1. Quantum Mechanics (Spring 2005)

Consider a particle of charge q in a one-dimensional harmonic oscillator potential. Suppose there is also a weak electric field E so that the potential is shifted by

$$
H^{\prime}=-q E x
$$

(a) Calculate the correction to the simple harmonic oscillator energy levels through second order in perturbation theory.
(b) Now solve the problem exactly. How do the exact energy levels compare with the perturbative result in (a)?

2. Quantum Mechanics (Spring 2005)

Show that in one space dimension any attractive potential, no matter how weak, always has at least one bound state. Hint: Use the variational principle with some appropriate trial wave function such as the normalized Gaussian

$$
\psi(x)=\left(\frac{2 b}{\pi}\right)^{1 / 4} e^{-b x^{2}}
$$

where b is a parameter.
3. Quantum Mechanics (Spring 2005)

A beam of particles scatters off an impenetrable sphere of radius a. That is, the potential is zero outside the sphere, and infinite inside. The wave function must therefore vanish at $r=a$.
(a) What is the S -wave $(l=0)$ phase shift as a function of the incident energy or momentum?
(b) What is the total cross section in the limit of zero incident kinetic energy?

4. Quantum Mechanics (Spring 2005)

An electron is at rest in a constant magnetic field pointing along the z direction. The Hamiltonian is

$$
H=-\mu \cdot \mathbf{B}=g \mu_{o} \frac{\mathbf{s}}{\hbar} \cdot \mathbf{B}
$$

where $\mathbf{B}=B_{o} \hat{n}_{z}$. s is the electron spin. Since the electron is at rest, you can treat this as a two-state system. Let $\left|\psi_{ \pm}\right\rangle$be the eigenstates of s_{z} with eigenvalues $\pm \frac{\hbar}{2}$ respectively.
(a) What are the eigenstates of the Hamiltonian, and what is the energy difference between them?
(b) At time $t=0$ the electron is in an eigenstate of s_{x} with eigenvalue $+\hbar / 2$. Calculate $|\psi(t)\rangle$ for any t.
(c) For the state you calculated in part (b), what are the expectation values of the three components of the spin at any time t ?

5. Quantum Mechanics (Spring 2005)

An electron moves in a hydrogen atom potential - ignoring spin and relativity - in a state $|\psi\rangle$ that has the wave function

$$
\psi(r, \theta, \phi)=N R_{21}(r)\left[2 i Y_{1}^{-1}(\theta, \phi)+(2+i) Y_{1}^{0}(\theta, \phi)+3 i Y_{1}^{1}(\theta, \phi)\right]
$$

where the $Y_{l}^{m}(\theta, \phi)$ are the spherical harmonics, $R_{n l}(r)$ are the normalized hydrogen atom wave functions, and N is a positive real number.
(a) Calculate N.
(b) What is the expectation value of $L_{z} ?(\hbar \mathbf{L}=\mathbf{r} \times \mathbf{p})$
(c) What is the expectation value of \mathbf{L}^{2} ?
(d) What is the expectation value of the kinetic energy in terms of \hbar, c, the electron charge e or the fine-structure constant α, and the electron mass m ?

Note: The explicit forms of the functions that appear in $\psi(r, \theta, \phi)$ above are

$$
R_{21}(r)=\frac{1}{2 \sqrt{6}} \frac{r}{a^{5 / 2}} e^{-r / 2 a} \quad Y_{1}^{ \pm 1}(\theta, \phi)=\mp \sqrt{\frac{3}{8 \pi}} \sin (\theta) e^{ \pm i \phi} \quad Y_{1}^{0}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos (\theta)
$$

A closed container is divided by a wall into two equal parts (A and B), each of volume $V / 2$. Part A contains an ideal gas with $N / 2$ molecules of mass M_{1} while part B contains an ideal gas with $N / 2$ molecules of mass M_{2}. The container is kept at a fixed temperature T. The molecules of each kind are all identical, but distinguishable from the molecules of the other kind.
(a) The partition function $Z(N)$ of an ideal gas of N particles of mass M in a volume V is given by

$$
Z(N)=\frac{1}{N!}\left(\frac{V}{\sqrt{2 \pi \hbar^{2} / M k_{B} T}}\right)^{N}
$$

Give the partition function of the gas in the container before and after the wall is removed. What are the entropy and pressure before and after the wall is removed?
(b) How much heat is absorbed or released following the removal of the wall? Is the removal of the wall a reversible or irreversible process?
(c) Same question as (b), but now for the case that the two kinds of molecules are indistinguishable from each other (so $M_{1}=M_{2}$). Compare your answers for (b) and (c) and provide a physical explanation for the difference in entropy between the two cases.

7. Statistical Mechanics and Thermodynamics (Spring 2005)

A (nearly) ideal gas with a temperature T and pressure P contains atoms of mass M that are either in the ground state or in the first excited state. An atom that returns to the ground state from the first excited state emits a photon of frequency f_{o}. For a stationary observer observing the spectral line emitted by a moving atom, this frequency is shifted by the Doppler effect to

$$
f\left(v_{\|}\right)=f_{o}\left(1+v_{\|} / c\right)
$$

where c is the velocity of light and $v_{\|}$is the projection of the velocity of the atom on the line of sight from the observer to the atom.
(a) What is the statistical distribution $P(f)$ of the frequency of the spectal line? Assume the atoms obey the Maxwell-Boltzmann distribution.
(b) Obtain from $P(f)$ the contribution by the Doppler effect to the width $\sqrt{\left\langle\left(f-f_{o}\right)^{2}\right\rangle}$ of the spectral line. Can you think of a way this effect could be exploited in the study of stellar atmospheres?
(c) The natural line shape $P(f)$ of an atomic spectral line is, according to quantum mechanics, given by

$$
P(f) \sim \frac{1}{\left(f-f_{o}\right)^{2}+\tau^{-2}}
$$

where τ is the lifetime of the excited state. For atoms in a dense gas, the actual lifetime of the excited state is not intrinsic, but instead determined by the time interval between successive collisions between atoms. Let the cross section of an atom equal σ. Obtain an expression for τ in terms of σ, the pressure P and the temperature T. Under which conditions will this "collisional" broadening of the spectral line dominate over the Doppler broadening as computed under (b)?

