathrm{eV})$
e) Since $\hat{C}^{2}=\hat{1}, \quad \hat{C} \hat{H} \hat{C}=\hat{H} \Leftrightarrow[\hat{c}, \hat{H}]=\hat{\varnothing}$

$$
\begin{aligned}
& \hat{c} \hat{\vec{r}} \hat{c}\left|\vec{r}_{+}, \vec{r}_{-}\right\rangle=\hat{c} \hat{\vec{r}}\left|\vec{r}_{-}, \vec{r}_{+}\right\rangle=\hat{c}\left(\hat{r}_{+}-\hat{\vec{r}}_{-}\right)\left|\vec{r}_{-}, \vec{r}_{+}\right\rangle=\hat{C}\left(\vec{r}_{-}-\vec{r}_{+}\right)\left|\vec{r}_{-}, \vec{r}_{+}\right\rangle \\
&=\left(\vec{r}_{-}-\vec{r}_{+}\right) \hat{c}\left|\vec{r}_{-}, \vec{r}_{+}\right\rangle=-\left(\vec{r}_{+}-\vec{r}_{-}\right)\left|\vec{r}_{+}, \vec{r}_{-}\right\rangle=-\vec{r}^{\prime}\left|\vec{r}_{+}, \vec{r}_{-}\right\rangle=-\overrightarrow{\vec{r}}\left|\vec{r}_{+}, \vec{r}\right\rangle \\
& \hat{c} \hat{\vec{r}} \hat{c}=-\hat{\vec{r}} \text { for a complete basis } \Rightarrow \hat{c} \hat{\vec{r}} \hat{C}=-\hat{\vec{r}} \quad \text { (for alt state kets) }
\end{aligned}
$$

[^1]3. Quantum Mechanics (Fall 2004)
e) (continued)
\[

$$
\begin{aligned}
& \hat{C} \hat{\vec{p}} \hat{C}\left|\vec{r}_{+}, \vec{r}_{-}\right\rangle=\hat{C}\left(\hat{\vec{p}}_{+}-\hat{\vec{p}}_{-}\right)\left|\vec{r}_{-}, \vec{r}_{+}\right\rangle=\hat{C}(-i \hbar)\left(\vec{\nabla}_{-}-\vec{\nabla}_{+}\right)\left|\vec{r}_{-}, \vec{r}_{+}\right\rangle \\
&=(-i \hbar)\left(\vec{\nabla}_{-}-\vec{\nabla}_{+}\right) \hat{C}\left|\vec{r}_{-}, \vec{r}_{+}\right\rangle=-(-i \hbar)\left(\vec{\nabla}_{+}-\vec{\nabla}_{-}\right)\left|\vec{r}_{+}, \vec{r}_{-}\right\rangle \\
&=-\left(\hat{\vec{p}}_{+}-\hat{\vec{p}}_{-}\right)\left|\vec{r}_{+}-\vec{r}_{-}\right\rangle=-\hat{\vec{p}}\left|\vec{r}_{+}, \vec{r}_{-}\right\rangle \quad \Rightarrow \hat{C} \hat{\vec{p}} \hat{C}=-\hat{\vec{p}} \\
& \hat{c} \hat{p} \hat{C}=\hat{C} \frac{1}{2}\left(\hat{p}_{+}+\hat{p}_{-}\right) \hat{c}=\frac{1}{2}\left(\hat{\vec{p}}_{-}+\hat{\vec{p}}_{+}\right)=\hat{\vec{p}} \quad \Rightarrow \hat{c} \hat{\vec{p}} \hat{c}=\hat{\vec{p}} \\
& \Rightarrow \quad \hat{C} \hat{H} \hat{C}=\hat{c}\left[\frac{\hat{\vec{p}}^{2}}{2 M}+\frac{\hat{p}^{2}}{2 \mu}-\frac{K e^{2}}{|\vec{r}|}\right] \hat{C}=\left[\frac{(\hat{\vec{p}})^{2}}{2 M}+\frac{(-\hat{p})^{2}}{2 \mu}-\frac{K e^{2}}{|-\hat{\vec{r}}|}\right] \\
&=\left[\frac{\hat{\vec{p}}^{2}}{2 M}+\frac{\hat{p}^{2}}{2 \mu}-\frac{K e^{2}}{|\hat{\vec{r}}|}\right]=\hat{H} \\
& \Rightarrow \quad[\hat{C}, \hat{H}]=\hat{\varnothing}
\end{aligned}
$$
\]

Since the lowest energy eigenstate is spherically symmetric with respect to \vec{r} and \hat{C} acts as the spatial parity operator with respect to \vec{r}, the lowest energy eigenstate is even in \vec{r} and is an eigenstate of \hat{c} with eigenvalue +1 .
5. Quantum Mechanics (Fall 2004)

The Hamiltonian for a one-dimensional harmonic oscillator is

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2}
$$

Let $\left|\psi_{n}\right\rangle, n=0,1,2, \ldots$, be the usual energy eigenstates.
(a) Suppose the system is in a state $|\phi\rangle$ that is some linear combination of the two lowest states only:

$$
|\phi\rangle=c_{0}\left|\psi_{0}\right\rangle+c_{1}\left|\psi_{1}\right\rangle
$$

and suppose it is known that the expectation value of the energy is $\hbar \omega$. What are $\left|c_{0}\right|$ and $\left|c_{1}\right|$?
(b) Choose c_{0} to be real and positive, but let c_{1} have any phase: $c_{1}=\left|c_{1}\right| e^{i \theta_{1}}$. Suppose further that not only is the expectation value of H known to be $\hbar \omega$, but the expectation value of x is also known:

$$
\langle\phi| x|\phi\rangle=\frac{1}{2} \sqrt{\frac{\hbar}{m \omega}}=\frac{1}{\sqrt{2}} x_{0} \quad x_{0}=\sqrt{\frac{\hbar}{2 m \omega}}
$$

What is θ_{1} ?
(c) Now suppose the system is in the state $|\phi\rangle$ described above at time $t=0$. That is, $|\psi(0)\rangle=|\phi\rangle$. What is $|\psi(t)\rangle$ at a later time t ? Calculate the expectation value of x as a function of t. With what angular frequency does it oscillate?
a)

$$
\begin{aligned}
& \langle\phi| H|\phi\rangle=\left|c_{0}\right|^{2}\left\langle\psi_{0}\right| H\left|\psi_{0}\right\rangle+\left|c_{1}\right|^{2}\left\langle\psi_{1}\right| H\left|\psi_{1}\right\rangle=\hbar \omega\left[\left|c_{0}\right|^{2} \frac{1}{2}+\left|c_{1}\right|^{2}\left(1+\frac{1}{2}\right)\right]=\hbar \omega \\
& \Rightarrow \quad\left|c_{0}\right|^{2}+3\left|c_{1}\right|^{2}=2 \quad \text { and } \quad\langle\phi \mid \phi\rangle=\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1 \\
& \quad\left(\begin{array}{lll}
1 & 3 & 2 \\
1 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
-2 & 0 & -1 \\
0 & -2 & -1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & \frac{1}{2} \\
0 & 1 & \frac{1}{2}
\end{array}\right) \Rightarrow\left|c_{0}\right|=\left|c_{1}\right|=\frac{1}{\sqrt{2}}
\end{aligned}
$$

b) Let $c_{0}=\frac{1}{\sqrt{2}} \quad c_{1}=\frac{1}{\sqrt{2}} e^{i \theta}$

$$
\begin{aligned}
\langle\phi| x|\phi\rangle & =x_{0}\langle\phi|\left(a^{+}+a\right)|\phi\rangle=x_{0}\left(c_{0}^{*}\left\langle\psi_{0}\right|+c_{1}^{*}\left\langle\psi_{1}\right|\right)\left(c_{0}\left|\psi_{1}\right\rangle+c_{1} \sqrt{2}\left|\psi_{2}\right\rangle+c_{1}\left|\psi_{0}\right\rangle\right) \\
& =x_{0}\left(c_{0}^{*} c_{1}+c_{1}^{*} c_{0}\right)=x_{0} c_{0}\left(c_{1}+c_{1}^{*}\right)=x_{0} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left(e^{i \theta}+e^{-i \theta}\right) \\
& =x_{0} \cos \theta=\frac{1}{\sqrt{2}} x_{0} \Rightarrow \cos \theta=\frac{1}{\sqrt{2}} \\
\Rightarrow \theta_{1} & = \pm \frac{\pi}{4}
\end{aligned}
$$

c) $|\psi(t)\rangle=e^{-i H t / \hbar}|\phi\rangle=c_{0} e^{-i \omega t / 2}\left|\psi_{0}\right\rangle+c_{1} e^{-i 3 \omega t / 2}\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(e^{-i \omega_{0} t}\left|\psi_{0}\right\rangle+e^{-i\left(3 \omega_{0} t \mp \frac{\pi}{4}\right)}\left|\psi_{1}\right\rangle\right)$ where $\omega_{0}=\frac{\omega}{2}$

$$
\begin{aligned}
\text { Where } \omega_{0} & =\frac{\omega}{2} \\
\langle\psi(t)| x|\psi(t)\rangle & =x_{0}\langle\psi(t)|\left(a^{+}+a\right)|\psi(t)\rangle=x_{0} \frac{1}{2}\left(e^{i \omega_{0} t} e^{i\left(3 \omega_{0} t \mp \frac{\pi}{4}\right)} 0\right)\left(\begin{array}{l}
e^{-i\left(3 \omega_{0} t \mp \frac{\pi}{4}\right)} \\
e^{-i \omega_{0} t} \\
\sqrt{2} e^{-i\left(3 \omega_{0} t \mp \frac{\pi}{4}\right)}
\end{array}\right) \\
& =\frac{1}{2} x_{0}\left[e^{-i\left(2 \omega_{0} t \mp \frac{\pi}{4}\right)}+e^{i\left(2 \omega_{0} t \mp \frac{\pi}{4}\right)}\right] \\
& =x_{0} \cos \left[\omega t \mp \frac{\pi}{4}\right]=\sqrt{\frac{\hbar}{2 m \omega}} \cos \left(\omega t \mp \frac{\pi}{4}\right) \quad \text { frequency } \omega
\end{aligned}
$$

2. Quantum Mechanics (Spring 2006)

The Hamiltonian for a one-dimensional harmonic oscillator is

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2}
$$

Let $\left|\psi_{n}\right\rangle, n=0,1,2, \ldots$, be the usual energy eigenstates.
(a) Suppose the system is in a state $|\phi\rangle$ that is some linear combination of the two lowest states only:

$$
|\phi\rangle=c_{0}\left|\psi_{0}\right\rangle+c_{1}\left|\psi_{1}\right\rangle
$$

and suppose it is known that the expectation value of the energy is $\hbar \omega$. What are $\left|c_{0}\right|$ and $\left|c_{1}\right|$?
(b) Choose c_{0} to be real and positive, but let c_{1} have any phase: $c_{1}=\left|c_{1}\right| e^{i \theta_{1}}$. Suppose further that not only is the expectation value of H known to be $\hbar \omega$, but the expectation value of x is also known:

$$
\langle\phi| x|\phi\rangle=\frac{1}{2} \sqrt{\frac{\hbar}{m \omega}}
$$

What is θ_{1} ?
(c) Now suppose the system is in the state $|\phi\rangle$ described above at time $t=0$. That is, $|\psi(0)\rangle=|\phi\rangle$. What is $|\psi(t)\rangle$ at a later time t ? Calculate the expectation value of x as a function of t. With what angular frequency does it oscillate?
a. For the simple harmonic oscillator, $H\left|\psi_{n}\right\rangle=\left(n+\frac{1}{2}\right) \hbar \omega$

$$
\begin{aligned}
\hbar \omega & =\langle\phi| H|\phi\rangle=\left(\left\langle\psi_{0}\right| c_{0}^{*}+\left\langle\psi_{1}\right| c_{1}^{*}\right) H\left(c_{0}\left|\psi_{0}\right\rangle+c_{1}\left|\psi_{1}\right\rangle\right) \\
& =\left|c_{0}\right|^{2}\left\langle\psi_{0}\right| H\left|\psi_{0}\right\rangle+\left|c_{1}\right|^{2}\left\langle\psi_{1}\right| H\left|\psi_{1}\right\rangle \quad \text { by orthogonality } \\
& =\left|c_{0}\right|^{2}\left(\frac{1}{2} \hbar \omega\right)+\left|c_{1}\right|^{2}\left(\frac{3}{2} \hbar \omega\right) \\
\Rightarrow 1 & =\frac{1}{2}\left|c_{0}\right|^{2}+\frac{3}{2}\left|c_{1}\right|^{2}
\end{aligned}
$$

Normalization of $|\phi\rangle$ implies $\langle\phi \mid \phi\rangle=1 \Rightarrow\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1$

$$
\Rightarrow 1=\frac{1}{2}\left|c_{0}\right|^{2}+\frac{3}{2}\left(1-\left|c_{0}\right|^{2}\right)=\frac{3}{2}-\left|c_{0}\right|^{2}
$$

$$
\Rightarrow \quad\left|c_{0}\right|^{2}=\frac{1}{2} \quad \text { and }\left|c_{1}\right|^{2}=\frac{1}{2}
$$

$$
\text { Therefore }\left|c_{0}\right|^{2}=\frac{1}{\sqrt{2}} \text { and }\left|c_{1}\right|^{2}=\frac{1}{\sqrt{2}}
$$

b. Recall $x=\sqrt{\frac{\hbar}{2 m w}}\left(a+a^{+}\right)$

$$
\frac{1}{2} \sqrt{\frac{\hbar}{m w}}=\langle\phi| x|\phi\rangle=\sqrt{\frac{\hbar}{2 m w}}\left[\left\langle\psi_{0}\right| c_{0}^{*} c_{1} a\left|\psi_{1}\right\rangle+\left\langle\psi_{1}\right| c_{1}^{*} c_{0} a^{+}\left|\psi_{0}\right\rangle\right]
$$

$$
=\sqrt{\frac{\hbar}{2 m w}}\left[c_{0}{ }^{*} c_{1}+c_{1}{ }^{*} c_{0}\right]
$$

$$
=\frac{1}{\sqrt{2}} \sqrt{\frac{\hbar}{2 m w}}\left[C_{1}+C_{1}^{*}\right] \text { since } c_{0} \text { real and pos } \Rightarrow C_{0}=\frac{1}{\sqrt{2}}
$$

$$
\Rightarrow \quad 1=C_{1}+C_{1}^{*}=\frac{1}{\sqrt{2}} e^{i \theta_{1}}+\frac{1}{\sqrt{2}} e^{-i \theta_{1}}=\frac{1}{\sqrt{2}} 2 \cos \left(\theta_{1}\right)
$$

$$
\Rightarrow \cos \left(\theta_{1}\right)=\frac{\sqrt{2}}{2} \Rightarrow \theta_{1}=\pi / 4
$$

C. $|\psi(t)\rangle=e^{-i H+/ \hbar}|\psi(0)\rangle=\frac{1}{\sqrt{2}} e^{-i \omega t / 2}\left|\psi_{0}\right\rangle+\frac{1}{\sqrt{2}} e^{-3 i \omega t / 2+i \pi / 4}\left|\psi_{1}\right\rangle$
$\langle\psi(t)| x|\psi(t)\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left[\frac{1}{2} e^{-i \omega t+i \pi / 4}+\frac{1}{2} e^{i \omega t-1 \pi / 4}\right]=\sqrt{\frac{\hbar}{2 m \omega}} \cos \left(\omega t-\frac{\pi}{4}\right)$ The angular frequency of oscillation is ω.
8. Electricity and Magnetism (Fall 2004)

Consider a sphere of radius a with uniform magnetization \mathbf{M}, pointing in the z-direction. What are the magnetic induction \mathbf{B} and magnetic field \mathbf{H} inside the sphere?

$$
\begin{aligned}
& \vec{B}=\mu_{0}(\vec{H}+\vec{M}) \\
& \vec{\nabla} \times \vec{H}-\partial t \vec{D}^{\overrightarrow{0}}=\vec{J}^{f}=\overrightarrow{0} \quad \Rightarrow \quad \vec{H}=-\vec{\nabla} \Phi_{m} \\
& \vec{\nabla} \cdot \vec{B}=0 \Rightarrow \vec{\nabla} \cdot \vec{H}=-\vec{\nabla} \cdot \vec{M}=\rho_{m} \\
& \quad \Rightarrow \nabla^{2} \Phi_{m}=-\rho_{m}=\vec{\nabla} \cdot \vec{M} \quad \text { and } \quad \Sigma_{m}=-\Delta M \cdot \hat{r}=M \cos \theta
\end{aligned}
$$

"surface magnetic charge"

$$
\Rightarrow \Phi_{m}=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\rho_{m} d v^{\prime}}{R}
$$

where $\rho_{m}=\rho_{m \text {,interior }}+\Sigma_{m} \delta(r-a)$

$$
\text { and } \rho_{m, \text { interior }}=-\vec{\nabla} \cdot \vec{M}_{\text {interior }}=0
$$

since \vec{M} is constant in the interior

$$
\begin{aligned}
& =\frac{1}{4 \pi} \oint_{s} \frac{\sum_{m} a^{2} d \Omega^{\prime}}{R}=\frac{M a^{2}}{4 \pi} \oint_{s} \frac{\cos \theta^{\prime} d \Omega^{\prime}}{R} \quad \text { where } Y_{10}\left(\theta^{\prime}, \phi^{\prime}\right)=C \cos \theta^{\prime} \\
& =\frac{M a^{2}}{4 \pi} \oint_{s} d_{\Omega^{\prime}}\left[\frac{1}{c} Y_{10}\left(\theta^{\prime}, \phi^{\prime}\right)\right] \sum_{l m} \frac{4 \pi}{2 l+1} \frac{r_{c}^{l}}{r_{>}^{l+1}} Y_{l m}(\theta, \phi) Y_{l m}^{*}\left(\theta^{\prime}, \phi \phi^{\prime}\right) \\
& =\frac{M a^{2}}{4 \pi} \frac{1}{C} \sum_{l m} \frac{4 \pi}{2 l+1} \frac{r^{l}}{a^{l+1}} Y_{l m}(\theta, \phi) \delta_{l l} \delta_{o m} \\
& =\frac{M a^{l}}{4 \pi} \frac{4 \pi}{2+1} \frac{r^{\prime}}{a^{1+1}}\left(\frac{1}{c} Y_{10}(\theta, \phi)\right)=\frac{1}{3} M r \cos \theta=\frac{1}{3} M z \\
\vec{H} & =-\vec{\nabla} \Phi_{m}=-\partial_{z} \Phi_{m}(z) \hat{z}=-\frac{1}{3} M \hat{z}=-\frac{1}{3} \vec{M} \\
\vec{B} & =\mu_{0}(\vec{H}+\vec{M})=\mu_{0}\left(-\frac{1}{3}+1\right) \vec{M}=\frac{2}{3} \mu_{0} \vec{M}
\end{aligned}
$$

9. Electricity and Magnetism (Fall 2004)

A wire carrying current I is connected to a circular capacitor of capacitance C, as depicted in the figure. What is the magnetic field outside the wire, far from the capacitor (as a function of the distance r from the wire)? Using Maxwell's equations, explain why there is a magnetic field outside the capacitor. What is this magnetic field?

Far from wire: (the capacitor
 is negligible)

$$
\begin{aligned}
& \vec{\nabla} \times \vec{B}-\frac{1}{c^{2}} \partial \not \hat{L}^{a^{0}}=\mu_{0} \vec{J} \\
& \Rightarrow \oint_{p} \vec{B} \cdot d \vec{l}=\int_{s} \mu_{0} \vec{J} \cdot d \vec{a}=\mu_{0} I=B_{\phi} 2 \pi s \text { by cylindrical symmetry } \\
& \Rightarrow \vec{B}=\frac{\mu_{0} I}{2 \pi s} \hat{\phi} \quad \text { or } \frac{\mu_{0} I}{2 \pi r} \hat{\phi}
\end{aligned}
$$

Field outside capacitor:

$$
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\frac{1}{c^{2}} \partial_{t} \vec{E} \Rightarrow \text { A changing electric field can also be }
$$ seen as a source for the magnetic field. There is a changing electric field in the capacitor.

To solve for the field outside the capacitor, one may solve for the changing electric field in the capacitor or note that the surface of integration S may be manipulated to avoid the fields in the capacitor:

$$
\begin{aligned}
& \oint_{p} \vec{B} \cdot d \vec{l}=\mu_{0} I_{e n c}+\frac{1}{c^{2}} \partial_{t} \int_{S} \vec{E} \cdot d \vec{a}=\vec{a} \\
& \Rightarrow \vec{B}=\frac{\mu_{0} I}{2 \pi r} \hat{\phi}
\end{aligned}
$$

(These issues are simple when one assumes no fringing effects.)
10. Electricity and Magnetism (Fall 2004)

The upper half-space is filled with a material of permittivity ϵ_{1}, while the lower half space is filled with a different material with permittivity ϵ_{2}. Their interface is located at the $z=0$ plane. A point charge q is located at $\mathbf{r}_{q}=d \hat{\mathbf{z}}$ on the z-axis in medium 1. Find the electrostatic potential everywhere.
cf. Jackson pg 254 (I cannot yet explain why this works...) We use a method analogous to the method of images, using two different physical setups when solving for the potential in the...

… Uper spaces	
ε_{1}	... Lower space
$\frac{\varepsilon_{1} d-q}{\varepsilon_{1}-d-q^{\prime}}$	$\frac{\varepsilon_{2} d q^{\prime \prime}}{\varepsilon_{2}}$

$$
\Phi(\vec{r})=\Phi(s, z)=\left\{\begin{array}{l}
\Phi_{1}(s, z)=\frac{1}{4 \pi \varepsilon_{1}}\left[\frac{q}{R_{-}}+\frac{q^{\prime}}{R_{+}}\right] \\
\Phi_{2}(s, z)=\frac{1}{4 \pi \varepsilon_{2}} \frac{q^{\prime \prime}}{R_{-}}
\end{array}\right.
$$

where $R_{ \pm}=\sqrt{s^{2}+(z \pm d)^{2}}$
B.C. S: $(\Delta D)^{\perp}=\Sigma^{f}=0 \quad(\Delta \vec{E})^{\prime \prime}=\overrightarrow{0}$

$$
\begin{aligned}
\left.\Rightarrow \quad \varepsilon_{1} \stackrel{\rightharpoonup}{\nabla} \Phi_{1} \cdot \hat{z}\right|_{z=0}=\left.\left.\varepsilon_{2} \stackrel{\rightharpoonup}{\nabla} \Phi_{2} \cdot \hat{z}\right|_{z=0} \quad \Rightarrow \varepsilon_{1} \partial_{z} \Phi_{1}\right|_{z=0}=\left.\varepsilon_{2} \partial_{z} \Phi\right|_{z=0} \\
\left.\quad \Rightarrow \varepsilon_{1} \frac{1}{4 \pi \varepsilon_{1}}\left[q_{2}\left(\frac{1}{R_{-}}\right)+q^{\prime} \partial_{z}\left(\frac{1}{R_{+}}\right)\right]\right|_{z=0}=\left.\varepsilon_{2} \frac{1}{\varphi_{\pi} \varepsilon_{z}} q^{\prime \prime} \partial_{z}\left(\frac{1}{R_{-}}\right)\right|_{z=0}
\end{aligned}
$$

and $\left.\partial_{z}\left(\frac{1}{R_{ \pm}}\right)\right|_{z=0}=\left.\frac{1}{2}\left[s^{2}+(z \pm d)^{2}\right]^{-1 / 2} 2(z \pm d)\right|_{z=0}= \pm d\left[s^{2}+d^{2}\right]^{-1 / 2}$
so $\left.\quad \partial_{z}\left(\frac{1}{R_{+}}\right)\right|_{z=0}=-\left.\partial_{z}\left(\frac{1}{R_{-}}\right)\right|_{z=0}$

$$
\begin{equation*}
\Rightarrow q-q^{\prime}=q^{\prime \prime} \tag{1}
\end{equation*}
$$

and $\begin{aligned} & \left.\left(\vec{\nabla} \Phi_{1}\right)^{s \phi}\right|_{z=0}=\left.\left(\vec{\nabla} \Phi_{2}\right)^{s \phi}\right|_{z=0} \quad \Rightarrow \text { (no } \phi \text {-dependence) }\left.\quad \partial_{s} \Phi_{l}\right|_{z=0}=\left.\partial_{s} \Phi_{2}\right|_{z=0} \\ \Rightarrow & \left.\left.\frac{V}{4 \pi \varepsilon_{1}}\left[q \partial_{s}\left(\frac{1}{R}\right)+q^{\prime} \partial_{s}\left(\frac{1}{R}\right)\right]\right|_{z=0} \quad=\frac{1}{4 \prime} q^{\prime \prime}\left(\frac{1}{R}\right) \right\rvert\, z=0\end{aligned}$

Thus (1)+(2) $\Rightarrow 2 q^{\prime}=\left(1+\varepsilon_{1} / \varepsilon_{2}\right) q^{\prime \prime} \Rightarrow q^{\prime \prime}=\frac{2 \varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}} q$
and $\left.\partial_{s}\left(\frac{1}{R_{ \pm}}\right)\right|_{z=0}=\frac{1}{2}\left[s^{2}+(z \pm d)^{2}\right]^{-1 / 2} 2 s \quad$ so $\left.\quad \partial_{s}\left(\frac{1}{R_{+}}\right)\right|_{z=0}=\left.\partial_{s}\left(\frac{1}{R_{-}}\right)\right|_{z=0}$

$$
\begin{equation*}
\Rightarrow q+q^{\prime}=\frac{\varepsilon_{1}}{\varepsilon_{2}} q^{\prime \prime} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (2) }-\frac{\varepsilon_{1}}{\varepsilon_{2}}(1) \Rightarrow\left(1-\frac{\varepsilon_{1}}{\varepsilon_{2}}\right) q+\left(1+\frac{\varepsilon_{1}}{\varepsilon_{2}}\right) q^{\prime}=0 \\
& \Rightarrow \quad \Phi_{1}(s, z)=\frac{1}{4 \pi \varepsilon_{1}} \frac{q}{\sqrt{s^{2}+(z-d)^{2}}}+\frac{1}{4 \pi \varepsilon_{1}}\left(\frac{\varepsilon_{1}-\varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}}\right) \frac{q}{\sqrt{s^{2}+(z+d)^{2}}} \quad \Phi_{2}(s, z)=\frac{\varepsilon_{1}-\varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}} q
\end{aligned}
$$

11. Electricity and Magnetism (Fall 2004)

Using general principles, find the radiated power in vacuum of a non-relativistic point charge q whose position is $\mathbf{r}(t)$. You do not need to find dimensionless proportionality constants (i.e., only find the dependence on $q, \mathbf{r}(t)$, and universal constants).

Let $a \equiv|\ddot{r}|$
Assume the radiation electric field is proportional to a and to $\frac{1}{R}$ where R is the distance from the particle to the observation point:
$E_{a}=A \frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R} a$ where A is a constant of unknown dimensions

$$
\begin{aligned}
& {\left[\vec{E}_{a}\right]=\left[A\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R^{2}}\right) R a\right]=[\vec{E}][A R a] \Rightarrow[A]=\left[\frac{1}{R a}\right]=\frac{s^{2}}{m^{2}}=\left[\frac{1}{c^{2}}\right]} \\
& \Rightarrow E_{a} \propto \frac{1}{\varepsilon_{0}} \frac{q}{c^{2}} \frac{a}{R}
\end{aligned}
$$

$$
\left\langle\frac{d P}{d \Omega}\right\rangle=\frac{1}{2} \operatorname{Re}\left[\vec{S}_{a} \cdot R^{2} \hat{n}\right] \quad \vec{S}_{a}=\frac{1}{\mu_{0}} \vec{E}_{a} \times \vec{B}_{a}=\frac{1}{\mu_{0} c}\left|\vec{E}_{a}\right|^{2} \hat{k} \quad \text { since } E_{a}=c B_{a}
$$ and $\hat{E}_{a} \times \hat{B}_{a}=\hat{k}$, the radiation propagation direction

Far away, $\hat{k}=\hat{n}$, and Ω is dimensionless

$$
\begin{aligned}
\Rightarrow \quad P \propto & \left|\vec{S}_{a}\right| R^{2}=\frac{1}{\mu_{0} c} E_{a}^{2} R^{2}=\frac{1}{\mu_{0} c} \frac{q^{2} a^{2}}{\varepsilon_{0}^{2} c^{4} R^{2}} R^{2} \\
& =\frac{c^{2}}{c} \frac{q^{2} a^{2}}{\varepsilon_{0} c^{4}} \quad \text { since } \frac{1}{\mu_{0} \varepsilon_{0}}=c^{2} \\
& =\frac{1}{\varepsilon_{0}} \frac{q^{2}}{c^{3}} a^{2}
\end{aligned}
$$

(The Larmor formula proportionality. I)
12. Electricity and Magnetism (Fall 2004)
(a) Show that the annihilation of an electron and a positron can produce a single massive particle (say, X), but not a single photon.
(b) A positron beam of energy E can be made to annihilate against electrons by hitting electrons at rest in a fixed-target machine or by hitting electrons moving in the opposite direction with the same energy E in an electron-positron collider (colliding-beam accelerator). Show that the minimum energy $E_{\min }$ of a positron beam needed to produce neutral particles X of mass $M \gg m_{e}$ (where m_{e} is the electron rest mass) is much greater in a fixed-target machine than in a collider.
a) $\xrightarrow{e^{-}} e^{+}$In the center-of-mass frame the total momentum is zero, so the resultant particle must have zero γ. X momentum. Any massless particles, including photons, always have nonzero instantaneous momentum, so a single photon cannot be the product. (The total momentum of multiple massless particles could add to zero, though.) A massive particle such as X can have zero momentum and so can be a product of this annihilation.
b)

$$
\begin{gathered}
E_{f}+m c^{2}=\sqrt{p^{2} c^{2}+M^{2} c^{4}} \\
E_{f}^{2}=p^{2} c^{2}+m^{2} c^{4} \Rightarrow p^{2} c^{2}=E_{f}^{2}-m^{2} c^{4} \\
\left(E_{f}+m c^{2}\right)^{2}=p^{2} c^{2}+M^{2} c^{4}=\left(E_{f}^{2}-m^{2} c^{4}\right)+M^{2} c^{4} \\
\Rightarrow \quad E_{f}^{2}+2 E_{f} m c^{2}+m^{2} c^{4}=E_{f}^{2}-m^{2} c^{4}+M^{2} c^{4} \\
\Rightarrow E_{f}=\frac{1}{2 m c^{2}}\left[M^{2} c^{4}-2 m^{2} c^{4}\right]=\frac{1}{2}\left(\frac{M^{2}}{m}-2 m\right) c^{2}=\frac{1}{2}\left(\frac{M}{m}-2 \frac{m}{M}\right) M c^{2} \\
\left.\frac{E_{f}}{E_{c}}=\frac{M}{m}-2 \frac{m}{M}=\frac{M}{m}\left(1-2\left(\frac{m}{M}\right)^{2}\right) \approx \frac{M}{m} \gg \right\rvert\, \operatorname{since} M>m\left(\text { and } \frac{m}{M} \ll 1\right)
\end{gathered}
$$

13. Statistical Mechanics and Thermodynamics (Fall 2004)

Consider the Landau-Ginzburg free energy functional for a magnet with magnetization M :

$$
F(M)=\frac{1}{2} r M^{2}+u M^{4}-h M
$$

M takes values $M \in[-\infty, \infty]$. (The rotational symmetry of the magnet is broken by the crystal so that M is a scalar, not a vector.) $r=a\left(T-T_{c}\right), u$ is only weakly dependent on T, and h is the magnetic field. We will make the mean-field approximation that M is equal to the value which minimizes $F(M)$, and $F(M)$ is given by its minimum value.
(a) For $T>T_{c}$ and $h=0$, what value of M minimizes F ? For $T<T_{c}$ and $h=0$, what value of M minimizes F ?
(b) For $h=0$, the specific heat takes the asymptotic form $C \sim\left|T-T_{c}\right|^{-\alpha}$ as $T \rightarrow T_{c}$. What is α ?
(c) At $T=T_{c}, M \sim h^{\delta}$. What is δ ?
(units \Rightarrow specificfree energy) $\quad f(T)=F\left(T, M_{\text {min }}\right)$
($h=$ ext. B-field, not H-field)
a) $\quad h=0 \quad F(T, M)=\frac{1}{2} r M^{2}+u M^{4} \quad r=a\left(T-T_{c}\right)$

$$
F^{\prime}=r M+4 u M^{3}=M\left(r+4 u M^{2}\right)=0 \Rightarrow M=0, \pm \sqrt{-\frac{r}{4 u}} \equiv \pm A
$$

$$
F^{\prime \prime}=r+12 u M^{2}
$$

$$
F^{\prime \prime}(0)=r \quad F^{\prime \prime}(\pm A)=r+12 u\left(-\frac{r}{4 u}\right)=-2 r
$$

$\operatorname{minimize} F \Rightarrow F^{\prime}=0, F^{\prime \prime}>0$

Assuming $a>0$ and $u>0$ (which makes the most sense above)

$$
\begin{aligned}
& M=0 \text { minimizes } F(T, M) \text { for } T>T_{c} \text { and } \\
& M= \pm A= \pm \sqrt{-\frac{r}{4 u}}= \pm \frac{1}{2} \sqrt{\frac{a}{u}\left|T-T_{c}\right|} \text { minimizes } F \text { for } T<T_{c} .
\end{aligned}
$$

13. Statistical Mechanics and Thermodynamics (Fall 2004)
b) $h=0$

$$
\begin{aligned}
& C=\frac{d Q}{d T}=T \frac{d S}{d T} \\
& h=0 \Rightarrow d u=T d s \quad f=u-T s \quad d f=-s d T \Rightarrow-s=\frac{d f}{d T} \\
& u=u(s) \\
& f=f(T) \\
& c=T \frac{d s}{d T}=T \frac{d}{d T}\left(-\frac{d f}{d T}\right)=-T \frac{d^{2} f}{d T^{2}} \\
& f(T)=F\left(T, M_{\text {min }}\right)=\left\{\begin{array}{l}
0 \text { if } T>T_{c} \\
\frac{1}{2} a\left(T-T_{c}\right) \frac{1}{4} \frac{a}{u}\left|T-T_{c}\right|_{2}+u \frac{1}{16} \frac{a^{2}}{u^{2}}\left|T-T_{c}\right|^{2}
\end{array}\right. \\
& =-\frac{1}{8} \frac{a^{2}}{u}\left|T-T_{c}\right|^{2}+\frac{1}{16} \frac{a^{2}}{u}\left|T-T_{c}\right|^{2} \\
& =-\frac{1}{16} \frac{a^{2}}{u}\left|T-T_{c}\right|^{2} \quad \text { if } \quad T<T_{c} \\
& \Rightarrow \quad c=-T \frac{d^{2} f}{d T^{2}}=-T \frac{d}{d T}\left[-\frac{1}{8} \frac{a^{2}}{u}\left|T-T_{c}\right|\right]=-T\left[-\frac{1}{8} \frac{a^{2}}{u}\right]=\frac{1}{8} \frac{a^{2}}{u} T \\
& =\frac{1}{8} \frac{a^{2}}{u}\left(T-T_{c}\right)+\frac{1}{8} \frac{a^{2}}{u} T_{c}=-\frac{1}{8} \frac{a^{2}}{u}\left|T-T_{c}\right|+\frac{1}{8} \frac{a^{2}}{u} T_{c}
\end{aligned}
$$

for $T<T_{c} \quad\left(c=0\right.$ for $T \rightarrow T_{c}$ from above)
As $T \rightarrow T_{c}$ from below $\left|T-T_{c}\right| \ll 1$, so the term $\frac{1}{8} \frac{a^{2}}{u} T_{c}$ dominates.

$$
\Rightarrow \quad c \sim\left|T-T_{c}\right|^{\circ} \quad \Rightarrow \quad \alpha=0
$$

c)

$$
\begin{aligned}
& T=T_{c} \Rightarrow r=0 \quad F(T, M)=u M^{4}-h M \\
& F^{\prime}=4 u M^{3}-h=0 \quad \Rightarrow \quad M=\left(\frac{h}{4 u}\right)^{1 / 3} \\
& F^{\prime \prime}=12 u M^{2}>0 \\
& \therefore M \sim h^{1 / 3} \\
& \\
& \delta=\frac{1}{3} \quad
\end{aligned}
$$

1. Quantum Mechanics (Fall 2004)

Two spin-half particles are in a state with total spin zero. Let $\hat{\mathbf{n}}_{a}$ and $\hat{\mathbf{n}}_{b}$ be unit vectors in two arbitrary directions. Calculate the expectation value of the product of the spin of the first particle along $\hat{\mathbf{n}}_{a}$ and the spin of the second along $\hat{\mathbf{n}}_{b}$. That is, if \mathbf{s}_{a} and \mathbf{s}_{b} are the two spin operators, calculate

$$
\langle\psi| \mathbf{s}_{a} \cdot \hat{\mathbf{n}}_{a} \mathbf{s}_{b} \cdot \hat{\mathbf{n}}_{b}|\psi\rangle
$$

Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

This is Abers 4.11
Let the z-axis lie in the direction of \hat{n}_{a} and the x-axis in the direction of \hat{n}_{b}. Then

$$
\text { the direction of } \vec{n}_{b} \cdot \vec{S}_{a}=S_{a z} \text { and } \vec{s}_{b} \cdot \hat{n}_{b}=S_{b x} n_{b x}+S_{b z} \cos (\theta)
$$ $\hat{n}_{6} \hat{}$ Where θ is the angle between \hat{n}_{a} and \hat{n}_{b}.