8. Electricity and Magnetism (Spring 2005)

Consider a two-dimensional (r, θ) electrostatic problem consisting of two infinite plates making an angle α with each other and held at a potential difference V, as shown below:
(a) Find the potential $\phi(r, \theta)$ in the vacuum region between the plates.

Now insert a wedge dielectric, of dielectric coefficient ϵ, and angle β, resting on the bottom plate as shown below:
(b) Find the pressure experienced by the bottom plate at a distance r from the apex (from the line joining the two plates).

9. Electricity and Magnetism (Spring 2005)

An infinitely thin current sheet carrying a surface current $\lambda=\lambda_{o} \hat{z} \cos (\omega t)$ is sandwiched between a perfect conductor $(\sigma=\infty)$ and a material having finite conductivity σ and magnetic permeability μ. The angular frequency ω is sufficiently low that magnetostatic conditions prevail. λ_{o} is a constant, \hat{z} is a unit vector parallel to the interface located at $x=0$, and t is the time.

Here $\sigma=\infty$

(a) Find the appropriate partial differential equation that governs the behavior of the magnetic field \mathbf{H} for $x>0$ (above the current sheet). Do not solve.
(b) What is the appropriate boundary condition for \mathbf{H} in this system?
(c) Find the magnetic field \mathbf{H} at an arbitrary distance $x>0$ at time t.
10. Electricity and Magnetism (Spring 2005)

A relativistic charged particle of charge q and rest-mass m_{o} is in a region of uniform magnetic field $B_{o} \hat{z}$. At time $t=0$ the particle has zero velocity along \hat{z} (that is $\beta_{z}=v_{z} / c=0$) and finite transverse speed $\beta_{\perp}=\beta_{o}$, with

$$
\beta_{\perp}=\sqrt{v_{x}^{2}+v_{y}^{2}} / c
$$

Here, x, y, and z are Cartesian coordinates in the lab frame.
(a) What is the value of $\beta_{\perp}(t)$ for $t>0$?
(b) What is the angular frequency Ω of rotation (that is, the gyrofrequency)? No need for a calculation, just identify Ω.
(c) Now apply a uniform electric field $E_{o} \hat{z}$, parallel to \mathbf{B}, starting at $t=0$. Without solving the detailed equations, conclude what happens to the β_{\perp} in part (a). Does it change?

11. Electricity and Magnetism (Spring 2005)

A linearly polarized electromagnetic wave propagating through the vacuum falls on a flat metallic surface. The wavelength of the incident wave is λ. The angle between the wave vector \mathbf{k} and the metal surface is equal to θ. The electric field has a magnitude E_{o} and a direction normal to the page (positive y direction, see Figure). Assume that the metal surface has infinite conductivity.
(a) Show that the boundary conditions can be obeyed by adding a reflected wave to the incident plane wave. Draw, in the Figure, the directions of the electric and magnetic field vectors of the reflected wave such that the boundary conditions hold at the surface.
(b) Calculate the time-averaged Poynting vector of the incident plus the reflected wave in terms of E_{o}. Along what direction is the electromagnetic energy being transported by the two waves?
(c) Show that the repeat length of the interference pattern of the two waves along the surface of the plates is given by $\lambda / \cos (\theta)$, while the repeat length perpendicular to the surface is given by $\lambda / \sin (\theta)$. It follows from this that one can insert a second metal plate at a height $D(m)=m(\lambda / 2) \sin (\theta)$ above the first metal plate, with m an integer, without perturbing the wave pattern.
(d) Using (c) compute the phase velocity $v(f)$ of an electromagnetic wave trapped between two parallel plates with spacing D as a function of the frequency f of the wave. This phase velocity should diverge as you reduce f. Demonstrate that the fact that $v(f)$ exceeds the velocity of light for some f is not a violation of the principle of special relativity (even though $v>c$ for small f).

12. Electricity and Magnetism (Spring 2005)

A thin copper ring (conductivity σ, density ρ) is suspended so it can rotate freely about one diameter. There is a uniform magnetic field \mathbf{B} perpendicular to the axis of rotation. At time $t=0$ the ring is set rotating with frequency ω_{o}. Calculate the time it takes the frequency to decrease to $1 / e$ of its original value, assuming the energy goes into Joule heating.

13. Statistical Mechanics and Thermodynamics (Spring 2005)

Consider the one-dimensional Ising model on a periodic lattice, that is, a chain of N spins, with sping $s_{i}= \pm 1$ residing on the i-th site, $i=1, \ldots, N$, forming a closed loop. The partition function in the presence of an external magnetic field H is then

$$
Z_{N}=\sum_{\left\{s_{i}= \pm 1\right\}} \exp \left(\beta J \sum_{i=1}^{N} s_{i} s_{i+1}+\beta H \sum_{i=1}^{N} s_{i}\right)
$$

where $\beta=1 / k T$. Define the 2×2 transfer matrix \mathbf{T} with elements

$$
T\left(s, s^{\prime}\right)=\exp \left[\nu s s^{\prime}+\frac{B}{2}\left(s+s^{\prime}\right)\right] \quad\left(s, s^{\prime}= \pm 1\right)
$$

where we let $\nu=\beta J$ and $B=\beta H$.
(a) Show that

$$
Z_{N}=\operatorname{Tr}\left(\mathbf{T}^{N}\right)
$$

and hence

$$
Z_{N}=\lambda_{1}^{N}+\lambda_{2}^{N}
$$

where λ_{1} and λ_{2} are the two eigenvalues of \mathbf{T}.
(b) Determine λ_{1}, λ_{2}. If λ_{1} denotes the larger eigenvalue, observe that $\lambda_{2} / \lambda_{1}$ is strictly less than one for all $\nu>0$. Hence show that the free energy per spin in the thermodynamic limit $N \rightarrow \infty$ is given by

$$
-F / k T=\ln \left(\lambda_{1}\right)
$$

(c) What is the spontaneous magnetization per spin for any $\nu>0$?
14. Statistical Mechanics and Thermodynamics (Spring 2005)

A photon gas in thermal equilibrium is contained within a box of volume V at temperature T.
(a) Use the partition function to find the average number of photons \bar{n}_{r} in the state having energy E_{r}.
(b) Find a relationship between the radiation pressure P and the energy density u (i.e. the average energy per unit volume).
(c) If the volume containing the photon gas is decreased adiabatically by a factor of 8 , what is the final pressure if the initial pressure is P_{o} ?