The spin-singlet state is $|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|\frac{\hbar}{2},-\frac{\hbar}{2}\right\rangle-\left|-\frac{\hbar}{2}, \frac{\hbar}{2}\right\rangle\right)$

$$
\begin{aligned}
& \langle\psi| \vec{S}_{a} \cdot \hat{n}_{a} \stackrel{\rightharpoonup}{S}_{b} \cdot \hat{n}_{b}|\psi\rangle=\langle\psi| S_{a z}\left(S_{b x} n_{b x}+S_{b z} \cos (\theta)\right)|\psi\rangle \\
& =\langle\psi| S_{a z} S_{b x}|\psi\rangle n_{b x}+\langle\psi| S_{a z} S_{b z}|\psi\rangle \cos (\theta)
\end{aligned}
$$

$$
\langle\psi| S_{a z} S_{b x}|\psi\rangle=\frac{1}{2}\left[\left\langle\frac{\hbar}{2},-\frac{\hbar}{2}\right|-\left\langle-\frac{\hbar}{2}, \frac{\hbar}{2}\right|\right] S_{a z} S_{b x}\left[\left|\frac{\hbar}{2},-\frac{\hbar}{2}\right\rangle-\left|-\frac{\hbar}{2}, \frac{\hbar}{2}\right\rangle\right]
$$

$$
=\frac{1}{2} \frac{\hbar}{2}\left[\left\langle\frac{\hbar}{2},-\frac{\hbar}{2}\right|+\left\langle-\frac{\hbar}{2}, \frac{\hbar}{2}\right|\right] S_{b x}\left[\left|\frac{\hbar}{2},-\frac{\hbar}{2}\right\rangle-\left|-\frac{\hbar}{2}, \frac{\hbar}{2}\right\rangle\right]
$$

$$
=\frac{\hbar}{4}\left[\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}-\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}+\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}-\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}\right]
$$

$$
=\frac{\hbar}{4}[0-1+1-0]=0
$$

$$
\begin{aligned}
\langle\Psi| S_{a 2} S_{b z}|\Psi\rangle & =\frac{1}{2}\left[\left\langle\frac{\hbar}{2},-\frac{\hbar}{2}\right|-\left\langle-\frac{\hbar}{2}, \frac{\hbar}{2}\right|\right] S_{a z} S_{b z}\left[\left|\frac{\hbar}{2},-\frac{\hbar}{2}\right\rangle-\left|-\frac{\hbar}{2}, \frac{\hbar}{2}\right\rangle\right] \\
= & \frac{1}{2} \frac{\hbar}{2}\left[\left\langle\frac{\hbar}{2},-\frac{\hbar}{2}\right|-\left\langle-\frac{\hbar}{2}, \frac{\hbar}{2}\right|\right] S_{a z}\left[-\left|\frac{\hbar}{2},-\frac{\hbar}{2}\right\rangle-\left|-\frac{\hbar}{2}, \frac{\hbar}{2}\right\rangle\right] \\
= & \frac{\hbar^{2}}{8}\left[\left\langle\frac{\hbar}{2},-\frac{\hbar}{2}\right|-\left\langle-\frac{\hbar}{2}, \frac{\hbar}{2}\right|\right]\left[-\left|\frac{\hbar}{2},-\frac{\hbar}{2}\right\rangle+\left|-\frac{\hbar}{2}, \frac{\hbar}{2}\right\rangle\right] \\
= & \frac{\hbar^{2}}{8}\left[-\left\langle\frac{\hbar}{2}, \left.-\frac{\hbar}{2} \right\rvert\, \frac{\hbar}{2},-\frac{\hbar}{2}\right\rangle-\left\langle-\frac{\hbar}{2}, \frac{\hbar}{2} \left\lvert\,-\frac{\hbar}{2}\right., \frac{\hbar}{2}\right\rangle\right]=-\frac{\hbar^{2}}{4}
\end{aligned}
$$

Therefore $\langle\psi| \vec{s}_{a} \cdot \hat{n}_{a} \vec{s}_{b} \cdot \hat{n}_{b}|\psi\rangle=-\frac{\hbar^{2}}{4} \cos (\theta)$

3. Quantum Mechanics (Fall 2004)

A positron has the same mass m as the electron, but the opposite charge. Consider a set of states containing one electron and one positron. A complete set of these states can be labeled $\left|\mathbf{r}_{+}, \mathbf{r}_{-}\right\rangle$, where \mathbf{r}_{+}and \mathbf{r}_{-}are the positions of the positron and electron, respectively. Normalize these states so that

$$
\left\langle\mathbf{r}_{+}, \mathbf{r}_{-} \mid \mathbf{r}_{+}^{\prime}, \mathbf{r}_{-}^{\prime}\right\rangle=\delta_{3}\left(\mathbf{r}_{+}^{\prime}-\mathbf{r}_{+}\right) \delta_{3}\left(\mathbf{r}_{-}^{\prime}-\mathbf{r}_{-}\right)
$$

Then if the system is in any state $|\psi\rangle$, the wave function is

$$
\psi\left(\mathbf{r}_{+}, \mathbf{r}_{-}\right)=\left\langle\mathbf{r}_{+}, \mathbf{r}_{-} \mid \psi\right\rangle
$$

In this problem ignore spin.
(a) In terms of $\psi\left(\mathbf{r}_{+}, \mathbf{r}_{-}\right)$, what is the probability that at least one of the two particles is farther than a distance b from the origin?
(b) Write down the Hamiltonian for this electron-positron system, including the electrostatic (Coulomb) interactions between the two particles.
(c) Let $\mathbf{r}=\mathbf{r}_{+}-\mathbf{r}_{-}$and $\mathbf{R}=\frac{1}{2}\left(\mathbf{r}_{+}+\mathbf{r}_{-}\right)$. Write the Hamiltonian in terms of the new coordinates and their canonically conjugate momenta \mathbf{p} and \mathbf{P}.
(d) The bound electron-positron system is called positronium. For states with zero total momentum, write a formula for the possible negative values of the energy ${ }^{1}$. What is the approximate numerical value, in electron volts, of the ground state energy?
(e) Define the charge conjugation operator C on this system by

$$
C\left|\mathbf{r}_{+}, \mathbf{r}_{-}\right\rangle=\left|\mathbf{r}_{-}, \mathbf{r}_{+}\right\rangle
$$

Show that C commutes with the Hamiltonian. What is the eigenvalue of C on the state of lowest energy?
a.
$P=1-\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{b}\left[\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{b}\left|\psi\left(\vec{r}_{+}, \vec{r}_{-}\right)\right|^{2} r_{+}^{2} \sin \left(\theta_{+}\right) d r_{+} d \theta_{+} d \phi_{+}\right] r_{-}^{2} \sin \left(\theta_{-}\right) d r_{-} d \theta_{-} d \phi_{-}$
b. $H=\frac{p_{+}^{2}}{2 m}+\frac{P_{-}^{2}}{2 m}-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{\left|\vec{r}_{+}-\vec{r}\right|}$
c. $T=\frac{p_{+}^{2}}{2 m}+\frac{p_{-}^{2}}{2 m}=\frac{\left(m \dot{\vec{r}}_{+}\right)^{2}}{2 m}+\frac{(m \dot{\vec{r}})^{2}}{2 m}=\frac{1}{2} m \dot{\vec{r}}_{+}^{2}+\frac{1}{2} m \dot{\vec{r}}_{-}^{2}=\frac{1}{2} m\left(2 \dot{\vec{R}}^{2}+\frac{1}{2} \dot{\vec{r}}^{2}\right)$
$V=-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{|\vec{r}+\vec{r}|}=-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{|\vec{r}|}$
$\vec{P}=\frac{\partial L}{\partial \dot{\vec{r}}}=\frac{\partial}{\partial \dot{\vec{r}}}(T-V)=\frac{1}{2} m \dot{\vec{r}} \quad \quad \vec{P}=\frac{\partial L}{\partial \stackrel{\rightharpoonup}{R}}=2 m \dot{\vec{R}}$
$H=T+V=m\left(\frac{\vec{R}}{2 m}\right)^{2}+\frac{1}{4} m\left(\frac{2 \vec{p}}{m}\right)^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{|\vec{r}|}=\frac{p^{2}}{4 m}+\frac{p^{2}}{m_{e}^{2}}-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{|\vec{r}|}$
d. Total Momentum zero $\Rightarrow P=0 \Rightarrow H=\frac{p^{2}}{m}-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{|\vec{r}|}$

Which is Hydrogen atom with $m \rightarrow \frac{m}{2}$

$$
\Rightarrow E_{1}=-\left.\frac{m k^{2} e^{4}}{4 n^{2} \hbar^{2}}\right|_{n=1}=-\frac{m k^{2} e^{4}}{4 \hbar^{2}}=\frac{1}{2}(-13.6 \mathrm{eV})=-6.8 \mathrm{eV}
$$

e. $\left(\vec{r}^{\prime}\left|\vec{r}_{+}^{\prime}, \vec{r}_{-}^{\prime}\right\rangle=C\left(\vec{r}_{+}^{\prime}-\vec{r}_{-}^{\prime}\right)\left|\vec{r}_{+}^{\prime}, \vec{r}_{-}^{\prime}\right\rangle=\left(\vec{r}_{+}^{\prime}-\vec{r}_{-}^{\prime}\right)\left|\vec{r}^{\prime}, \vec{r}_{+}^{\prime}\right\rangle\right.$
$\vec{r} C\left|\vec{r}_{+}, \vec{r}_{-}^{\prime}\right\rangle=\vec{r}\left|\vec{r}_{-}^{\prime}, \vec{r}_{+}^{\prime}\right\rangle=\left(\vec{r}_{-}^{\prime}-\vec{r}_{+}^{\prime}\right)\left|\vec{r}_{-}, \vec{r}_{+}^{\prime}\right\rangle \Rightarrow C \vec{r}=-\vec{r} C$
True for all states since its true for an entire basis.
 So $C H=\left[\frac{p^{2}}{4 m}+\frac{(-p)^{2}}{m}-\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{|-\vec{r}|}\right] C=H C \Rightarrow[H, C]=0 \Rightarrow C$ eigenstotes are H eigenstates Like Hydrogen, lowest stye is spherically symmetric $\Rightarrow C|\psi(\vec{r})\rangle=|\psi(\vec{r})\rangle=|\psi(\vec{r})\rangle \Rightarrow \lambda=1$

4. Quantum Mechanics (Fall 2004)

Let H be the Hamiltonian for the hydrogen atom, including spin. $\hbar \mathbf{L}=\mathbf{r} \times \mathbf{p}$ and $\hbar \mathbf{s}$ are the orbital and spin angular momentum, respectively, and $\mathbf{J}=\mathbf{L}+\mathbf{s}$. Conventionally, the states are labeled $|n, l, j, m\rangle$ and they are eigenstates of $H, \mathbf{L}^{2}, \mathbf{J}^{2}$, and J_{z}.
(a) If the electron is in the state $|n, l, j, m\rangle$, what values will be measured for these four observables in terms of \hbar, c, the fine-structure constant α, and the electron mass m ?
(b) What are the restrictions on the possible values of n, l, j, and m ?
(c) Let $J_{ \pm}=J_{x} \pm i J_{y}$. What are Recall $J_{ \pm}|n \ell j m\rangle=\sqrt{j(j+1)-m(m \pm 1)}|n \ell j m+1\rangle$
(i) $\left\langle 3,1, \frac{3}{2}, \frac{3}{2}\right| J_{+}\left|3,1, \frac{3}{2},-\frac{1}{2}\right\rangle=$? $\sqrt{\frac{15}{4}+\frac{1}{4}}\left\langle 3,1, \frac{3}{2}, \left.\frac{3}{2} \right\rvert\, 3,1, \frac{3}{2}, \frac{1}{2}\right\rangle=0$ by orthogonality
(ii) $\left\langle 3,1, \frac{3}{2}, \frac{3}{2}\right| J_{+}\left|3,1, \frac{3}{2}, \frac{1}{2}\right\rangle=$? $\sqrt{\frac{15}{4}-\frac{3}{4}}\left\langle 3,1, \frac{3}{2}, \left.\frac{3}{2} \right\rvert\, 3,1, \frac{3}{2}, \frac{3}{2}\right\rangle=\sqrt{\frac{12}{4}}=\sqrt{3}$
(iii) $\left\langle 2,1, \frac{3}{2}, \frac{3}{2}\right| p_{z}\left|2,1, \frac{3}{2}, \frac{1}{2}\right\rangle=$? See below
(iv) $\left\langle 2,1, \frac{1}{2},-\frac{1}{2}\right| \mathbf{L}^{2}\left|2,1, \frac{1}{2},-\frac{1}{2}\right\rangle=$? $\quad \mid(1+1)=2$
(v) $\left\langle 3,2, \frac{3}{2},-\frac{1}{2}\right| \mathbf{J}^{2}\left|3,2, \frac{3}{2},-\frac{1}{2}\right\rangle=$? $\quad \frac{3}{2}\left(\frac{3}{2}+1\right)=\frac{15}{4}$
(vi) $\left\langle 3,1, \frac{3}{2}, \frac{3}{2}\right| J_{z}\left|3,1, \frac{3}{2}, \frac{1}{2}\right\rangle=$? $\quad \frac{1}{2}\left\langle 3,1, \frac{3}{2}, \left.\frac{3}{2} \right\rvert\, 3,1, \frac{3}{2}, \frac{1}{2}\right\rangle=0$ by orthogonality
(d) What is $\left\langle 1,0, \frac{1}{2}, \frac{1}{2}\right| p_{i} p_{j}\left|1,0, \frac{1}{2}, \frac{1}{2}\right\rangle=$?
(e) For given n, l, j, and m, what are the conditions on $n^{\prime}, l^{\prime}, j^{\prime}$, and m^{\prime} so that

$$
\left\langle n^{\prime}, l^{\prime}, j^{\prime}, m^{\prime}\right| \mathbf{s} \cdot \mathbf{r}|n, l, j, m\rangle \neq 0 ?
$$

a. $H|n \ell j m\rangle=\left(-\frac{\alpha^{2}}{2 n^{2}} m c^{2}\right)|n \ell j m\rangle \quad\langle 2 \mid n \ell j m\rangle=\ell(\ell+1)|n \ell j m\rangle$

$$
J^{2}|n \ell j m\rangle=j(j+1)|n \ell j m\rangle \quad J_{2}|n \ell j m\rangle=m|n \ell j m\rangle
$$

b. $n \in\{1,2,3, \ldots\} \quad l \in\{0,1,2, \ldots, n-1\} \quad j \in\left\{l-\frac{1}{2}, l+\frac{1}{2}\right\}$ $m \in\{-j, \ldots, 0, \ldots, j\}$
c. See above, (iii) $\left[L_{z}, p_{z}\right]=\left[x p_{y}-y p_{x}, p_{z}\right]=0$

$$
\Rightarrow\left\langle 2,1, \frac{3}{2}, \frac{3}{2}\right| L_{2} P_{2}-P_{2} L_{z}\left|2,1, \frac{3}{2}, \frac{1}{2}\right\rangle=0
$$

$$
\Rightarrow \quad\left(\frac{3}{2}-\frac{1}{2}\right)\left\langle 2,1, \frac{3}{2}, \frac{3}{2}\right| p_{2}\left|2,1, \frac{3}{2}, \frac{1}{2}\right\rangle=0
$$

$$
\Rightarrow \quad\left\langle 2,1, \frac{3}{2}, \frac{3}{2}\right| p_{2}\left|2,1, \frac{3}{2}, \frac{1}{2}\right\rangle=0
$$

d. If $i \neq j$, then $p_{i} p_{j}$ is a cartesian componet of a rank two tensor. which is always some linear combination of rank two spherical tensors, So by the wigner-Eckart theorem it is zero because $|j-2| \leqslant j \leqslant j+2$ is not satisfied by $j=j^{\prime}=\frac{1}{2}$.
If $;=j\left\langle p_{i}^{2}\right\rangle=\left\langle p_{x}^{2}\right\rangle=\left\langle p_{y}^{2}\right\rangle=\left\langle p_{z}^{2}\right\rangle$ by symmetry

$$
=\frac{1}{3}\left(\left\langle p_{x}^{2}\right\rangle+\left\langle p_{y}^{2}\right\rangle+\left\langle p_{z}^{2}\right\rangle=\frac{1}{3}\left\langle p^{2}\right\rangle=\frac{1}{3} 2 m\left\langle\frac{p^{2}}{2 m}\right\rangle=\frac{2 m}{3}\langle T\rangle\right.
$$

$=-\frac{2 m}{3}\langle E\rangle$ by the virial theorem
Therefore $\left\langle 1,0, \frac{3}{2}, \frac{1}{2}\right| p_{i} p_{j}\left|1,0, \frac{1}{2}, \frac{1}{2}\right\rangle=-\frac{2 m}{3} E_{1} \delta_{i j}$ where $E_{1}=-\frac{m k^{2} e^{4}}{2 \hbar^{2}}$
e. $\vec{s} \cdot \vec{r}$ is a scalar, so it is the $0^{\text {th }}$ spherical component of a rank 0 tensor $\Rightarrow l^{\prime}=l$ and $j^{\prime}=j$ and $m^{\prime}=m$, but n^{\prime} and n can be anything, according to the Wigner-Eckart theorem selection rules.

7. Statistical Mechanics and Thermodynamics (Fall 2004)

Some organic molecules have a triplet excited state at energy $k_{B} \Delta$ above a singlet ground state.
(a) Find an expression for the magnetic moment in a field B in terms of Δ, B, the temperature T, the Bohr magneton μ_{B}, and the gyromagnetic ratio g.
(b) Show that the susceptibility for $T \gg \Delta$ is given by $N\left(g \mu_{B}\right)^{2} / 2 k_{B} T$, where N is the total number of molecules in the system.
(c) With the help of a diagram of energy levels versus field and a rough sketch of entropy versus field, explain how this system might be cooled by adiabatic magnetization (not demagnetizaton).
a. $\vec{\mu}=g \mu_{B} \vec{s}$ where $\hbar \vec{s}$ is the spin angular momentum The singlet state has $|\vec{s}|=0$ and the triplet state has $|\vec{s}|=1$. But we want to find $\left\langle\mu_{z}\right\rangle$ where \hat{z} is the direction of the applied magnetic field. So $\mu_{z}=g \mu_{B} S_{z}$

$$
\left(\mu_{5}\right)_{2}=0 \quad\left(\mu_{T}^{1}\right)_{2}=g \mu_{B} \quad\left(\mu_{T}^{0}\right)_{2}=0 \quad\left(\mu_{T}^{-1}\right)_{2}=-g \mu_{B}
$$

The energy of a magnetic moment in a field is $U=-\vec{\mu} \cdot \vec{B}=-\mu_{2} B$

$$
\epsilon_{5}=0 \quad \epsilon_{T}^{-1}=K \Delta-g \mu_{B} B \quad \epsilon_{T}^{0}=K \Delta \quad \epsilon_{T}^{-1}=K \Delta+g \mu_{B} B
$$

$$
\left\langle\mu_{2}\right\rangle=\frac{\left(\mu_{s}\right)_{2} e^{-\beta \epsilon_{s}}+\left(\mu_{T}^{1}\right)_{2} e^{-\beta \epsilon_{T}^{1}}+\left(\mu_{T}^{0}\right) e^{-\beta \epsilon_{T}^{\theta}}+\left(\mu_{T}^{-1}\right) e^{-\beta \epsilon_{T}^{-1}}}{e^{-\beta \epsilon_{T}}+e^{-\beta \epsilon_{T}^{1}}+e^{-\beta \epsilon_{T}^{*}}+e^{-\beta \epsilon_{T}^{-1}}}
$$

$$
=g \mu_{B} \frac{e^{-\beta\left(k \Delta-g \mu_{B} B\right)}-e^{-\beta\left(K \Delta+g \mu_{B} B\right)}}{1+e^{-\beta\left(k \Delta-g \mu_{B} B\right)}+e^{-\Delta / T}+e^{-\beta\left(k \Delta+g \mu_{B} B\right)}}
$$

$$
M=N\left\langle\mu_{z}\right\rangle=N g \mu_{B} \frac{e^{\beta g \mu_{B} B}-e^{-\beta g \mu_{B} B}}{e^{\Delta / T}+e^{\beta g \mu_{B} B}+1+e^{-\beta g \mu_{B} B}}
$$

b. $T \gg \Delta \Rightarrow M \cong N g \mu_{B}\left(\frac{1+\beta g \mu_{B} B-1+\beta g \mu_{B} B}{1+1+1+1}\right)=\frac{N\left(g \mu_{B}\right)^{2}}{2 K T} B$

$$
M=x B \Rightarrow x=\frac{N\left(g \mu_{B}\right)^{2}}{2 k T}
$$

c.

8. Electricity and Magnetism (Fall 2004)

Consider a sphere of radius a with uniform magnetization \mathbf{M}, pointing in the z-direction. What are the magnetic induction \mathbf{B} and magnetic field \mathbf{H} inside the sphere?

See Jackson Page 198.
$\vec{\nabla} \times \vec{H}=\rho_{f}=0 \Rightarrow \vec{H}$ is curl free $\Rightarrow \vec{H}=-\vec{\nabla} \Phi_{m}$ for some scalar field Φ_{m} $\vec{\nabla} \cdot \vec{H}=-\vec{\nabla} \cdot \vec{\nabla} \Phi_{M}=-\nabla^{2} \Phi_{M}$ and $\vec{\nabla} \cdot \vec{H}=\vec{\nabla} \cdot\left(\frac{1}{\mu_{0}} \vec{B}-\vec{M}\right)=-\vec{\nabla} \cdot \vec{M} \Rightarrow \nabla^{2} \Phi_{M}=\vec{\nabla} \cdot \vec{M}$ We know the solution to poisson's equation $\nabla^{2} \Phi=-\frac{\rho}{\epsilon_{0}}$ is $\Phi=\frac{1}{4 \pi \epsilon_{0}} \int_{V} \frac{\rho}{|\vec{x}-\vec{x}|} d^{3} x^{\prime}$ where V is any volume that encloses all \vec{x} such that $\rho(\vec{x}) \neq 0$. Therefore $\Phi_{M}=-\frac{1}{4 \pi} \int_{V} \frac{\vec{\nabla}^{\prime} \cdot \vec{M}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime}$ and lets take V as all space. Let V_{0} be the interior of the sphere and let V_{0} ' be the complement of V_{0} (V_{0}^{\prime} is a closed set containg the boundary of the sphere).

$$
\Phi_{m}=-\frac{1}{4 \pi} \int_{v_{0}} \frac{\vec{\nabla} \cdot \vec{m}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime}-\frac{1}{4 \pi} \int_{v_{0}^{\prime}} \frac{\vec{\nabla}^{\prime} \cdot \vec{m}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime}
$$

The first term is zero because \vec{M} is constant in the interior.

$$
\Phi_{n}=-\frac{1}{4 \pi} \int_{v_{0}^{\prime}}\left[\vec{\nabla}^{\prime} \cdot\left(\frac{\vec{M}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|}\right)-\vec{M}\left(\vec{x}^{\prime}\right) \cdot \vec{\nabla}^{\prime}\left(\frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|}\right)\right] d^{3} x^{\prime}
$$

using the product rule $\vec{\nabla} \cdot(f \vec{A})=f(\vec{\nabla} \cdot \vec{A})+\vec{A} \cdot \vec{\nabla} f$. The second term has only an infinitesimal contribution to the result because \vec{M} is finite and is not nonzero over any finite subspace of V_{0} ',

$$
\begin{aligned}
\Phi_{M} & =-\frac{1}{4 \pi} \int_{v_{0}^{\prime}} \vec{\nabla}^{\prime} \cdot\left(\frac{\vec{M}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|}\right) d^{3} x^{\prime}=-\frac{1}{4 \pi} \int_{S} \frac{\vec{M}\left(\vec{x}^{\prime}\right) \cdot\left(-\hat{n}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d a^{\prime} \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{M \cos \left(\theta^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} a^{2} \sin (\theta) d \theta d \phi \\
& =-\frac{M a^{2}}{4 \pi} \int \frac{\cos (\theta)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d \Omega^{\prime}
\end{aligned}
$$

Now we use the expansion $\frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l^{l}}^{l} \frac{1}{\mid \vec{x}-\vec{x}^{\prime}+1} \frac{r_{l}^{l}}{r_{l}^{l+1}} Y_{l m}^{*}\left(\theta^{\prime} \phi^{\prime}\right) Y_{l m}(\theta, \phi)$

$$
\begin{aligned}
& \Phi_{m}=\frac{M a^{2}}{4 \pi} \int 4 \pi \sum_{\ell=0}^{\infty} \sum_{m=-e^{2 \ell+1}}^{\infty} \frac{1}{r_{>}{ }^{l+1}} Y_{l m}^{*}\left(\theta^{\prime} \phi^{\prime}\right) Y_{\ell m}(\theta, \phi) \cos \left(\theta^{\prime}\right) d \Omega^{\prime} \\
& =M_{a}^{2} \sum_{l=0}^{\infty} \sum_{m=-2}^{\infty} \frac{1}{2 \ell+1} \frac{r_{e}^{l}}{r_{s^{l+1}}} Y_{\ell m}(\theta, \phi) \int Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right)\left(\sqrt{\frac{4 \pi}{3}} Y_{1 d}\left(\theta^{\prime}, \phi\right)\right) d \Omega^{\prime}
\end{aligned}
$$

since $Y_{10}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos (\theta)$. Now $\int Y_{e^{\prime} m^{\prime}}^{*}(\theta, \phi) Y_{\ell m}(\theta, \phi) d \Omega=\delta_{\ell l^{\prime}} \delta_{m m}$.

$$
\begin{aligned}
\Phi_{M} & =M_{a}^{2} \sum_{l=0}^{\infty} \sum_{m=l}^{2} \frac{1}{2 \ell+1} \frac{r_{e}^{l}}{r_{i}^{l+1}} Y_{l m}(\theta, \phi) \sqrt{\frac{4 \pi}{3}} \delta_{l 1} \delta_{m 0} \\
& =M a^{2}\left(\frac{1}{3} \frac{r_{e}}{r_{>}^{2}}\right) Y_{10}(\theta, \phi) \sqrt{\frac{4 \pi}{3}}=\frac{1}{3} M_{a}^{2} \frac{r_{e}}{r^{2}} \cos (\theta)
\end{aligned}
$$

And r_{3}, r_{e} are the greater and lesser between r and a, so inside $r_{\text {eat }}$

$$
\Phi_{M}=\frac{1}{3} M a^{2} \frac{r}{a^{2}} \cos (\theta)=\frac{1}{3} M r \cos (\theta)=\frac{1}{3} M z
$$

Therefore $\vec{H}=-\vec{\nabla} \Phi_{M}=-\frac{1}{3} M \hat{z}=-\frac{1}{3} \vec{M}$

$$
\text { and } \vec{H}=\frac{1}{\mu_{0}} \vec{B}-\vec{M} \Rightarrow \vec{B}=\mu_{0}(\vec{H}+\vec{M})=\frac{2}{3} \mu_{0} \vec{M}
$$

9. Electricity and Magnetism (Fall 2004)

A wire carrying current I is connected to a circular capacitor of capacitance C, as depicted in the figure. What is the magnetic field outside the wire, far from the capacitor (as a function of the distance r from the wire)? Using Maxwell's equations, explain why there is a magnetic field outside the capacitor. What is this magnetic field?

Far from the capacitor it looks like a regular current carrying wire, so using Ampere's Law, $\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \in_{0} \frac{\partial \vec{E}}{\partial t}$

$$
\begin{aligned}
& \Rightarrow \int_{s}(\vec{\nabla} \times \vec{B}) \cdot d \vec{a}=\mu_{0} \int_{s} \vec{J} \cdot d \vec{a}+\mu_{0} \epsilon_{0} \int_{s} \frac{\partial \vec{E}}{\partial t} \cdot d \vec{a} \\
& \Rightarrow \int_{c} \vec{B} \cdot d \vec{l}=\mu_{0} I+\mu_{0} \epsilon_{0} \int_{s} \frac{\partial \vec{E}}{\partial t} \cdot d \vec{a} \quad \text { since } \vec{E}=0 \\
& \Rightarrow 2 \pi r B=\mu_{0} I \Rightarrow B=\frac{\mu_{0} I}{2 \pi r} \Rightarrow \vec{B}=\frac{\mu_{0} I}{2 \pi r} \hat{\phi}
\end{aligned}
$$

Outside the capacitor, We can get the field on C^{\prime} by integrating over a surface that balloons out around the plates to intersect the wire and we get the same answer. If we choose to use the minimal surface spanning C^{\prime}, then

$$
\begin{aligned}
\int_{c} \vec{B} \cdot d \vec{l} & =\mu_{0} I+\mu_{0} \epsilon_{0} \int_{s} \frac{\partial \vec{E}}{\partial t} \cdot d \vec{a} \quad \text { since } I=0 \\
2 \pi r B & =\mu_{0} \notin \ell_{0} \int_{s} \frac{\partial}{\partial t}\left(\frac{\sigma}{t_{0}} \hat{z}\right) \cdot d \vec{a} \\
2 \pi r B & =\mu_{0} \frac{\partial}{\partial t}\left(\frac{\theta}{A}\right) \int_{s} d_{a}=\mu_{0} I \\
\Rightarrow B & =\frac{\mu_{0} I}{2 \pi r} \Rightarrow \vec{B}=\frac{\mu_{0} I}{2 \pi r} \hat{\phi}
\end{aligned}
$$

The field has the same expression outside the capacitor because the changing electric field creates a displacement current.
10. Electricity and Magnetism (Fall 2004)

The upper half-space is filled with a material of permittivity ϵ_{1}, while the lower half space is filled with a different material with permittivity ϵ_{2}. Their interface is located at the $z=0$ plane. A point charge q is located at $\mathbf{r}_{q}=d \hat{\mathbf{z}}$ on the z-axis in medium 1. Find the electrostatic potential everywhere.

See Jackson Page 154
For this problem you have to know the trick that you can satisfy the Laplace./Poisson equation and the boundary conditions for the upper half space by replacing the ϵ_{2} medium with an ϵ, medium and a point charge in the image location, and for the lower half space by replacing the ϵ, medium with an ϵ_{2} medium and a point charge on top of q.

Note: This is not a direct consequence of the method of images. So $\Phi=\left\{\begin{array}{lll}\Phi_{1}=\frac{1}{4 \pi \epsilon_{1}}\left(\frac{q}{R_{1}}+\frac{q^{\prime}}{R_{2}}\right)^{\prime \prime} \quad z>0 \\ \Phi_{2}=\frac{1}{4 \pi \epsilon_{2}}\left(\frac{q^{\prime \prime}}{R_{1}}\right) & z<0 & \text { where } \quad R_{1}=\sqrt{r^{2}+(z-d)^{2}} \\ R_{2}=\sqrt{r^{2}+(z+d)^{2}}\end{array}\right.$ Subject to the boundary conditions $\vec{E}_{H}^{2}-\vec{E}_{11}^{\prime}=0, \vec{D}_{\perp}^{2}-\vec{D}_{\perp}^{\prime}=\sigma_{f}=0$ which we can express as $\lim _{z \rightarrow 0^{+}}\left\{\begin{array}{c}E_{x} \\ E_{y} \\ E_{1} E_{z}\end{array}\right\}^{\prime}=\lim _{z \rightarrow 0^{-}}\left\{\begin{array}{c}E_{x} \\ E_{y} \\ E_{z} E_{z}\end{array}\right\}$
To facilitate the calculation we can observe that

$$
\begin{aligned}
& \left.\frac{\partial}{\partial z}\left(\frac{1}{R_{1}}\right)\right|_{z=0}=-\left.\frac{\partial}{\partial z}\left(\frac{1}{R_{2}}\right)\right|_{z=0} \equiv A \\
& \left.\frac{\partial}{\partial r}\left(\frac{1}{R_{1}}\right)\right|_{z=0}=\left.\frac{\partial}{\partial r}\left(\frac{1}{R_{2}}\right)\right|_{z=0} \equiv B
\end{aligned}
$$

Now $\vec{E}_{11}^{\prime}=\vec{E}_{11}^{2} \Rightarrow-\left.\frac{\partial \Phi_{1}}{\partial r}\right|_{z=0}=-\left.\frac{\partial \Phi_{2}}{\partial r}\right|_{2=0} \Rightarrow \frac{-1}{4 \pi \epsilon}\left(q B+q^{\prime} B\right)=\frac{-1}{4 \pi \epsilon_{2}} q^{\prime \prime} B$

$$
\begin{aligned}
& \Rightarrow \frac{q+q^{\prime}}{\epsilon}= \\
& \left.\frac{p_{2}}{2}\right|_{2=0} \\
& q-q^{\prime}=q^{\prime \prime}
\end{aligned}
$$

Combining, $\frac{q+q^{\prime}}{\epsilon_{1}}=\frac{q-q^{\prime}}{\epsilon_{2}} \Rightarrow q^{\prime}\left(\frac{1}{\epsilon_{1}}+\frac{1}{\epsilon_{2}}\right)=q\left(\frac{1}{\epsilon_{2}}-\frac{1}{\epsilon_{1}}\right)$

$$
\Rightarrow q^{\prime}\left(\epsilon_{2}+\epsilon_{1}\right)^{\epsilon_{2}}=q\left(\epsilon_{1}-\epsilon_{2}\right) \Rightarrow q^{\prime}=\frac{\epsilon_{1}-\epsilon_{2}}{\epsilon_{1}+\epsilon_{2}} q
$$

and $q^{\prime \prime}=q-q^{\prime}=\left(1-\frac{\epsilon_{1}-\epsilon_{2}}{\epsilon_{1}+\epsilon_{2}}\right) q=\frac{2 \epsilon_{2}+\epsilon_{2}}{\epsilon_{1}+\epsilon_{2}} q$
Therefore $\Phi= \begin{cases}\frac{1}{4 \pi \epsilon_{1}}\left(\frac{9}{\sqrt{r^{2}+(z-d)^{2}}}+\left(\frac{\epsilon_{1}-\epsilon_{2}}{\epsilon_{1}+\epsilon_{2}}\right)^{2} \frac{q^{\prime} \epsilon_{1}+\epsilon_{2}}{\sqrt{r^{2}+(z+d)^{2}}}\right)^{9} z>0 \\ \frac{1}{4 \pi\left(\epsilon_{1}+\epsilon_{2}\right)} \frac{2 q}{\sqrt{r^{2}+(z-d)^{2}}} & z<0\end{cases}$
11. Electricity and Magnetism (Fall 2004)

Using general principles, find the radiated power in vacuum of a non-relativistic point charge q whose position is $\mathbf{r}(t)$. You do not need to find dimensionless proportionality constants (ie., only find the dependence on $q, \mathbf{r}(t)$, and universal constants).