Spring $2005 \# 1$

$$
H^{\prime}=-q E_{x}
$$

a) Calculate correction to second order pertubation theory

$$
\begin{aligned}
& H=\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{m \omega^{2} x^{2}}{2} \psi \quad \text { or } \quad-\frac{1}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{m \omega^{2} x^{2}}{2} \psi \text { in natural } \\
& \quad E=\hbar \omega(n+1 / 2) \\
& |\Psi\rangle=|n\rangle
\end{aligned}
$$

$1^{s t}$

$$
\begin{aligned}
& \langle n| H^{\prime}|n\rangle=-q E\langle n| x|n\rangle \quad x=\sqrt{\frac{\hbar}{2 m u}}\left(a \times a^{+}\right\rangle \\
& =-e E_{1}^{-}[\langle n \mid a i n\rangle+\langle n| a|n\rangle] \quad a|n\rangle=\sqrt{n}|n-1\rangle \\
& \left.a^{1} / n\right\rangle=\sqrt{n+1}|n+1\rangle \\
& =0
\end{aligned}
$$

ind $\sum_{\left.m_{m}\left|\langle m| w^{\prime}\right| n\right\rangle\left.\right|^{2}}^{E_{n}} \quad\langle m| H^{\prime}|n\rangle=0$ arles $n=n+1$ or $m-1$

$$
\begin{aligned}
& E_{n}^{0}-E_{m}^{0} \quad\left\langle n+11 H^{\prime} \mid n\right\rangle=-\frac{e}{\sqrt{2 m \omega}}[\langle n+1| \operatorname{la}|n\rangle+\langle n+1| \text { of }|n\rangle] \\
& =\frac{-e E}{\sqrt{2 m \omega}} \sqrt{n} \\
& \langle n-1| H^{\prime}|n\rangle=\frac{-e E}{\sqrt{2 m \omega}} \sqrt{n+1} \\
& \frac{E^{2} E^{2} n}{2 m \omega}+\frac{e^{2} E^{2}(n+1)}{E_{n}^{0}-E_{n+1}} \frac{2 m \omega}{E_{n}^{0}-E_{n+1}}=\frac{\frac{e^{2} E^{2} n}{\frac{2 \omega \omega}{\omega}}+\frac{e^{2} E^{2}(n+1)}{\frac{2 m \omega}{\omega}}}{\frac{2}{\omega}} \\
& \omega\left(n+\frac{1}{2}\right)-\omega(n+1+1 / 2) \\
& \omega \neq \hat{n}+\frac{\omega}{2}-\omega n-B / 2 \quad-\omega
\end{aligned}
$$

$$
E^{(2)}=\frac{-q^{2} E^{2}}{2 m w^{2}}
$$

b) Find Exact energy

$$
\frac{-1}{2 m} \frac{d^{2} \psi}{d x^{2}}+\frac{m \omega^{2} x^{2}}{2} \psi-\varepsilon E x \psi=E \psi
$$

rewrite to make it look like the harmonic o Scillator

$$
\begin{aligned}
& \frac{m \omega^{2}}{2}\left[x^{2}-\frac{2 q E}{m \omega^{2}} x\right]=\frac{m w^{2}}{2}\left[x^{2}-2 q E x+\left(\frac{q^{2}}{m \omega^{2}}\right)^{2}-\left(\frac{q E}{m \omega^{2}}\right]\right. \\
& =\frac{m \omega^{2}}{2}\left[x-\frac{q E}{m \omega^{2}}\right]^{2}-\frac{m \omega^{2}}{2}{\underset{m}{ }}^{m^{2} \epsilon^{4}} \\
& \frac{q^{2} E^{2}}{2 m \omega^{2}} \\
& u=x-\frac{\varepsilon \varepsilon}{\operatorname{moz}} \quad \partial u=\partial x \\
& -\frac{1}{2 m} \frac{\partial^{2} \psi}{\partial u^{2}}+\frac{m \omega^{2}}{2} u^{2} \psi=E^{2} \psi \quad \Rightarrow \quad E^{2}=\omega(n+1 / 2)=E+\frac{Q^{2} E^{2}}{2 m \omega^{2}} \\
& E=\omega(n+1 / 2)-\frac{\varepsilon^{2} E^{2}}{2 m \omega^{2}}=E^{0}+E^{2}
\end{aligned}
$$

Spring 2005 \# (p 1.f 2)
Consider a particle of charge q in a one ediceensionat harmon oscillator potential Suppose there is also a weak electric field E so that the potent ai is shit ied by

$$
H^{\prime}=-q E x
$$

Part a) calculate the correction to the simple harmonic oscillate r energy levels through sand order in perturbation theory. (see Yang-Kuo Li $\# 50 \%$)
(i) $1^{\text {st }}$ - order

$$
E_{n}^{(1)}=\left\langle H^{\prime}\right\rangle=\langle n| H^{\prime}|n\rangle=-q E\langle n| x|n\rangle=0
$$

note: we immediakily know that this is zero since the only way for it to be non-zero is if the wo ut functions have apposite pry (sine x is odd).
(ii) $2^{\text {nd }}$-order

$$
E_{n}^{(2)}=\sum_{m \neq n} \frac{\left.\left|\langle m| H^{\prime}\right| n\right\rangle\left.\right|^{2}}{E_{n}^{0}-E_{m}^{0}}
$$

where $E_{n}^{0}=\omega\left(n+\frac{1}{2}\right) \& E_{n}^{0}=\omega\left(m+\frac{1}{2}\right) \Rightarrow E_{n}^{0}-E_{m}^{0}=\omega(n-m)$
and

$$
\begin{aligned}
&\langle m| H^{\prime}|n\rangle=-q E\langle m| x|n\rangle=\frac{-q E}{\sqrt{2 m \omega}}\langle m|\left(a+a^{+}\right)|n\rangle \\
&=\frac{-q E}{\sqrt{2 m \omega}}[\langle m| a|n\rangle+\langle m| a+|n\rangle] \\
& \Rightarrow\langle m| H^{\prime}|n\rangle=\frac{-q E}{\sqrt{2 m \omega}}\left[\sqrt{n} \delta_{m, n-1}+\sqrt{n+1} \delta_{m, n+1}\right]
\end{aligned}
$$