We will use the general principle that the radiation field is an acceleration field that goes like $\frac{1}{r}$
$\Rightarrow \vec{E}_{a} \propto \frac{b}{4 \pi \epsilon_{0}} \frac{e}{r} a \quad$ where $a=|\dot{r}(t)|$ is the acceleration and b is a constant of unknown dimension.

$$
\begin{aligned}
& {[\vec{E}]=\left[\frac{1}{4 \pi \epsilon_{0}} \frac{e}{r^{2}}\right]=\left[\vec{E}_{a}\right] \Rightarrow\left[\frac{1}{4 \pi \epsilon_{0}} \frac{e}{r^{2}}\right]=\left[\frac{b}{4 \pi \epsilon_{0}} \frac{e}{r} a\right]} \\
& \Rightarrow[b]=\left[\frac{1}{r a}\right]=\frac{s^{2}}{m^{2}} \Rightarrow b \propto \frac{1}{c^{2}} \\
& \Rightarrow \vec{E}_{a} \propto \frac{e a}{\epsilon_{0} c^{2} r} \\
& \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}=\frac{1}{\mu_{0} c}\left|\vec{E}_{a}\right|^{2} \hat{K} \quad \operatorname{since} E=c B \text { and } \hat{E} \times \hat{B}=\hat{K} \text { and } \vec{E} \perp \vec{B} \\
& \Rightarrow \vec{S} \propto \frac{1}{\mu_{0} c} \frac{e^{2} a^{2}}{\epsilon_{0}^{2} c^{4} r^{2}} \hat{k}=\frac{\mu_{0}^{2} e_{0}^{2}}{\mu_{0} c} \frac{e^{2} a^{2}}{t_{0}^{2} r^{2}} \hat{k}=\frac{\mu_{0}}{c} \frac{e^{2} a^{2}}{r^{2}} \hat{k} \text { since } c^{2}=\frac{1}{\mu_{0} \epsilon_{0}} \\
& \frac{d P}{d \Omega}=\frac{1}{2} \operatorname{Re}\left[r^{2} \vec{S} \cdot \hat{n}\right] \propto \frac{1}{2} \operatorname{Re}\left[\frac{\mu_{0}}{c} e^{2} a^{2} \cos (\theta)\right] \quad \text { by } \operatorname{ta} \operatorname{king} \hat{z}=\hat{k} \\
& \Rightarrow \frac{d P}{d \Omega} \propto \frac{\mu_{0}}{c} e^{2} a^{2} \cos (\theta) \\
& P=\int \frac{d P}{d \Omega} d \Omega \propto \frac{\mu_{0}}{c} e^{2} a^{2} \int_{0}^{\pi} \cos (\theta) \sin (\theta) d \theta \int_{0}^{2 \pi} d \phi \propto \frac{\mu_{0}}{c} e^{2} a^{2}
\end{aligned}
$$

12. Electricity and Magnetism (Fall 2004)
(a) Show that the annihilation of an electron and a positron can produce a single massive particle (say, X), but not a single photon.
(b) A positron beam of energy E can be made to annihilate against electrons by hitting electrons at rest in a fixed-target machine or by hitting electrons moving in the opposite direction with the same energy E in an electron-positron collider (colliding-beam accelerator). Show that the minimum energy $E_{\min }$ of a positron beam needed to produce neutral particles X of mass $M \gg m_{e}$ (where m_{e} is the electron rest mass) is much greater in a fixed-target machine than in a collider.
a. If an electron and a positron were to annihilate into a single photon, it would be impossible to conserve momentum in all frames: in the center of mass frame where the total momentum is zero, but the photon created must have nonzero momentum. A massive particle an still be created because it can be stationary in the center of mass frame.
13. We want to find the total energy in the center of moss frame $E_{T A}^{c m}=2 E_{1}^{c m}$ so that we don't have to take into account leftover kinetic energy required by momentum conservation. Then $E_{\text {min }}$ is the value of $E_{1}^{\text {ab }}$ in the lab frame when $E_{c o t}^{c m}=M_{c}^{2} \Leftrightarrow E_{1}^{c m}=\frac{1}{2} M e^{2}$
For a collider, we are already in the $C M$ frame, so $E_{1}^{\text {nat }}=E_{1}^{c m}$

$$
E_{\min }^{c o l}=\left.E_{1}^{60}\right|_{E_{1}^{m}=\frac{1}{2} M_{c}^{2}}=\left.E_{1}^{c m}\right|_{E_{1}^{c m}=\frac{1}{2} M c_{c}^{2}}=\frac{1}{2} M c^{2}
$$

For a fixed target, $E_{1}^{1 a b} \neq E_{1}^{c m}$. If you start from the center of mass where each partite has velocity Mum, Say, then the velocity of the projectile in the lab frame, $u, 10$, is

$$
u_{\text {lab }}=\frac{2 u_{c m}}{1+u_{c m}^{2} / c^{2}} \quad\left(\text { from } \quad u^{\prime}=\frac{u+v}{1+u v / c^{2}}\right)
$$

since you are adding the velocities of the particles relativistrially.

$$
\begin{aligned}
& \text { So } E_{1}^{100}=\gamma_{a b} m c^{2}=\frac{m c^{2}}{\sqrt{1-\beta_{00}^{2}}}=\frac{m c^{2}}{\sqrt{1-\frac{4 \beta_{2}^{2}}{\left(1+\beta_{c m}^{2}\right)^{2}}}}=\frac{m c^{2}}{\sqrt{\frac{1-2 \beta_{c}^{2}+\beta_{c}^{c} c^{4}}{\left(1+\beta_{c}^{2}\right)^{2}}}} \\
& =m c^{2} \sqrt{\frac{\left.\left(1+\beta_{2}\right)^{2}\right)^{2}}{\left(1-\beta_{c} m^{2}\right)^{2}}}=m c^{2} \gamma_{c m}^{2}\left(1+\beta_{c}\left(1+\beta_{c m}^{2}\right)^{2}\right)=m c^{2} \delta_{c m}^{\left(1+\beta_{c}^{2}\left(1+1-\frac{1}{\delta_{c m}^{2}}\right)\right.} \\
& =2 m c^{2} \gamma_{c m}^{2}-m c^{2}=\frac{2\left(E_{c}^{(m)}\right)^{2}}{m c^{2}}-m c^{2}
\end{aligned}
$$

Therefore $E_{\text {min }}^{f i x}=\left.E_{11}^{1,\left.\right|^{1}}\right|_{E_{m}^{2 m}=\frac{1}{2} M c_{c}^{2}}=\frac{m c^{2}}{m c^{2}}\left(\frac{1}{2} M_{c^{2}}\right)^{2}-m c^{2}=\frac{1}{2} \frac{M^{2}}{m} c^{2}-m c^{2}$

$$
\begin{aligned}
\Rightarrow E_{\text {min }}^{f i x} & \cong \frac{1}{2} \frac{M^{2}}{m} c^{2}>\frac{m}{2} M c^{2}=E_{\text {min }}^{\text {ci l }} \\
& \text { since } M \gg m
\end{aligned}
$$

13. Statistical Mechanics and Thermodynamics (Fall 2004)

Consider the Landau-Ginzburg free energy functional for a magnet with magnetization M :

$$
F(M)=\frac{1}{2} r M^{2}+u M^{4}-h M
$$

M takes values $M \in[-\infty, \infty]$. (The rotational symmetry of the magnet is broken by the crystal so that M is a scalar, not a vector.) $r=a\left(T-T_{c}\right), u$ is only weakly dependent on T, and h is the magnetic field. We will make the mean-field approximation that M is equal to the value which minimizes $F(M)$, and $F(M)$ is given by its minimum value.
(a) For $T>T_{c}$ and $h=0$, what value of M minimizes F ? For $T<T_{c}$ and $h=0$, what value of M minimizes F ?
(b) For $h=0$, the specific heat takes the asymptotic form $C \sim\left|T-T_{c}\right|^{-\alpha}$ as $T \rightarrow T_{c}$. What is α ?
(c) At $T=T_{c}, M \sim h^{\delta}$. What is δ ?
a. Mean-field approximation $\Rightarrow \frac{\partial F}{\partial M}=r M+4 u M^{3}-h=0$ And $h=0 \Rightarrow 4 u M^{3}=-r M \Rightarrow M=0$ or $M=\sqrt{-\frac{r}{4 u}}$
If $T>T_{c}$, then $r=a\left(T-T_{c}\right)>0$. so all terms in F are positive, so $M=0$ minimizes F. If $T<T_{e}$, then $r=a\left(T-T_{e}\right)<0$, so $M=\sqrt{\frac{-r}{4 u}}$ is a real solution that makes $F(M)=\frac{1}{2} r\left(-\frac{r}{4 n}\right)+u\left(\frac{r^{2}}{16 u^{2}}\right)=-\frac{r^{2}}{16 u}$ Which is less than zero, so $M=\sqrt{-\frac{r}{4 u}}$ minimizes F.
b. The free energy functional is a type of Gibbs free energy so we use $\left(\frac{\partial G}{\partial T}\right)_{p}=-S$ and $C_{v}=T\left(\frac{\partial S}{\partial T}\right)_{v}$ We assume that $T \rightarrow T_{c}$ from below T_{c} because the Mean field approximation used here gives a trivial result otherwise

$$
G=F(M)=\frac{1}{2} a\left(T-T_{c}\right)-\frac{a\left(T-T_{c}\right)}{4 u}+u \frac{a^{2}\left(T-T_{c}\right)^{2}}{16 u^{2}}=-\frac{a^{2}\left(T-T_{c}\right)^{2}}{16 u^{2}}
$$

$$
\Rightarrow C_{v}=T\left(\frac{\partial S}{\partial T}\right)_{v}=T \frac{\partial^{2} G}{\partial T^{2}}=T \frac{\partial}{\partial T}\left(-\frac{a^{2}\left(T-T_{c}\right)}{8 n^{2}}\right)=-\frac{a^{2}}{8 u^{2}} T
$$

$$
=-\frac{a^{2}}{8 u^{2}}\left[\left(T-T_{c}\right)+T_{c}\right] \cong-\frac{a^{2}}{8 u^{2}} T_{c} \text { since }\left|T-T_{c}\right| \lll T_{c}
$$

in the asymptotic limit, so $C_{v} \sim\left|T-T_{c}\right|^{\circ} \Rightarrow \alpha=0$
c. $\left.F(M)\right|_{T=T_{c}}=u M^{4}-h M$

$$
\left.\frac{\partial F}{\partial M}\right|_{T=T_{c}}=4 u M^{3}-h=0 \Rightarrow h=4 u M^{3} \Rightarrow M=\left(\frac{h}{4 u}\right)^{1 / 3} \Rightarrow \delta=\frac{1}{3}
$$

14. Statistical Mechanics and Thermodynamics (Fall 2004)

Consider black body radiation at temperature T. What is the average energy per photon in units of $k T$?

You may find the following formulae useful:

$$
\int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=\frac{\pi^{4}}{15} \approx 6.5 ; \quad \int_{0}^{\infty} \frac{x^{2} d x}{e^{x}-1} \approx 2.4
$$

$$
\epsilon=p c=\hbar K c=\hbar c \sqrt{\left(\frac{n_{x} \pi}{L}\right)^{2}+\left(\frac{n_{2} \pi}{L}\right)^{2}+\left(\frac{n_{2} \pi}{L}\right)^{2}}
$$

$$
=\frac{\hbar c \pi}{L} \sqrt{n_{x}{ }^{2}+n_{y}{ }^{2}+n_{z}^{2}}=\frac{\hbar c \pi}{L} n
$$

$$
\Rightarrow n=\frac{L}{\hbar c \pi} \epsilon \text { and } d_{n}=\frac{L}{\hbar c \pi} d \epsilon
$$

$$
\rho(\epsilon) d \epsilon=\frac{1}{8} 4 \pi n^{2} d n=\frac{1}{2} \pi\left(\frac{\hbar}{\hbar c \pi}\right)^{3} \epsilon^{2} d \epsilon=\frac{V}{2 \pi^{2}} \frac{\epsilon^{2}}{(\hbar c)^{3}} d \epsilon
$$

$$
\langle\epsilon\rangle=\frac{\int_{0}^{\infty} \epsilon f(\epsilon) \rho(\epsilon) d \epsilon}{\int_{0}^{\infty} f(\epsilon) \rho(\epsilon) d \epsilon} \text { where } f(\epsilon)=\frac{1}{e^{\beta \epsilon}-1}
$$

$$
\int_{0}^{\infty} \epsilon f(\epsilon) \rho(\epsilon) d \epsilon=\frac{V}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \int_{0}^{\infty} \frac{\epsilon^{3}}{e^{B \epsilon}-1} d \epsilon
$$

$$
\text { Let } x=B E \Rightarrow d \epsilon=\frac{1}{\beta} d x
$$

$$
=\frac{v}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \frac{1}{\beta^{4}} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x
$$

$$
\cong \frac{V}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}}(k-7)^{4}(6.5)
$$

$$
\int_{0}^{\infty} f(\epsilon) \rho(\epsilon) d \epsilon=\frac{v}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \int_{0}^{\infty} \frac{\epsilon^{2}}{e^{B \epsilon}-1} d \epsilon
$$

$$
\text { Let } x=\beta \in \Rightarrow d \epsilon=\frac{1}{\beta} d x
$$

$$
=\frac{V}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \frac{1}{\beta^{3}} \int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x
$$

$$
\cong \frac{V}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}}(K T)^{3}(2.4)
$$

$$
\Rightarrow\langle\epsilon\rangle \cong \frac{6.5}{2.4}(K T\rangle \cong 2.7 \mathrm{KT}
$$

Fall 2004 \#1

$$
\begin{aligned}
& \langle Q|\left(\vec{s}_{a} \cdot \hat{n}_{a}\right)\left\langle\vec{s}_{b} \cdot \hat{n}_{a} J \mid \psi\right\rangle \\
& =\sum_{i j}\left(n_{a}\right)_{j}\left(n_{0}\right)_{j}\left\langle\psi \mid C(S a) ;\left(S_{b}\right)_{j} \psi \psi\right\rangle \\
& \because\langle\psi| 1 / 3 \delta_{1 j} \sum_{k}\left(\delta \varepsilon_{a}\right)_{k}\left(S_{b} J_{K}|\psi\rangle+\ldots\right.
\end{aligned}
$$

This is expanding
(Sal) ($C_{0} \|_{j}$ into traceless matrices)
Only need first term
since (Sa); (S $\left.W_{1}\right)_{j}$ is a scalar

$$
\begin{aligned}
& \Rightarrow\langle\psi|\left(S_{a} \cdot \hat{n}_{a}\right)\left(\delta_{b} \cdot \hat{n}_{b}\right)|\phi\rangle=\frac{1}{3} \hat{n}_{a} \cdot \hat{n}_{b}\left\langle\psi \delta_{a} \cdot \delta_{b} \mid \varphi\right\rangle \\
& \text { But } S^{2}=\sigma \quad S=S_{a}+S_{b} \\
& S_{a} \cdot S_{b}=\frac{1}{2}\left(S^{2}-S_{a}^{2}-S_{b}^{2}\right)=-3 / 4 \\
& \left\langle\psi\left(S_{a} \cdot \hat{n}_{a}\right)\left(S_{b} \cdot \hat{n}_{b}\right) \mid \psi\right\rangle=-1 / 3 \cos \theta \frac{3}{4}=-\frac{1}{4} \cos \theta
\end{aligned}
$$

Fall 2004 \#1 (plofz)
Two spin -half particles are in a state with total spin zero. let \hat{n}_{a} and \hat{n}_{b} be unit vectors in two arbitrary directions. Calculate the expectation value of the product of the spin of the frost particle dong \hat{n}_{a} and the spp of the second along \hat{n}_{b}. That is, if \vec{S}_{a} and \vec{S}_{b} are the two spin operation, calculate

$$
\langle\Psi| \vec{s}_{a} \cdot \hat{n}_{a} \vec{s}_{b} \cdot \hat{n}_{b}|\psi\rangle
$$

Osee Alters 4.11)
from the dafreition of the dot product

$$
\vec{A} \cdot \vec{B}=\sum_{i} A_{i} B_{i}
$$

So, we con write

$$
\gamma \equiv\langle\psi| \vec{s}_{a} \cdot \hat{n}_{a} \vec{s}_{b} \cdot \hat{n}_{b}|\psi\rangle=\langle\psi| \sum_{i j}\left(s_{a}\right)_{i}\left(n_{a}\right)_{i}\left(s_{b}\right)_{j}\left(n_{b}\right)_{j}|\psi\rangle
$$

sine $\left(n_{a}\right)_{i}$ and $\left(n_{6}\right)_{\text {; }}$ are just numbers, we get

$$
\begin{equation*}
\gamma=\sum_{i_{j}}\left(n_{a}\right)_{i}\left(n_{b}\right)_{j}\langle\psi|\left(s_{a}\right)_{i}\left(s_{b}\right)_{j}|\psi\rangle \tag{1}
\end{equation*}
$$

Now, $(s a)_{i}\left(S_{b}\right)_{y}$ has the fum of a $2^{\text {nd }}$ rank tensor

$$
T_{i y^{\prime}}=\left(s_{a}\right)_{i}\left(s_{b}\right)_{j}
$$

So, from tAbors eq 5.40 we con write the tensor as

$$
T_{i j}=\underbrace{\left[\frac{1}{3} \delta_{i j} \sum_{k}^{\prime} T_{k k}\right]}_{\text {trace, spin zero }}+\underbrace{\left[\frac{1}{2}\left(T_{i j}-T_{y_{i}^{\prime}}\right)\right.}_{\text {anti-symmetricport }}]+\underbrace{\left[\frac{1}{2}\left(T_{i j}+T_{j^{\prime} i}\right)-\frac{1}{3} \delta_{i y} \sum_{k} T_{k k}^{\prime}\right.}_{\text {trualess, ormmetric pet }}
$$

Sine the ope of ow system is equal to zero, only the 1 st term on the RHS survives, So,

$$
T_{i j}=\frac{1}{3} \delta_{i j} \sum_{k} T_{k K}=\frac{1}{3} \sum_{k}\left(S_{a}\right)_{k}\left(S_{b}\right)_{k}=\frac{1}{3} \stackrel{S}{S}_{a} \cdot \vec{S}_{b}
$$

Fall 200t \#1 (p 2, FZ
note:

$$
[\underbrace{\left(s_{a}+s_{b}\right)^{2}}_{n}]_{K}=\left(s_{a}^{2}\right)_{k}+\left(s_{b}^{2}\right)_{k}+2\left(\vec{s}_{a} \cdot \vec{s}_{b}\right)_{k}
$$

total spin is zero

$$
\Rightarrow \quad\left(\vec{s}_{a}, \bar{S}_{b}\right)_{K}=-\frac{1}{2}\left[\left(s_{a}^{2}\right)_{k}+\left(s_{b}^{2}\right)_{k}\right]
$$

Now, take acduontage of us having spin half porticoes. That is,

$$
\begin{gathered}
s_{i}=\frac{\sigma_{i}}{2} \\
\Rightarrow\left(\vec{s}_{a} \cdot \vec{s}_{b}\right)_{k}=-\frac{1}{8}\left[\left(\sigma_{a}^{2}\right)_{k}+\left(\sigma_{b}^{2}\right)_{k}\right]
\end{gathered}
$$

we know that a property of the Pauli matrices is that ${r_{i}}^{2}=1$ (Abas 4,77). So,

$$
\left(\vec{s}_{a} \cdot \vec{s}_{b}\right)_{k}=-\frac{1}{8}[1+1]=-\frac{1}{4}
$$

Summing our the three coordinates, we get

$$
T_{i j}=\frac{1}{3} \sum_{k}\left(s_{a r} s_{b}\right)_{k}=\frac{1}{3}\left(-\frac{1}{4}-\frac{1}{4}-\frac{1}{4}\right)=-\frac{1}{4}
$$

substituting this result into eq (1) yields

$$
\begin{gathered}
\sum_{i, j}\left(n_{a}\right)_{i}\left(n_{b}\right)_{j}\langle\psi|\left(s_{a}\right)_{i}\left(S_{b}\right)_{j}|\psi\rangle=\sum_{i}^{\prime}\left(n_{a}\right)_{i}\left(n_{b}\right)_{i}\left(-\frac{1}{4}\right) \underbrace{\langle\psi\rangle}_{\substack{n_{0}(\psi) \psi \mid i z d \\
\text { orthogonal } \\
\text { vectors }}} \\
=-\frac{1}{4} \hat{n}_{a} \cdot \hat{n}_{b}=-\frac{1}{4}\left|\hat{n}_{a}\right|\left|\hat{n}_{b}\right| \cos \left(\theta_{a b}\right) \quad
\end{gathered}
$$

where tab is The angle between \hat{n}_{a} and \hat{n}_{b}. Thus,

$$
\langle\psi| \vec{s}_{a} \cdot \hat{n}_{a} \overrightarrow{s_{b}} \cdot \hat{n}_{b}|\psi\rangle=-\frac{1}{4} \cos \left(\theta_{a b}\right)
$$

Fall 2004 \#1 (p | of 2)
Abers solution (\#4.11)

1. Quanturn Mechanics

Two spin-half particles are in a atate with total spin sero. Let nond and be unit vectors in two arbitrany directions, Calcalnte the expectation vaine of the product of the spin of the first particle aloug the and the supin of the socond aloug fis. That in, if s_{8} and a , are the trouspin operators, colculate
$\langle\phi| \omega_{4} \cdot \hat{A}_{-\infty} \cdot f_{4}|\psi\rangle$
 pend only on the angie betwera the tro directions.

This is an example of the selection rules from section 5.2. Since the state ψ is symmetric,

$$
\begin{align*}
\langle\psi|\left(\mathbf{s}_{a} \cdot \hat{\boldsymbol{n}}_{a}\right)\left(\mathbf{s}_{b} \cdot \hat{\boldsymbol{n}}_{b}\right)|\psi\rangle & =\sum_{i \bar{j}}\left(\hat{n}_{a}\right)_{i}\left(\hat{\mathbf{n}}_{b}\right)_{j}\langle\psi|\left(s_{a}\right)_{i}\left(s_{b}\right)_{j}|\psi\rangle \\
& =\sum_{i j}\left(\hat{\boldsymbol{n}}_{a}\right)_{i}\left(\hat{\boldsymbol{n}}_{b}\right)_{j}\langle\psi| \frac{1}{3} \delta_{i j} \sum_{k}\left(s_{a}\right)_{k}\left(s_{b}\right)_{k}|\psi\rangle+\cdots \tag{S10.28}
\end{align*}
$$

The remaining terms are matrix elements of (linear combinations of) components of spherical tensors of ranks 1 and 2 between spin-zero states, so vanish:

$$
\begin{equation*}
\langle\psi|\left(s_{a} \cdot \hat{n}_{a}\right)\left(s_{b}-\hat{n}_{b}\right)|\psi\rangle=\frac{1}{3} \hat{n}_{a} \cdot \hat{n}_{b}\langle\psi| s_{a} \cdot s_{b}|\psi\rangle \tag{S10.29}
\end{equation*}
$$

But since $s^{2}=0$ between these states, where $s=s_{a}+s_{b}$

$$
\begin{equation*}
s_{a} \cdot s_{b}=\frac{1}{2}\left(s^{2}-s_{a}^{2}-s_{b}^{2}\right)=-\frac{3}{4} \tag{S10.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle\psi|\left(s_{a} \cdot \hat{n}_{4}\right)\left(s_{b} \cdot \hat{n}_{b}\right)|\psi\rangle=-\frac{1}{3} \cos \theta \frac{3}{4}=-\frac{1}{4} \cos \theta \tag{S10.31}
\end{equation*}
$$

Note: It is of course possible to get the answer without using the theorem: Since the matrix element depends only on the angle between these two directions, let $\hat{\boldsymbol{n}}_{a}=\hat{n}_{z}$. Then with $\hat{n}_{b}=\cos \theta \hat{n}_{z}+\sin \theta \hat{n}_{x}$, the correlation is

$$
\begin{align*}
E(\theta) & =\langle\psi|\left(\mathrm{g}_{\sigma} \cdot \hat{n}_{z}\right)\left(\mathrm{s}_{b}-\hat{n}_{c}\right)|\psi\rangle=\frac{1}{4}\langle\phi|\left(\sigma_{a} \cdot \hat{\mathrm{n}}_{z}\right)\left(\sigma_{b} \cdot \hat{n}_{c}\right)|\psi\rangle \tag{S10.32}\\
& =\langle\psi|\left(\sigma_{\mathrm{a}}\right)_{z}\left[\left(\sigma_{b}\right)_{z} \cos \theta+\left(\sigma_{b}\right)_{z} \sin \theta\right]|\psi\rangle
\end{align*}
$$

${ }^{2}$ see Equation (A-27) in the appendix.

Fall $2004 \# 1$ (p20F2)
 (Aber's, sulution)

Nentrosinions

Now
$\left(\sigma_{a} \cdot \hat{n}_{z}\right)\left(\sigma_{b} \cdot \hat{n}_{x}\right)|\psi\rangle=\left(\sigma_{a} \cdot \hat{n}_{z}\right)\left(\sigma_{b} \cdot \hat{n}_{x}\right) \frac{|+-\rangle-|-+\rangle}{\sqrt{2}}=\sigma_{a} \cdot \hat{n}_{x} \frac{|++\rangle-|--\rangle}{\sqrt{2}}=\frac{|++\rangle+|--\rangle}{\sqrt{2}}$
so that

$$
\begin{equation*}
\langle\varphi|\left(\sigma_{a} \cdot \hat{n}_{z}\right)\left(\sigma_{b} \cdot \hat{n}_{x}\right)|\psi\rangle=0 \tag{S10.84}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left(\sigma_{a} \cdot \hat{n}_{z}\right)\left(\sigma_{b} \cdot \hat{n}_{x}\right)|\psi\rangle=\left(\sigma_{a} \cdot \hat{n}_{z}\right)\left(\sigma_{b} \cdot \hat{n}_{z}\right) \frac{1+-\rangle-1-+\rangle}{\sqrt{2}}=\frac{-|+-\rangle+|-+\rangle}{\sqrt{2}}=-|\psi\rangle \tag{S10.35}
\end{equation*}
$$

so that

$$
\begin{equation*}
\langle\psi|\left(\sigma_{a} \cdot \hat{n}_{z}\right)\left(\sigma_{b} \cdot \hat{n}_{z}\right)|\psi\rangle=-1 \tag{S10.36}
\end{equation*}
$$

So again

$$
\begin{equation*}
E(\theta)=-\frac{1}{4} \cos \theta \tag{S10.37}
\end{equation*}
$$

F'OY Q.M. \#3
a (Prob of both being within "b" of the origin)
t (Prob of one or both being oxtyich of "b " $1=1$
\Rightarrow Prob ot at least one postiche farther then $b=1$ - Prob. of both

$$
=1-\int_{0}^{b} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(\psi^{*}+\psi\right) \alpha v_{1} d v_{\alpha}
$$

b) $H=\frac{p_{ \pm}^{2}}{x_{+}}+\frac{p^{2}}{2 m_{-}}-\frac{e^{2}}{\left|r_{+}-x_{+}\right|}$
c)

$$
\begin{aligned}
H=\frac{p^{2}}{2 \mu}+\frac{p^{2}}{2 \mu}-\frac{e^{2}}{1 \mu} \quad \text { with } \begin{aligned}
\vec{p} & =\overrightarrow{p_{p}}+\vec{p} \\
\vec{p} & =\frac{m+\overrightarrow{p_{p}}-m_{p} \overrightarrow{p^{2}}}{\mu}
\end{aligned}
\end{aligned}
$$

$\mu=m+x$
d $P=0 \Rightarrow \quad H-\frac{\boldsymbol{N}^{2}}{2 \mu}-\frac{e^{2}}{\mid v i}$
which is similar to the equation for the hydrogen atom: we have the relation ship

$$
E_{x}=\frac{-1}{2} \mu c^{2}\left(\frac{z \alpha}{x}\right)^{2}
$$

now $\quad \mu=\frac{2 r_{e} m_{e}}{m_{e}+m_{c}}=\frac{m_{e}}{2}$

$$
z=t
$$

so $\quad E_{n}=-\frac{1}{2} \frac{m e c^{2}}{2}\left(\frac{\alpha}{n}\right)^{2}=\frac{1}{2}\left(-\frac{1}{2} m e c^{2}\left(\frac{\alpha}{n}\right)^{2}\right)$
pyatrogex atom energy

So for the grocer state $n=1$

$$
E_{1}=-\frac{1}{2}(-13.6 e V)=-6.8 \mathrm{eV}
$$

e) By inspection

$$
\begin{aligned}
& p^{2}\left(u \text { rachanjed }(-p)^{2}=p^{2}\right. \\
& C H=\frac{\left(p_{-}+p_{+}\right)^{2}}{2 M}+\frac{\left(\frac{2 p_{-}-2 p_{+}}{2}\right)^{2}}{2 \mu}+\frac{-e^{2}}{121} \\
& t r^{2}+t=t^{2}+r_{-}
\end{aligned}
$$

so the hamiltonian is unchanged. Se. $[c, H]=0$.

As the tumiltonion is wnetargere and hence also the every eigenvalues, the eigenvalue of C on the greater state is tr

Let H be the Hamiltonian for the hydrogen atom, including spit, $\hbar \vec{l}=\vec{i} \times \vec{p}$ and $A \vec{s}$ are the orbital and spin ongeler momentary, respectively, and $\vec{J}=\vec{C}+\vec{s}$. Conventionally the states ans labeled (n, e, j, m) and they are eigenstates of $H_{1} i^{\prime \prime}, J^{2}$, axe T_{z}.
a) If the electron is in the state (n, e, j, m), what values will be measured for these four obsermbles in terms of t, c, the fine- structure constant α, and the electron mass.m?

$$
\begin{aligned}
& H\left|x, l_{x} ;, m\right\rangle=E_{x}(x, 1, j, m\rangle ; E_{n}=-\frac{1}{2} m c^{2} \alpha^{2} \frac{1}{x^{2}} \\
& \vec{l}^{2}(n, e, i, m)=t e(e+1)(n, e, j ; m) \\
& \left.\vec{J}^{2}\left|n, e_{i}, m\right\rangle=t j(j+1) \mid n, e, i, m\right) \\
& \left.J_{z \mid n, l}, j, m\right)=A m|x, l, i, m\rangle
\end{aligned}
$$

1) What axe the restrictions on the possible values of x, f, z^{\prime} and \geq ?

- n can be any non-zere positive integer
- \& san be any integer in the venge $x-1$ in 0

- 2 can be ax y value in the range $+\theta, \dot{\theta}=1$ ia t $=\dot{\theta}$
c) Let $\vec{J}_{ \pm}=J_{x} \pm J_{y}$, what are
i) $\langle 3,1,3 / 2,3 / 2 \mid T+13,1,3 / 2,-1 / 2\rangle=$?

$$
\left.J_{+} \mid n, l_{1} j+m\right)= \pm \sqrt{j(j+1)-m(m+1)}\left(n, l_{1}, m+1\right)
$$

so $5+13,1,3 / 2,-1 / 2)=\frac{4 \pi}{2}(3,1,3 / 4,1 / 2)=2+|3,43 / 2,1 / 4\rangle$

$$
=\frac{2 t}{k}\langle 3,1,3 / 4,3 / 2(3,1,3 / 2,1 / 2)=0
$$

ii) $\langle 3,1,3 / 2,3 / 2 \mid T+13,1,3 / 2,1 / 2\rangle=\pi \sqrt{3}\langle 3,1,3 / 4,3 / 2| 3,1,3 / 4,3 / 2)=\sqrt{3} t$
iii) $\leq 2,1,3 / 2,3 / \alpha, p z|\alpha, 1,3 / 2,1 / 2\rangle=0$
as $\left[c_{z}, p_{z}\right]=0$ se

$$
\begin{aligned}
& =\frac{3}{2} t\left\langle p_{z}\right\rangle-\frac{\pi}{2}\left\langle p_{z}\right\rangle=0
\end{aligned}
$$

so $\langle p z\rangle=0$
iv) $\left\langle 2,1,12,-1 / 2 L L^{2} \mid 1,1,1 / 2-1 / 2\right\rangle=2 t^{2}$
v) $\langle 3,2,3 / 2,-1 / 2| J^{2}|3,3,3 / 2,-1 / 2\rangle=\hbar^{2} \frac{3}{2}\left(\frac{3}{2}+1\right)=\frac{15}{4} t^{2}$
vii) $\langle 3,1,3 / 2,3 / 6| J_{z}(3,1,3 / 2,1 / 2)=\frac{1}{2}+\frac{\langle 3,1,36,3 / 2,| 3,1,3 / 1,3)}{=0}=0$
$F^{\prime} O 4 \# 4, Q M$
d) What is

$$
\left\langle 1,0, \psi_{2}, v_{Q}\right| p_{i} p_{j}(1,0,1,1,(2)=?
$$

it if As we ancelaling with the spherically symmetric ground state we exc up with an integral over an ada function (with so metric integration limits) so that integral gives us 0 .
$e^{\prime}=y^{\prime}$. then we haw something like

$$
\langle 1,0,1 / \alpha, 1 / \alpha) p_{x}^{2}\left(1,01^{1 / \alpha} 1 / \alpha\right)
$$

now via the virial theorem $\left.\langle T\rangle=+|E|=\langle \rangle^{2}\right\rangle=-E_{1}$

$$
\Rightarrow\left\langle p^{2}\right\rangle=-2 m E_{1}
$$

by $s y m$ metre $\left\langle p_{x}^{\alpha}\right\rangle=\frac{1}{3}\left(\left\langle p_{x}^{\alpha}\right\rangle+\left\langle\boldsymbol{p}_{g}^{2}\right\rangle+\left\langle p_{2}^{\alpha}\right\rangle\right)=\frac{1}{3}\left\langle p^{2}\right\rangle$
so $\left\langle p_{x}^{2}\right\rangle=-\frac{2}{3} m E_{1}$
so $\quad\langle 1,0,1 / 1 / 2| p_{i} p_{j}|1,0,1 / 1 / 2\rangle=-\frac{2}{3} m E_{1} \delta_{i} ;$
e) For given n, l_{1}, , and m, whet axe the conditions on $m^{\prime}, e^{\prime}, j^{\prime}$, and m^{\prime} so that.

$$
\left\langle n^{\prime}, e_{1}^{\prime} z^{\prime}, n^{\prime}\right| \vec{s} \cdot \vec{r}|n, e, i, m\rangle \neq 0
$$

For the restriction on z^{\prime} :
$\vec{s} \cdot \vec{r}$ is a scaler so $\left[J_{x}, \vec{s}^{\vec{s}} \cdot \vec{r}\right]=0 \Rightarrow\left[\vec{J}^{2}, \vec{s} \cdot \vec{r}\right]=0$

So $\left\langle\left[\vec{j}^{2}, \overrightarrow{s^{2}} \vec{y}\right]\right\rangle=0$ which implies $\quad \boldsymbol{y}^{\prime} \neq j^{\prime}$
and $\left\langle\left[J_{x}, \vec{s} \vec{y}\right]\right\rangle=0$ which implies $m \neq m$,

As for e: Parity (P) on a state $(l, m): \quad P(l, m\rangle=(-1)^{e}|e m\rangle$

$$
\begin{aligned}
& \text { So }\langle\vec{s} \cdot \vec{r}\rangle=\left\langle P^{2}(\vec{s} \cdot \vec{r}) P^{\alpha}\right\rangle=\langle P[P(\vec{s} \vec{r}) P P\rangle=(-1)^{e+e^{\prime}}\langle\underbrace{\vec{s} \cdot \vec{r}}_{\vec{r} \cdot \vec{y}] P\rangle} \\
& =-(\vec{r} \vec{x})
\end{aligned}
$$

$$
\Rightarrow \quad\langle\vec{s} \cdot \vec{r}\rangle=(-1)^{e+e^{\prime}}\left(-\left\langle\sin ^{-\vec{r}}\right\rangle\right) \text { so } e e^{\prime}=e^{ \pm}
$$

As for n:- for the hydrogen atom there is no restriction on the transitions that the electron can make so there is no restriction on n'.