So,

$$
E_{n}^{(2)}=\sum_{m \neq n} \frac{\left.\left|\langle m| H^{\prime}\right| n\right\rangle\left.\right|^{2}}{E_{n}^{0}-E_{m}^{0}}=\frac{q^{2} E^{2}}{2 m \omega}\left[\frac{n}{\omega(n-n+1)}+\frac{n+1}{w(n-n-1)}\right]
$$

Spring 2005 \#1 (p 2 of 2)

$$
\begin{aligned}
\Rightarrow E_{n}^{(a)}= & \frac{q^{2} E^{2}}{2 m w}\left[\frac{n}{w}-\frac{n+1}{w}\right] \\
& \left.\therefore E_{n}^{(2)}=-\frac{q^{2} E^{2}}{2 m \omega^{2}}\right]
\end{aligned}
$$

part) Now solve the problem exactly, How de the exact erivigy levels compare with the perturbative result in (a)?
(set zetili example $9,1(\rho 4>3)$)
the total Itamitonian is given by

$$
\begin{array}{r}
H=H_{0}+H^{\prime}=\left(-\frac{1}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2}\right)-q E x \\
\text { let } y=x-\frac{q E}{m \omega^{2}} \Rightarrow y^{2}=x^{2}+\frac{q^{2} E^{2}}{\left(m \omega^{2}\right)^{2}}-\frac{2 q E}{m \omega^{2}} x
\end{array}
$$

so,

$$
\begin{aligned}
\frac{1}{2} m w^{2} y^{2}-\frac{q^{2} E^{2}}{2 m w^{2}} & =\frac{1}{2} m w x^{2}+\frac{q^{2} E^{2}}{2 m w^{2}}-q E x-\frac{q^{2} E^{2}}{2 m w^{2}} \\
& =\frac{1}{2} m w^{2} x^{2}-q E x
\end{aligned}
$$

Thus, by this substitution ow Hamiltanion is

$$
H=-\frac{1}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} y^{2}-\frac{q^{2} E^{2}}{2 m \omega^{2}}
$$

This is now the Ham.itenion of a harmonic oscillator from which a constant is subtracted. So, the exact eigenstotej ane

$$
E_{n}=w\left(n+\frac{1}{2}\right)-\frac{q^{2} E^{2}}{2 m w^{2}}
$$

\rightarrow this agnes exactly with the result of wort \langle)

Spring $2005 \# 2$
$H=T+V \quad H_{s}=T+V_{s} \quad H_{s}, V_{s}$ belong to a One dim attractive square well. Which drays has a bound state.

$$
\Rightarrow \int \psi_{s}^{*}\left(T+V_{s}\right) \psi d x=E_{s}
$$

E_{0} is ground state for v_{J} Lets use Ψ^{\prime} as a trail nae function.
(2) $\int \Psi_{S}^{e}(T+V) \psi_{j} d x \geq E_{0}$ [main point of variation method]

Subtract (1) from (2)
$\int \psi_{S}{ }^{2}\left(V-V_{s}\right) \psi_{S} \partial x \geq E_{0}-E_{s}$ Since Wis negative for all x a and V_{s} always has a bound state no matter what size it is.
$\Rightarrow\left(v-v_{5}\right)$ negative for all x
\Rightarrow negative amount $\geq E_{0}-E_{s}$, an
$E_{0} \leq$ negative amount $+E_{s} \quad$ And E_{s} is negative
$\Rightarrow E_{0}$ is always negative and therefor bound.

Spring $2005 \# 2(p \mid c, 53)$
Show that in 1-D any attractive potential, no matter hew weak, always hos at least one bound state. Hint use varatima! principe wish some appropricuteteal wave faction such os

$$
\left.\psi(x)=\frac{2 b}{\pi}\right)^{1 / 4} e^{-b x^{2}}
$$

where b is a poramite.
(see Young-kuo bim $Q M \neq 8020$) ... thin solution is a bit suspect.
attractive potent al $\Rightarrow V(x)<0$.
The Hamilton is giverby

$$
H=-\frac{1}{2 m} \frac{d^{2}}{d x^{2}}+V(x)=\frac{-1}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m w^{7} x^{2}+V(x)-\frac{1}{2} m w^{2} x^{2}
$$

So,

$$
\begin{aligned}
E & =\langle\psi(x)| H|\psi(x)\rangle=-\frac{1}{2 m}\left\langle\frac{d^{2}}{d x^{2}}\right\rangle+\frac{1}{2} m \omega^{2}\left\langle x^{2}\right\rangle+\langle v(x)\rangle-\frac{1}{2} m \omega^{2}\left\langle x^{2}\right\rangle \\
& =\langle\psi(x)| H_{0}|\psi(x)\rangle+\langle\psi(x)) H^{\prime}|\psi(x)\rangle
\end{aligned}
$$

The reason we wrote the tumitonim in this way is be cause we already know $\left\langle H_{0}\right\rangle$ which "s the ground state of the Harmonic oscillator. So, we have

$$
E=\frac{\omega}{2}+\langle V(x)\rangle-\frac{1}{2} m \omega\left\langle x^{2}\right\rangle
$$

where

$$
\left\langle x^{2}\right\rangle=\left(\frac{2 b}{\pi}\right)^{1 / 2} \int_{-\infty}^{\infty} x^{2} e^{-2 b x^{2}} d x=\left(\frac{2 b}{\pi}\right)^{1 / 2} \frac{\sqrt{\pi}}{2(2 b)^{3 / 2}}=\frac{1}{2}\left(\frac{1}{2 b}\right)=\frac{1}{4 b}
$$