Fall $2004 \# 5$

$$
H=\frac{p^{2}}{2 m}+\frac{m w x^{2}}{2}
$$

$\left.\psi_{n}\right\rangle_{=} n=0,1,2$ usual energy eigenitates.
a) $C, \| \psi\rangle=C_{0}\left|\psi_{0}\right\rangle+C_{1}\left|\psi_{1}\right\rangle$

$$
H\left|\psi_{n}\right\rangle=\omega(n+1 / 2)
$$

$\hbar=1$

$$
\begin{aligned}
&\langle\phi| H|\phi\rangle= \psi=\left|C_{0}\right|^{2} \frac{\omega}{2}\left|+\left|c_{1}\right|^{2} \frac{3 \omega}{2}\right. \\
& 2=\left|c_{0}\right|^{2}+3\left|c_{1}\right|^{2} \quad\left|c_{0}\right|^{2}=1+\left|c_{0}\right|^{2} \\
&\langle\phi \mid \phi\rangle=1=\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2} \\
& 12=1-\left|c_{1}\right|^{2}+3\left|c_{1}\right|^{2} \\
& \therefore 1=2\left|c_{1}\right|^{2} \quad \because\left|c_{1}\right|^{2}=1 / 2 \quad\left|c_{0}\right|^{2}=1 / 2
\end{aligned}
$$

b) pick lo $_{0} \geq 0$

$$
c_{1}=\left|c_{1}\right| \cdot e^{i \theta}
$$

$\langle\phi| x|\phi\rangle=\frac{1}{2} \sqrt{m \omega} \quad\langle\phi| H|\phi\rangle=\omega \quad$ what is θ_{1},

$$
\begin{aligned}
& x= \frac{1}{\sqrt{2 m \omega}}\left(a+a^{+}\right) \quad a\left|\psi_{n}\right\rangle=\sqrt{n} \psi_{n_{1}} a^{+}\left|\psi_{n}\right\rangle=\sqrt{n+1} \psi_{n+1} \\
& x|\phi\rangle=\frac{1}{\sqrt{2 m \omega}}\left[c_{0}\left(q_{4}+a^{+}\right)\left|\psi_{0}\right\rangle+c_{1}\left(a+a^{\alpha}\left|\psi_{2}\right\rangle\right]\right. \\
&=\frac{1}{\sqrt{2 m \omega}}\left[c_{0}\left|\psi_{1}\right\rangle+c_{1}\left|\psi_{0}\right\rangle+\sqrt{2} c_{2}\left|\psi_{2}\right\rangle\right] \\
& \frac{1}{2} \sqrt{m \omega}=\langle\phi| x|\phi\rangle \\
&=\frac{1}{\sqrt{2 m \omega}}\left[\epsilon_{0}^{*} c_{1}+c_{0}^{-} C_{1}^{0}\right] \\
& \frac{1}{2}=\frac{1}{\sqrt{2 m \omega}}\left[C_{0}\left|c_{1}\right|\left(e^{i \theta_{1}}+e^{-i \theta_{1}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 \pi} \omega} \cos \frac{1 / 2 \cos \theta_{1}}{2} \frac{1}{2} \frac{1}{\sqrt{n+2} \omega} \\
& -\frac{1}{2} \cos \theta_{1}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} \\
& \theta_{1}=\pi / 4
\end{aligned}
$$

d)

$$
\begin{aligned}
& |\psi(0)\rangle=|\psi\rangle \\
& |\psi(+)\rangle=c_{0} e^{-i E_{0}+}\left|\psi_{0}\right\rangle+c_{1} e^{-i E_{1}+}\left|\psi_{1}\right\rangle \\
& \left.\left.x|\psi(+)\rangle=\frac{1}{\sqrt{2 m} \omega}\left[c_{0}(t)\left|\psi_{1}\right\rangle+c_{1}(+)_{\left(\left|\psi_{0}\right\rangle\right.}\right\rangle+\sqrt{2}\left|\psi_{2}\right\rangle\right)\right]
\end{aligned}
$$

$$
\langle\psi(t)| \times|\psi(t)\rangle=\frac{1}{\sqrt{2 m u}}\left[C_{0}(t) C_{1}^{*}(t)+C_{1}(t) C_{0}^{*}(t)\right]
$$

$$
=\frac{1}{2} \cdot \frac{1}{2 m \omega}\left[\begin{array}{cc}
-i E_{0}+i E_{1}+i / / 4 & -i E_{1}+i E_{0}+i \phi / 4 \\
e: e e_{4} e & e
\end{array}\right]
$$

$$
c_{1}=\left|c_{1}\right| e^{i \pi / 4}
$$

$$
\begin{aligned}
& C_{1}(t)=\left\lvert\, c_{1} e^{i \epsilon_{1}} e^{-i E_{1} t}=\frac{1}{2 \sqrt{2 m \omega}}\left[\begin{array}{l}
i\left(E_{1}-E_{0}\right)+-i \frac{1}{4} \\
e
\end{array} e^{-i\left(E_{1}-E_{0}\right)+}+e^{+i n / 4}\right]\right. \\
& =\frac{1}{2 \sqrt{2 m \omega}}\left[e^{i \omega \phi+i \pi / 4} \theta+e^{-i \omega t} e^{+i \pi / 4}\right] \\
& =\frac{1}{\sqrt{2 m \omega}} \cos (\omega++\pi / 4)
\end{aligned}
$$

fall $2004 \# \cdot 8$

What is B, and H inside?

$$
\begin{aligned}
& \vec{B}=\frac{2}{3} \mu_{0} M \hat{z} \text { re II S SO 3 } \\
& B=\mu_{0}(H+M) \\
& 2 / 3 \mu_{0} M=\mu_{0} H+\mu_{0} M \\
& 2 / 3 M-M=H \\
& \vec{H}=-1 / 3 M \hat{z}
\end{aligned}
$$

Fall $2004 \# 8$ (pof3)
consider a sphere of radius a with uniform magnetization \vec{M}, pointing in the z-direction, what are the magnetic induction \vec{B} add maquette field \vec{H} inside the sphere?
(see spring 2003 \# 12 and Jackson problem 5.13)
first, recognize that this is an identical problem to the field of a spinning spherical shall with $N R \omega \rightarrow M$ (see conffiths' examples 6.1 and 5.11). That is, we have

$$
\left.\begin{array}{l}
\dot{j}_{m}=\nabla \times \vec{M}=0 \\
|\vec{K}|=M \sin \theta
\end{array}\right\} \text { mks units }
$$

if instating spherical shell at uniform charge, then

$$
k=\sigma \omega R \sin \theta
$$

So Let's solve the rotating spherical shall af uniform charge. First we most find the vector potential since

$$
\begin{equation*}
\vec{A}=\frac{1}{c} \int \frac{\vec{k}(\vec{r}) \mid}{|\vec{r}-\vec{k}|} d a^{\prime} \tag{6}
\end{equation*}
$$

So, $\vec{k}=\sigma \vec{v}=\sigma(\vec{\omega} \times \vec{r} \cdot)=\sigma \left\lvert\, \begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \omega \sin \gamma & 0 & 0 \\ a \sin \theta^{\prime} \sin \phi^{\prime} & a \cos ^{\prime} \theta^{\prime} \sin b^{\prime} & a \cos \theta \\ a \cos \theta\end{array}\right.$ $\overrightarrow{\mathrm{v}} \mathbf{v} \boldsymbol{\omega} \times{ }^{2}$ axis of rotation
$x-z$ plane x-zplane

$$
\Rightarrow \vec{k}=\sigma\left[\hat{x}\left(-\omega a \cos \gamma \sin \theta^{\prime} \sin \phi^{\prime}\right)+\hat{y}\left(\omega a \cos \gamma \sin \theta^{\prime} \sin \phi^{\prime}-\omega a \sin \gamma \cos \theta\right.\right.
$$

$$
\left.+\hat{z}\left(\operatorname{aosin} \gamma \sin \theta^{\prime} \sin \phi^{\prime}\right)\right]
$$

Now note: $\left|\vec{r}-\vec{r}^{\prime}\right|=\left.\left[r^{2}+\left(r^{\prime}\right)^{2}-2 r r^{\prime} \cos \theta^{\prime}\right]^{\prime \prime}\right|_{r^{\prime}=0}=\left[r^{2}+a^{2}-2 r a \cos \theta^{\prime}\right]^{\prime \prime 2}$

$$
\text { and } d a^{\prime}=a^{2} \operatorname{sun} \theta^{\prime} d \theta^{\prime} d \phi^{\prime}
$$

substituting these results mo eq (1) yields

$$
\vec{A}(\vec{r})=\frac{\sigma \omega_{a}^{3}}{c} \int_{0}^{2 \pi} d \phi^{\prime} \int_{0}^{\pi} \sin \theta^{\prime} d \theta^{\prime}\left[\frac{-\sin \theta^{\prime} \sin \phi^{\prime} \cos \gamma \hat{x}+\left(\sin \theta^{\prime} \cos \phi^{\prime} \cos \gamma-\sin \gamma \cos \theta^{\prime} \hat{y}+\sin \gamma \sin \theta^{\prime} x \psi\right.}{\left[r^{2}+a^{2}-2 r a \cos \theta^{\prime}\right]^{1 / 2}}\right.
$$

since $\int_{0}^{2 \pi} \sin \phi^{\prime} d \phi^{\prime}=-\left[\cos \phi^{\prime}\right]_{0}^{2 \pi}=0$
and $S_{0}^{2 \pi} d \phi^{\prime} \cos \phi^{\prime}=\left[\sin \phi^{\prime}\right]_{0}^{2 \pi}=0$
the integration over ϕ^{\prime} in the x and z duration vanish as well as the first term in the is dimetion.

Fall $2 \cos 4 \neq 8(p 2 \circ F 3)$
So, this messy integral reduces to

$$
\begin{aligned}
\vec{A}(\vec{r}) & =\frac{r \omega a^{3}}{c} \int_{0}^{2 \pi} d \phi^{\prime} \int_{0}^{\pi} d \theta^{\prime} \sin \theta^{\prime}\left[\frac{-\sin \gamma \cos \theta^{\prime}}{\left[r^{2}+a^{2}-2 r a \cos \theta\right]^{1 / 2}}\right] \\
& =\frac{-2 \pi \sin \gamma \sigma \omega a^{3}}{c} \int_{0}^{\pi} d \theta^{\prime} \frac{\sin \theta^{\prime} \cos \theta^{\prime}}{\left[r^{2}+a^{2}-2 \operatorname{coc} \alpha \theta\right\rangle^{1 / 2}}
\end{aligned}
$$

let $u=\cos \theta^{\prime} \Rightarrow d u=-\sin \theta^{\prime} d \theta^{\prime}$
So, we have

$$
\vec{A}(\vec{r})=\frac{-2 \pi r \omega a^{3}}{c} \sin \gamma \int_{-1}^{1} \frac{u d u}{\left[r^{2}+a^{2}-2 r o u\right]^{1 / 2}}
$$

note: $\int \frac{x d x}{\sqrt{a x+b}}=\frac{2(a x-2 b)}{3 a^{2}} \sqrt{a x+b}$
So,

$$
\vec{A}(\vec{r})=\frac{-2 \pi \sigma \text { ow a }}{}{ }^{3} \sin \gamma\left(\frac{-2 r}{3 a^{2}}\right) \hat{\phi} \quad r<a
$$

$(\rightarrow$ see $p 4$ and 5 of the Spring $2003 \# 12$ for details of this calculation) recall that $\vec{\omega} \times \vec{r}=-\omega r \sin \gamma$ from figure on ρ. So,

$$
\vec{A}(\vec{r})=\frac{2 \pi \sigma \omega a^{3}}{c} \sin \theta\left(\frac{2 r}{3 a^{2}}\right)=\frac{4 \pi \sigma \omega r a}{3 c} \sin \theta \hat{p}
$$

where we re-oirentad our coordinate system such that $\vec{\omega}$ is aligned with the z-axis,
Now, we are ready to And \vec{B} where $\vec{B}=\nabla \times \vec{A}=\nabla \times(d \phi \hat{\phi})$

$$
\begin{aligned}
\Rightarrow \vec{B} & =\left|\begin{array}{ccc}
\hat{r} & r \hat{\theta} & r \sin \theta \hat{\phi} \\
0 & \partial \theta & \partial \phi \\
0 & 0 & r \sin \theta A \phi
\end{array}\right| \frac{1}{r^{2} \sin \theta}=\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \sin \theta A \phi \hat{r}-\frac{1}{r} \frac{\partial}{\partial r}(r A \phi) \hat{\theta} \\
& =\frac{4 \pi \sigma \omega a}{3 c}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin ^{2} \theta \hat{r}-\frac{\sin \theta}{r} \frac{\partial}{\partial r} r^{2} \hat{\theta}\right]=\frac{4 \pi \sigma \omega}{3 c}\left[\frac{2 \sin \theta \cos \theta}{\sin \theta} \hat{r}-\frac{2 r}{r} \sin \right. \\
& =\frac{8 \pi r \omega a}{3 c}[\cos \theta \hat{r}-\sin \theta \hat{\theta}]=\frac{8 \pi \sigma \omega a}{3 c} \hat{z}
\end{aligned}
$$

Fall $2004 * 8$ ($p 3$ of 3)
Thus,

$$
\vec{B}=\frac{8 \pi \sigma \omega a}{3 c} \hat{z} \quad r<a
$$

Now, find \vec{H} inside.

$$
\vec{H}=\vec{B}-4 \pi \vec{M} \quad, \vec{M}=M_{b} \hat{z}
$$

Thus,

$$
\vec{H}=\hat{z}\left[\frac{8 \pi \sigma \omega \alpha}{3 c}-4 \pi M_{0}\right]
$$

Fall $2004 \neq 9(p 1$ of 2$)$
A wire carrying current I is competed to a circular capacitor of capacitance C. what is the magnetic field outside the wine, for from the capacitor? Using Maxwell's equations, explain why these is a magnetic fold outside the capacitor, what is the s magnetic field?
(see Spring 2002 \# 12)

(i) \vec{B} outride wire far away

Far from the wine, the fold can simply be fond from Ampire's law without a displacement current. That is,

$$
\begin{align*}
& \nabla \times \vec{B}=\frac{4 \pi}{c} \vec{y}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t} \tag{i}\\
\Rightarrow & \oint \vec{B} \cdot d \vec{l}=\frac{4 \pi}{c} I
\end{align*}
$$

from symmetry,

$$
\begin{array}{r}
|\vec{B}| \cdot 2 \pi r=\frac{4 \pi}{c} I \\
\therefore \vec{B}=\frac{2 I}{r c} \hat{\phi}
\end{array}
$$

(ii) Why is twee a \vec{B}. Fold outside capacitor?

if you put on observer in the indicated region, the obsewer will Yobserve" a magnetic field even though the space between the capacitors is "vacuum" and thus no current density, \vec{f}, is possible without any material. But, from Maxwell's equations, matter and fields play identical roles.