So,

$$
-\frac{1}{2} m w^{2}\left\langle x^{2}\right\rangle=\frac{-m w^{2}}{8 b}=\frac{-w}{4}
$$

$\Rightarrow b=\frac{m w}{2}$ to fit the Hamming oscillator teat met.
spring $2005 \# 2(p 20 f 3)$
So,

$$
\begin{equation*}
E=\frac{\omega}{4}+\langle v(x)\rangle=\frac{b}{2 m}+\langle v(x)\rangle \tag{i}
\end{equation*}
$$

Then,

$$
\begin{aligned}
\frac{\partial E}{\partial b} & =\frac{1}{2 m}+\frac{\partial}{\partial b}\left[\sqrt{\frac{2 b}{\pi}} \int_{-\infty}^{\infty} e^{-2 b x^{2}} V(x) d x\right] \\
& =\frac{1}{2 m}+\underbrace{\frac{1}{2} \sqrt{\frac{2}{\pi b}} \int_{-\infty}^{\infty} e^{-2 b x^{2}} V(x) d x-\underbrace{2 \sqrt{\frac{2 b}{\pi}} \int_{-\infty}^{\infty} x^{2} e^{-2 b x^{2}} V(x) d x}_{\equiv I_{2}}}_{\equiv I_{1}} \begin{aligned}
&\left.\therefore \frac{1}{b}\right)^{\infty} \\
& \therefore \frac{\partial E}{\partial b}=\frac{1}{2 m}+\frac{1}{2 b}\langle V(x)\rangle-2\left\langle x^{2} V(x)\right\rangle
\end{aligned}, l
\end{aligned}
$$

note: For attractive well, we must have

$$
\int_{-\infty}^{\infty} V(x) d x \text { is finite }
$$

and

$$
\int_{-\infty}^{\infty} x^{2} v(x) d x \text { is Finite }
$$

So,

$$
\begin{aligned}
& \lim _{b \rightarrow 0} I_{1} \rightarrow \frac{1}{0} \int_{-\infty}^{\infty} V(x) d x \rightarrow-\infty \quad(\text { since } V(x)<0) \\
& \lim _{b \rightarrow 0} I_{2} \rightarrow 0 \quad \int_{-\infty}^{\infty} x^{2} V(x) d x \rightarrow \infty
\end{aligned}
$$

Thus,

$$
\lim _{b \rightarrow 0} \frac{\partial E}{\partial b} \rightarrow-\infty
$$

Sprig $2005 \# 2(\rho 3053)$
Now,

$$
\begin{aligned}
& \lim _{b \rightarrow \infty} I_{1} \rightarrow \frac{1}{\infty} \int_{-\infty}^{\infty} 0 \cdot V(x) d x \rightarrow 0 \\
& \lim _{b \rightarrow \infty} I_{2} \rightarrow \infty \int_{T^{-\infty}}^{\infty} 0 \cdot x^{2} \cdot V(x) d x \rightarrow 0 \\
& \text { giesty zero faster } \\
& g^{\circ f s}=\infty
\end{aligned}
$$

Thus,

$$
\lim _{b \rightarrow \infty} \frac{\partial \bar{E}}{\partial b} \rightarrow \frac{1}{2 m}>0
$$

The range of these limits shows es that $\frac{\partial E}{\partial \dot{b}}=0$ for some value of b. let us cull twat value ot b, bo. That is,

$$
\frac{\partial E}{\partial b}=0=\frac{1}{2 m}+\frac{1}{2 b_{0}}\langle V(x)\rangle-2\left\langle x^{2} V(x)\right\rangle
$$

Solving for $\langle v(x)\rangle$ yids

$$
\begin{equation*}
\Delta(x)\rangle=2 b_{0}\left[2\left\langle x^{2} V(x)\right\rangle-\frac{1}{2 m}\right] \tag{2}
\end{equation*}
$$

Thus, the energy is (substitute eq (2) into equj)

$$
\begin{aligned}
E= & \left\langle H\left(b_{0}\right)\right\rangle=\frac{b_{0}}{2 m}+4 b_{0}\left\langle x^{2} V(x)\right\rangle-\frac{b_{0}}{m} \\
& \Rightarrow E=-\frac{b_{0}}{2 m}+4 b_{0}\left\langle x^{2} V(x)\right\rangle<0 \quad, V(x)<0
\end{aligned}
$$

\therefore the system has at least one band state!

Spring $2005 \# 3$

$$
a(r)=v_{0} \theta(a-r) \text { with } v_{0}=\infty
$$

Radial wave equation (with $\hbar=1$)

$$
u^{\prime \prime}(r)+\left(k^{2}-\frac{e(e+1)}{r^{2}}\right) u-x u=0
$$

$$
\begin{aligned}
& U=r P(r) \\
& \lambda=2 m v(r) \\
& k^{2}=2 m E
\end{aligned}
$$

$$
\begin{aligned}
& \text { dor } r<a \\
& u^{\prime \prime}(r)+\left(k^{2}-\frac{e(e+1)}{r^{2}}\right) u=0 \quad r>9 \\
& R_{e}\left(r j=a_{e} j_{e}\left(k_{r}\right)+b_{e} n_{e}\left(t_{r}\right) \quad j_{e}=\right.\text { spherical Bessel Earction } \\
& n_{e}=\text { human functions } \\
& R_{e}(a)=0=a_{e} j_{e}(k a)+b_{e} n_{e}\left(k_{a}\right) \\
& a_{e} j_{e}\left(k_{a}\right)=-b_{e} n_{e}\left(k_{a}\right) \\
& \underset{r \rightarrow \infty}{j_{e}\left(k_{r}\right)}=\frac{\cos \left[k r-(e+1) \frac{\pi}{2}\right]}{k_{r}}=\frac{\sin \left(k r-\frac{\pi e}{2}\right)}{k r} \\
& n_{r \rightarrow \theta}^{n_{e}(k)}=\frac{\sin \left(k r-(\ell+1) \frac{\pi}{2}\right]}{k r}=-\frac{\cos (k r-e \pi}{k r} \frac{\pi}{2} \\
& R_{e}(r)=\frac{a_{l} \sin \left(k_{r}-\frac{\pi e}{2}\right)}{k_{r}}-b_{e} \frac{\cos \left(k r-\frac{e \pi}{2}\right)}{k_{r}}
\end{aligned}
$$