Fall 2004\#9 (p2.f2)
That is, between the plates, there is a displacervent current. So Ampere's equation has the form

$$
\nabla \times \vec{B}=\frac{1 \pi 7^{0}}{\frac{0}{y}}+\underbrace{\frac{1}{2}}_{\text {displacement current }} \frac{\frac{\partial \vec{F}}{\partial t}}{}
$$

An obseever in the dotted region observes a magnetic freed as though there was a physical conducting wine camping a current in that region, so, in this case the freed (displacement current) plays the role of matter (a wire).
Then the magnetic field observed outside the capacitor is the same as the ore for from the wive.

$$
\vec{B}=\frac{2 I}{r_{c}} \hat{\phi}
$$

Fall 2004 牛 10 (p lo 3)
\bigcirc
The upper half-spoce is filled with a material permittivity ϵ_{1}, while the lower half -space is filled with a different maternal primitivity ϵ_{2}, The interface is located at the $z=0$ plane. A point charge q is located at $\vec{r}_{q}=d \vec{z}$ on the z-axis in medium l.
Find the electro s static potential ewry where.
(I took solution from Jackson!)
(sol Lin Yung-Kuo \# 1078 and Jackson $3^{\text {red }}$ ed section 4.4 p 154 -156)

The boundary condition at $z=0$ is
0

$$
\lim _{z \rightarrow 0^{+}}\left\{\begin{array}{c}
\epsilon_{1} E_{z} \\
E_{x} \\
E_{y}
\end{array}\right\}=\lim _{z \rightarrow 0^{-}}\left\{\begin{array}{c}
\epsilon_{2} E_{z} \\
E_{x} \\
E_{y}
\end{array}\right\}
$$

In cylindrical coordinates, the potential for $z>0$ at some potent P is given by

$$
\Phi=\frac{1}{\epsilon_{1}}\left(\frac{q}{R_{1}}+\frac{q^{\prime}}{R_{2}}\right) \quad z>0
$$

whee $R_{1}=\sqrt{r^{2}+(d-z)^{2}}$ and $R_{2}=\sqrt{r^{2}+(d+z)^{2}}$
Now, there is no charge m the region $z<0$. so, it must be a solution of the Laplace equation without sirquilarities in the regran, so, assume the potential is equivalent to that of a charge q" at the same position of the curtal charge. That is,

$$
\Phi=\frac{1}{\epsilon_{2}} \frac{q^{\prime \prime}}{R_{1}} \quad z<0
$$

Fall 2004 \# $10 \quad\left(p^{20 F 3}\right)$
Now , apply boundary conditions at $z=0$ to find q^{\prime} and $q^{\prime \prime}$.

$$
\begin{align*}
& \text { B.C.I] }\left[\epsilon_{1} E_{z}\right]=\left.\left[\epsilon_{2} E_{z}\right]_{z=0^{+}} \Rightarrow \epsilon_{1} \frac{\partial \Phi}{\partial z}\right|_{z=0^{+}}=\left.\epsilon_{2} \frac{\partial \Phi}{\partial z}\right|_{z=0^{-}} \\
& \Rightarrow\left[\frac{+2(d-z) q}{2\left[r^{2}+(d-t)^{2}\right]^{3 / 2}}+\frac{-2(d+z) q^{\prime}}{2\left[r^{2}+(d+z)^{2}\right]^{3 / 2}}\right]_{z=0}=\left.\frac{2(d-z) q^{\prime \prime}}{2\left[r^{2}+(d-z)^{2}\right]^{3 / 2}}\right|_{z=0} \\
& \Rightarrow q-q^{\prime}=q^{\prime \prime} \tag{1}
\end{align*}
$$

B.C. II $\left.\binom{E_{x}}{E_{y}}_{z 0^{+}}=\binom{E_{x}}{t_{y}}_{z=0^{-}} \Rightarrow \frac{\partial \Phi}{\partial r}\right)_{z=0^{+}}=\left.\frac{\partial \Phi}{\partial r}\right|_{z=0^{-}}$

$$
\begin{align*}
& \Rightarrow\left[\frac{q}{\epsilon_{1}} \frac{-2 r}{2\left[r^{2}+(d-z)^{2}\right]^{3 / 2}}+\frac{q^{\prime}}{\epsilon_{1}} \frac{-2 r}{2\left[r^{2}+(d+z)^{2}\right]^{3 / 2}}=\frac{q^{\prime \prime}}{\epsilon_{2}} \frac{-2 r}{2\left[r^{2}+(d-z)^{2}\right]^{3 / 2}}\right] \\
& \Rightarrow \quad \frac{1}{\epsilon_{1}}\left(q+q^{\prime}\right)=\frac{1}{\epsilon_{2}} q^{\prime \prime} \tag{1.5}
\end{align*}
$$

substituting eq (0) into the expression above yields

$$
\begin{align*}
\frac{1}{\epsilon_{1}}\left(q+q^{\prime}\right) & =\frac{1}{\epsilon_{2}}\left(q-q^{\prime}\right) \\
\Rightarrow \epsilon_{2} q-\epsilon_{1} q & =-\epsilon_{1} q^{\prime}-\epsilon_{2} q^{\prime} \\
\therefore q^{\prime} & =q\left(\frac{\epsilon_{1}-\epsilon_{2}}{\epsilon_{1}+\epsilon_{2}}\right) \tag{2}
\end{align*}
$$

Fall $2004 * 10$ (ph of 3)
Solving eq Ul for $q^{\prime} \Rightarrow q^{\prime}=q-q^{\prime \prime}$ and substituting this in to eq (1.5) yields.

$$
\begin{align*}
& \frac{1}{\epsilon_{1}}\left(q+q-q^{\prime \prime}\right)=\frac{1}{\epsilon_{2}} q^{\prime \prime} \\
& \Rightarrow 2 \epsilon_{2} q=\epsilon_{1} q^{\prime \prime}+\epsilon_{2} q^{\prime \prime} \\
& \Rightarrow q^{\prime \prime}=q \frac{2 \epsilon_{2}}{\epsilon_{1}+\epsilon_{2}} \tag{3}
\end{align*}
$$

Thus the electrostatic e potential every where is

$$
\Phi(r, z)=q \begin{cases}\frac{1}{\epsilon_{1}}\left[\frac{1}{\sqrt{r^{2}+(d-z)^{2}}}+\left(\frac{\epsilon_{1}-\epsilon_{2}}{\epsilon_{1}+\epsilon_{2}}\right) \frac{1}{\sqrt{r^{2}+(d+z)^{2}}}\right. & z>c \\ \left(\frac{1}{\epsilon_{1}+\epsilon_{2}}\right) \frac{1}{\sqrt{r^{2}+(d-z)^{2}}} & z<c\end{cases}
$$

Fall 2004 \# 11 (p lo 2)
Using general principles, find the radiated power m vacuum of a non-relativistic point charge of whose position is $r(t)$, You do not need to fund dimension lass constants (i.e. Find the dependence on $4, \vec{r}(t)$, and universal constants).
for $\vec{v} \ll c$, the fields of a point charge q in anbitay motion (from Unffith' section $11,2.1$) are

$$
\vec{E}(x, t)=\frac{q\left|r-r^{\prime}\right|}{\left(\left(\vec{r}-\vec{r}^{\prime}\right) \cdot \vec{u}\right)^{3}}\left[\left(c^{2}-v^{2}\right) \vec{u}+\left(\vec{r}-\vec{r}^{\prime}\right) \times(\vec{u} \times \ddot{\vec{r}})\right]
$$

when $\vec{u}=c\left(\vec{r}-\vec{r}^{\prime}\right)-\vec{v}$ and $\overrightarrow{\vec{r}}=\vec{a}$

$$
\vec{B}(\vec{r}, t)=\left(\vec{r}-\vec{r}^{\prime}\right) \times \vec{E}(\check{r}, t)
$$

Now, ne know that only accelerated fields represent true radiation. So, the \vec{E}-fred from radiation is just

$$
\vec{E}_{\mathrm{rad}}(\vec{r}, t)=\frac{q\left|\vec{r}-\vec{r}^{\prime}\right|}{\left[\left(\vec{r}-\vec{r}^{\prime}\right) \cdot \vec{u}\right]^{3}}\left[\left(\vec{r}-\vec{r}^{\prime}\right) \times\left(\vec{u} \times \vec{r}^{3}\right)\right]
$$

\rightarrow the velocity fields carry eurus
So, the pointing vector is

$$
\vec{S}_{\text {rad }}=\frac{c}{4 \pi}(\vec{E} \times \vec{B})_{\text {rod }}=\frac{c}{4 \pi}\left|\vec{E}_{\text {rad }}\right|^{2} \underbrace{\frac{(\vec{r}-\vec{r} \mid)}{|\vec{r}-\vec{\prime}|}}_{\equiv \hat{R}}
$$

If the charge is instantareasly at rest (at time tr, retarded tine), then $\vec{u}=c \hat{\sim}$ So,

$$
\vec{E}_{\text {rad }}=\frac{q|\vec{n}|}{[\vec{n}, c \hat{n}]^{3}}[\vec{n} \times(c \hat{n} \times \vec{a})]=\frac{q c}{c^{3} r^{2}}[\pi \hat{n} \times(\hat{n} \times \vec{a})]
$$

Fall 2004 \# 11 (ph of 2)

0

$$
\Rightarrow \quad \vec{E}_{\text {rad }}=\frac{q}{c^{2} n}[\hat{n} \times(\hat{r} \times \vec{a})]
$$

note: $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A}, \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$

$$
\begin{aligned}
& \text { So, } \hat{r} \times(\hat{r} \times \vec{a})=\hat{r}(\hat{r}, \vec{a})-\vec{a}(\hat{r} \cdot \hat{r})=\hat{r}(\hat{r}, \vec{a})-\vec{a} \\
& \Rightarrow \vec{E}_{\text {rad }}=\frac{q}{c^{2} r}[(\hat{r}, \vec{a}) \hat{r}-\vec{a}]
\end{aligned}
$$

So, the punting vector is
0

$$
\begin{aligned}
\vec{S}_{r a d} & =\frac{c}{4 \pi}\left|\vec{E}_{\text {rad }}\right|^{2} \hat{r}=\frac{c q^{2}}{4 \pi c^{4} r^{2}}[(\hat{r} \cdot \vec{a}) \hat{r}-\vec{a}]^{2} \hat{r} \\
& =\frac{q^{2}}{4 \pi c^{3} r^{2}} \hat{r}\left(a^{2}+(\hat{r} \cdot \vec{a})^{2}-2(\vec{a}, \hat{r})(\hat{r}, \vec{a})\right) \\
& =\frac{q^{2}}{4 \pi c^{3} r^{2}} \hat{r}\left[a^{2}-(\vec{a} \cdot \vec{r})^{2}\right] \quad, \vec{a} \cdot \hat{r}=|\vec{a}| \hat{r} \mid \sin \theta \\
\Rightarrow \quad \vec{S}_{r a d} & =\frac{q^{2} a^{2}}{4 \pi c^{3}} \frac{\sin ^{2} \theta}{r^{2}} \hat{r} \quad, \quad \theta \text { is angle between } \vec{a} \text { and } \hat{r}
\end{aligned}
$$

Then the total power radiated is

$$
\begin{array}{r}
P=f \vec{s}_{r a d} \cdot d \vec{a}=\frac{q^{2} a^{2}}{4 \pi c^{3}} \int \frac{\sin ^{2} \theta}{r^{2}} r^{2} \sin \theta d \theta d \phi \\
\therefore P=\frac{2 q^{2} a^{2}}{3 c^{3}} \quad \text { armor formula }
\end{array}
$$

EM FOY \#12
a) If one goes into the center of momentum (CM) frame then the total initial momentum will be zero. Hence by momentum conservation the find momentum also has to be zero. For a massive particle X this is possible. But for a photon it is not as it is massless and hence travels at the speed of light. This then would violate momentum conservation. Hence we need another photon traveling in the opposite direction. to give a total final momentum of zero.
b) Ir the lat frame:

$$
\begin{aligned}
& E_{x}^{2}=\left|\vec{p}_{f}\right|^{2}+\mu_{x}^{2} \Rightarrow M_{x}^{2}=E_{x}^{2}-\left|\vec{p}_{f}\right|^{2}
\end{aligned}
$$

mow $E_{x}=E_{e t}+E_{e}-=E_{e t}+m e \quad$ (leave $E_{e t}$ as is as we want minimum incident hence $\mu_{x}^{2}=\left(E_{e}+m e\right)^{2}-p^{2} \quad$ energy $)$.

$$
\begin{aligned}
& =E_{e+}^{2}+2 m_{e} E_{e^{t}}+m_{e}^{2}-p^{2} \\
& =\underbrace{E_{e^{+}}^{2}-p^{2}}_{m e^{2}}+2 m_{e} E_{e^{+}}+m_{e}^{2}=2 m e E_{e^{+}}+2 m_{e}^{2}
\end{aligned}
$$

$$
\Rightarrow \quad E_{e t}=\frac{\mu_{x}^{2}-2 m_{e}^{2}}{2 m_{e}} \approx \frac{\mu_{x}^{2}}{2 m_{e}}=\frac{\mu_{x}}{2} \frac{\mu_{x}}{m_{e}}
$$

as for the CM frame.

$$
\left.\begin{array}{l}
\underset{\substack{+\left|\vec{p}_{i}\right|=p}}{\longrightarrow} \underset{\left|\vec{p}_{i}^{e}\right|=-p}{ }
\end{array}\right\} \begin{gathered}
\stackrel{x}{e} \\
\left|\overrightarrow{p_{f}}\right|=0
\end{gathered}
$$

so $\mu_{x}=E_{x} ; E_{x}=E_{e t}+E_{e^{-}}=2 E_{e t}$ as $E_{e t}=E_{e-}$
so $E_{e^{+}}=\frac{\mu_{x}}{2}$

$$
\begin{aligned}
\left(\left|\vec{p}_{i}^{2}\right|^{2}+m_{e}^{2}\right)^{1 / \alpha}= & \left(\left.\vec{p}_{l}^{2}\right|^{2}+m_{e}^{2}\right)^{1_{\alpha}} \\
& \left|\overrightarrow{p_{i}}\right|^{2}
\end{aligned}
$$

Stat. Mech. F'O4 \# 14

Assuming 3-D photon gas) need $\frac{\langle E\rangle}{\langle x\rangle}$
First thing is to find $D(\mathbb{y})$ (the energy density) as

$$
\langle E\rangle=\int_{0}^{\infty} \frac{h v}{e^{\hbar v / k \tau_{-1}}} \cdot O(v) \alpha v
$$

- and

$$
\langle x\rangle=\int_{0}^{\infty} \frac{1}{e^{k v / k T-1}} D(v) d v
$$

So to find $D(v)$

$$
\frac{\lambda}{\lambda / \alpha}=n \Rightarrow \lambda=\frac{\partial L}{n} \text { and } p=\frac{h}{\lambda}=\frac{h}{2 L} n
$$

also $E=p<\Rightarrow E=h \nu \Rightarrow h u=p<\Rightarrow \frac{V C p}{h}$

$$
\begin{aligned}
p & =\left(p_{x}^{2}+p_{0}^{2}+p_{z}^{2}\right)^{1 / \alpha} \Rightarrow v=\frac{c}{h}\left(p_{x}^{2}+p_{0}^{2}+p_{z}^{2}\right)^{1 / 2} \\
& =\frac{c}{K} \frac{K}{\lambda L}\left(x_{x}^{2}+x_{z}^{2}+x_{z}^{2}\right)^{1 / \alpha}=\frac{c}{\lambda L}\left(x_{x}^{2}+x_{z}^{2}+x_{z}^{2}\right)^{1 / 2}=\frac{c}{2 c} n \\
& \Rightarrow v=\frac{c}{2 L} x \Rightarrow n=\frac{\lambda L}{c} v
\end{aligned}
$$

polarization

$$
\frac{12}{8} \int_{0}^{\infty} 4 \pi x^{2} d x=\frac{2}{8} \int_{0}^{\infty} 4 \pi\left(\frac{4 c^{2}}{c^{2}}\right) v^{2} \frac{d L}{c} d v=\int_{0}^{\infty} \frac{8 \pi c^{3}}{c^{3}} v^{2} d v
$$

so $\quad D(v)=\frac{8 \pi v}{c^{3}} v^{2}$
hence

$$
\begin{aligned}
& \langle E\rangle=\int_{0}^{\infty} \frac{h v}{e^{h \nu / k T}-1} \frac{8 \pi v}{c^{3}} v^{2} d v=\frac{8 \pi v h}{c^{3}} \int_{0}^{\infty} \frac{v^{3}}{e^{h y / k T}-1} d v \\
& x \equiv \frac{h v}{k T} \Rightarrow v=\frac{k T}{h} x \Rightarrow \alpha v=\frac{k T}{h} \alpha x \\
& =\frac{8 \pi v}{c^{3}} h\left(\frac{k T}{h}\right)^{3}\left(\frac{k T}{x}\right) \underbrace{\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x}_{\frac{\pi^{4}}{15}}=\frac{8 \pi^{5} v h}{15 c^{3}}\left(\frac{k T}{h}\right)^{4} \\
& \langle v\rangle=\int_{0}^{\infty} \frac{1}{e^{n \psi / k I}} \frac{8 \pi v}{c^{3}} v^{2} d v=\frac{8 \pi v}{c^{3}} \int_{0}^{\infty} \frac{v^{2}}{e^{n v / k I}} d v \\
& x \equiv \frac{h v}{k T} \Rightarrow v=\frac{k T}{n} x \Rightarrow d v=\frac{k T}{n} d x \\
& =\frac{8 \pi V}{c^{3}}\left(\frac{k T}{n}\right)^{3} \underbrace{\int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x}_{2.404}=\frac{8 \pi V}{c^{3}}\left(\frac{k I}{x}\right)^{3} 2.404
\end{aligned}
$$

hexce

[^0]: ${ }^{1}$ Write your answer in terms of m, e^{2} or α, \hbar, c, the Bohr radius, etc. You may use units in which $\hbar=c=1$.

[^1]: ${ }^{1}$ Write your answer in terms of m, e^{2} or α, \hbar, c, the Bohr radius, etc. You may use units in which $\hbar=c=1$.