But then we know that anowther form of the solution is

$$
\begin{aligned}
& \cdot R_{e}(r)=\frac{e^{i \delta_{e}}}{k_{r}} \sin \left(k_{r}-\frac{\pi e}{2}+\delta_{e}\right) \quad \text { with } \tan \delta_{e}=\frac{-b_{e}}{a_{e}}=\frac{j_{e}\left(k_{q}\right)}{n_{e}\left(k_{a}\right)} \\
& \text { arbitray }
\end{aligned}
$$

phase constant.
This works since $\sin \left(1-\frac{\pi R}{2}+\nu_{e}\right)=\sin \left(k r-\frac{\pi e}{2}\right) \cos \delta_{e}+\cos \left(\pi_{r}-\frac{\pi e}{2}\right) \sin \theta_{e}$ Then by comarisen $\cos \delta_{e}=a_{e}$

But now, we want $e=0$ case.

$$
\begin{aligned}
& \Rightarrow \tan \delta_{\theta}=\frac{j_{0}\left(k_{a}\right)}{n_{0}\left(k_{a j}\right)}=-\tan (k a) \quad \Rightarrow \delta_{0}=-k_{a} \\
& \quad \operatorname{tor}_{\text {or }} \text { small k }
\end{aligned}
$$

for small K

$$
\sigma_{\text {tot }}=\frac{4 \pi}{r^{2}} \sin ^{2} \sigma_{0} k_{a} \approx \frac{4 \pi(k a)^{2}}{r^{2}}=4 \pi a^{2}
$$

small angle
approximation.

Spring $2005 \# 3$ (p lofz)
A beam of particles scoters off an in penetrable sphere of railisa, That is, the potential is zero otsich the sphere, inf mite maid. The wave function must umich at $r=d$.

What is the S-ware $(l=0)$ phase shift as a function of the incident envoy at momentum? What is the total cross section in the limit of zero incident !kinetic energy?
see spring 1999 \# 13. Abs p 283,284
The potential we are given has the farm

$$
V(r)=V_{0}(\Theta)(a-r) \text { in the limit } V_{0} \rightarrow \infty
$$

We know that the radial wave equation is

$$
\frac{d^{2} u}{d r^{2}}+\left(k^{2}-\frac{e(\ell+1)}{r^{2}}\right) u-\lambda u=0 \quad, k^{2}=2 m E ; \lambda=2 m V(r)
$$

where $U=r R(r)$.
subser...ng in for the value of the potential yicids

$$
\frac{d^{2} u}{d r^{2}}+\left[k^{2}-\frac{l(l+1)}{r^{2}}\right] u=0 \quad r>a
$$

the is no equation for $r<a$ since t is an impenetrable spine. The solutionsto this DIE are

$$
\begin{equation*}
R_{l}(r)=a_{l} j_{l}\left(k_{r}\right)+b_{l} n_{l}\left(k_{r}\right) \tag{1}
\end{equation*}
$$

we are told that

$$
\begin{align*}
& R_{l}(r=a)=0=a_{l} f_{l}\left(k_{a}\right)+b_{l} n_{l}\left(k_{a}\right) \\
\Rightarrow & -\frac{b_{l}}{d_{l}}=\frac{f_{l}\left(k_{a}\right)}{n_{l}\left(k_{a}\right)} \equiv \tan \delta_{l} \quad \text { (2) } \tag{2}
\end{align*}
$$

Spring $200543\left(p^{2}+0\right)$
as $r \rightarrow \infty$, ar solution gin by eq (0) becones

$$
R_{l}(r)=\frac{a_{l} \sin \left(k_{r}-\frac{\pi l}{2}\right)}{k r}-\frac{b_{l} \cos \left(k_{r}-\pi f / 2\right)}{k r}
$$

We know from solutions to $D \cdot E$, s that we can also wite this solution as

$$
R_{l}(r)=\frac{e^{i \delta_{l}}}{k r} \sin \left(k r-\frac{\pi l}{2}+\delta_{l}\right)
$$

where $e^{i \delta e}$ is a phase shift to male sure that the out going wave is only due to the scattering and not the plane wave.

Now, we wait bo find the s-wave (l=0) phase shift. From co e) this become

$$
\begin{aligned}
& \tan \delta_{0}=\frac{f_{0}(k a)}{n_{0}(k a)}=\frac{\frac{\sin k a}{k a}}{-\frac{\cos k a}{k a}}=-\tan k a \\
& \therefore \delta_{0}=-k a \quad, k=\sqrt{2 m E}
\end{aligned}
$$

Now, we want the total cross section. From Ales of 8.121 we know that in the limit as $K \rightarrow 0$, Trot is given by

$$
\sigma_{t o t}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0}
$$

since bo $\ll 1$ For our case ($\sin c t k \geqslant 0$) we have

$$
\sigma_{\text {tot }}=\frac{4 \pi}{k^{2}} \partial_{0}^{2}=4 \pi a^{2}
$$

Spring 2005 \# 4

$$
H=9 \mu_{0} \frac{5}{\hbar} \cdot B \quad B=B_{0} \hat{z} \quad \hbar=1 \quad \sigma=25
$$

a)

$$
H=g \mu_{0} B_{0} S_{z}=\frac{2 g \mu_{0} B_{0} \sigma_{z}}{2}
$$

$$
\begin{aligned}
\lambda & \left.= \pm \frac{g \mu_{0} B_{0}}{2} \quad H\right\rangle=\binom{1}{j} \quad 1-\binom{0}{1} \\
\Delta E & =g \mu_{0} \beta_{0}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \left.t=0 \quad 1 \psi(0)\rangle=\frac{1}{\sqrt{2}}(1)=\frac{1}{\sqrt{2}}[1+\rangle+1->\right] \\
& \psi(t)=e^{-i H t}|\psi(0)\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \psi(t)=\frac{1}{\sqrt{2}}\binom{e^{-i \omega t}}{e^{i \omega t}}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \left\langle S_{x}\right\rangle=\left\langle\frac{\sigma_{x}}{2}\right\rangle=\frac{1}{\sqrt{2}}\left(e^{+i \omega t} e^{-i \omega t}\right) \frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\binom{e^{i \omega t}}{e^{i \omega t}} \\
& =\frac{1}{4}\left(e^{\text {+i } \omega t} e^{-i \omega t}\right)\binom{e^{i \omega t}}{e^{-i \omega t}}=\frac{1}{4}\left(e^{i 2 \omega t}+e^{-i 2 \omega t}\right)=\frac{1}{2} \cos (2 \omega t)
\end{aligned}
$$

$$
\begin{aligned}
\left\langle s_{y}\right\rangle & =\frac{i}{4}\left(e^{i \omega t} e^{-i \omega t}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{e^{-i \omega t}}{e^{i \omega t}} \\
& =\frac{i}{4}\left(e^{i \omega t} e^{-i \omega t}\right)\binom{-e^{i \omega t}}{e^{-i \omega t}}=\frac{i}{4}\left(-e^{i 2 \omega t}+e^{-i 2 \omega t}\right) \\
& =\frac{1}{4 i}\left(e^{i 2 \omega t}-e^{-i 2 \omega t}\right)=\frac{1}{2} \sin (2 \omega t) \\
& =\frac{1}{4}\left(e^{i \omega t} e^{-i \omega t}\right)\binom{e^{-i \omega t}}{-e^{i \omega t}}=\frac{1}{4}(1-1)=0 l
\end{aligned}
$$

Spring 2005 \#4 (p $10 F 2$)
A electron is at rest in a constant magnetic field porting in the $z-d i x . t$ in The hamitonim is then

$$
H=-\vec{\mu} \cdot \vec{B}=g \mu_{0} \frac{\vec{s}}{\hbar} \cdot \vec{B}
$$

whet $\overrightarrow{3}=B_{0} \hat{z}$
Let $\left|\psi_{ \pm}\right\rangle$be the eigenstates of s_{z} with eigenvalues $\pm \frac{\hbar}{2}$ respectively,
part a) What are the eige1states of the Hamiltonian, and what's the ersigy difference between them?
(See spring 1999\#11)

$$
\vec{B}=B_{0} \hat{z} \quad H=\frac{g \mu_{0} B_{0}}{2} \sigma_{z}=\frac{g \mu_{0} B_{0}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

since the is a diagonal matrix, the eigen valued are just the elements a long the diaqual. That is,

$$
7= \pm \frac{9 \mu_{0} B_{0}}{2}
$$

so the eigentates are

$$
\begin{aligned}
& \left|\lambda=-g \frac{\mu_{2} B_{0}}{2}\right\rangle:\left(\begin{array}{cc}
g \mu_{0} B_{0} & 0 \\
0 & 0
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}=0 \Rightarrow|\lambda-\rangle=\binom{0}{1} \equiv|\psi-\rangle \\
& \left|\lambda=+q \frac{\mu_{j} B_{0}}{2}\right\rangle:\left(\begin{array}{cc}
0 & 0 \\
0 & -q \mu_{0} B_{0}
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}=0 \Rightarrow|\lambda+\rangle=\binom{1}{0} \equiv\left|\psi_{+}\right\rangle
\end{aligned}
$$

the energy difference is $\Delta E=g \mu u B_{0}$
(b) At time $t=0$ the electron is in an eigenstate of $s x$ with eigenvalue $\hbar / 2$, calculate $|\psi(t)\rangle$ for mary t.

$$
s_{x}=\frac{\sigma_{x}}{2}, \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \Rightarrow \lambda_{\sigma_{x}}= \pm 1 ;|\lambda=+1\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

(see sa9*11 for details)

$$
|\psi(t=0)\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{\sqrt{2}}\left|\psi_{+}\right\rangle+\frac{1}{\sqrt{2}}|\psi-\rangle
$$

Spring $2005 \# 4(p 2 . F 2)$

$$
\begin{aligned}
|\psi(t)\rangle & =e^{-i H t}|\psi(0)\rangle \\
& =\frac{1}{\sqrt{2}} e^{-i H_{+} t}|\psi+\rangle+\frac{1}{\sqrt{2}} e^{-i H-t}|\psi-\rangle \\
\therefore|\psi(t)\rangle & =\frac{1}{\sqrt{2}} e^{-i q \frac{\mu_{0} B_{0}}{2}}|\psi+\rangle+\frac{1}{\sqrt{2}} e^{+i \frac{\mu_{p} B_{0}}{2}}|\psi 0\rangle
\end{aligned}
$$

(c) For the state you cakuloted in port (b), what are the expectation values of the three lompurits of the spin at any time? let $\alpha=g \frac{\mu_{0} B_{C}}{2}$
(i) $\left\langle S_{x}\right\rangle$

$$
\begin{aligned}
&\left\langle S_{x}\right\rangle=\langle\psi(t)| S_{x}|\psi(\tau)\rangle=\frac{1}{2}\left\langle\sigma_{x}\right\rangle=\frac{1}{4}\left(e^{i \alpha t} e^{-i \alpha t}\right)\binom{0!}{10}\binom{e^{-i \alpha t}}{e^{i \alpha t}} \\
&=\frac{1}{4}\left(e^{i \alpha t} e^{-i \alpha t}\right)\binom{e^{i \alpha t}}{e^{-i \alpha t}}=\frac{1}{4}\left(e^{i \alpha \alpha t}+e^{-i 2 \alpha t}\right) \\
& \therefore\left\langle S_{x}\right\rangle=\frac{1}{2} \cos (2 \alpha t)=\frac{1}{2} \cos \left(g \mu_{0} B_{0} t\right)
\end{aligned}
$$

(ii $\left\langle S_{4}\right\rangle$.

$$
\begin{gathered}
\left\langle s_{y}\right\rangle=\frac{1}{2}\left\langle\sigma_{y}\right\rangle=\frac{1}{y}\left(e^{i a t} e^{-i \alpha t}\right)\left(\begin{array}{cc}
0-i \\
+i & 0
\end{array}\right)\binom{e^{-i \alpha t}}{e^{i \alpha t}} \\
\Rightarrow\left\langle S_{y}\right\rangle=\frac{1}{2} \sin \left(g \mu_{0} B_{0} t\right)
\end{gathered}
$$

$\left(\because \quad\left\langle S_{\bar{z}}\right\rangle\right.$

$$
\left\langle S_{z}\right\rangle=0 \quad,\left\langle S_{z}\right\rangle=\frac{1}{4}\left(e^{i \alpha t} e^{-i \alpha t}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{e^{-i \alpha t}}{e^{i \alpha t}}=0
$$

Spring 2005 ± 5 natural units $t=c=1$

$$
\psi\left(r_{1}, \phi\right)=N \cdot R_{21}(r)\left[2 ; Y_{1}^{-1}+(2+, \cdot) Y_{1}^{0}+3, Y_{1}^{\prime}\right]
$$

\dot{Y}_{e}^{m}, Rene Remember Y_{e}^{m} 's are normalized
as find N

$$
\int Y_{e}^{m} Y_{e}^{m} \sin \theta d e d \phi=1
$$

$$
\begin{aligned}
& \left.+\beta_{0}^{0} p_{21}^{0} r^{2} d r+9 \int_{0}^{\infty} p_{21}^{2} r^{2} d r\right] \text {. }
\end{aligned}
$$

$=18 N^{2} \int_{0}^{\infty}\left|R_{2 i}\right|^{2} r^{2} d r$ But Radiatrware equations owe a bo normalized.

$$
18 N^{2}=1 \quad N^{2}=\frac{1}{18} \quad N=\frac{1}{\sqrt{18}}=\frac{1}{3 \sqrt{2}}
$$

b) $L_{Z} Y_{e}^{m}=m Y_{e}^{m}$.

$$
\begin{aligned}
\langle\Psi| L_{2}|\Psi\rangle & =\left.\cdot N N^{\prime} \int R_{2}\right|^{2}\left[(4) Y_{1}^{*} L_{2} Y_{1}^{-1}+5 Y_{1}^{0} L_{2} Y_{1}^{0}+q Y_{1}^{1 *} L_{2} Y_{1}^{1}\right] d d^{3} r \\
& =N^{2} \int\left|R_{21}\right|^{2}[4 \cdot(-1)+5 \cdot(0)+q \cdot(1)] r^{2} d r \\
& =N^{2} 5 \int\left|R_{21}\right|^{2} r^{2} d r+4=5 \\
& =N^{2} 5 \\
& =\frac{5}{18}
\end{aligned}
$$

c)

$$
\begin{aligned}
L^{2} Y_{e}^{m} & =l(e+1) Y_{e}^{m} \\
\langle\psi| L^{2}|\psi\rangle & =\left.N^{2} \int r_{21}\right|^{2} r^{2} d r[4(1(1+1))+5(1(1+1))+9(1(1+1))] \\
& =N^{2} 36 \\
& =\frac{36}{18}=2
\end{aligned}
$$

d)

$$
\begin{aligned}
& \text { 1) } v(r)=\frac{-e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r} \quad r \frac{\partial}{\partial r}\left(\frac{-e^{2}}{4 \pi^{\prime} \epsilon_{0}} \frac{1}{r}\right)=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r}=-V \\
& 2\langle T\rangle=\left\langle r \frac{\partial}{\partial r} v(r\rangle\right\rangle=\langle-v\rangle \quad\langle T\rangle=\frac{-1}{2}\langle v\rangle \\
& \langle H\rangle=\langle T\rangle+\langle v\rangle=\frac{-1}{2}\langle v\rangle+\langle v\rangle=\frac{1}{2}\langle v\rangle \\
& \langle H\rangle=-\frac{m_{e}}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{1}{n^{2}}=\frac{1}{2}\langle v\rangle \quad \text { seting } \quad \hbar=\hbar \quad \text { for this } \\
& \langle v\rangle=\frac{-m_{0}}{\hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{r}}\right) \frac{1}{n^{2}} \quad \text { section. } \\
& =\partial\langle T\rangle=\frac{m_{e}}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \xi_{0}}\right) \frac{1}{n^{2}}
\end{aligned}
$$

Spring 2005 (p $^{1 . f 2 \text {) }) ~}$
An election moves in a hydrogen atom potential -ignoring spin and relativity - ma state $|\psi\rangle$ that hus the wave function

$$
\psi(r, \theta, t)=N R_{2}(r)\left[2: y_{1}^{-1}(\theta, \phi)+(2+i) y_{1}^{0}(\theta, \phi)+\xi_{i} y_{1}^{\prime}(\theta, \phi)\right]
$$

When the $y_{l}^{m}(\theta, \phi)$ are the spherical harmonics, $R_{n e}(r)$ are the normalized hydrogen aton wave functions, and N is a positive real number.
(see Abers Final from 221A \#2)
we can re-write this wave function for simplicity. That is,

$$
|\psi\rangle=N\left[C_{m=-1}|2,1,-1\rangle+C_{m}=0|2,1,0\rangle+C_{m=1}|2,1,1\rangle\right]
$$

where $c_{m}=-1=2 i, c_{m}=0=(2+i)$, and $c_{m=1}=3 i$
(a) Calculate N.

$$
\begin{aligned}
& 1=\left|N^{2}\left[|2 i|^{2}+|2+i|^{2}+|3 i|^{2}\right]=|N|^{2}[4+5+9]\right. \\
& \therefore N=\frac{1}{\sqrt{8}}
\end{aligned}
$$

(b) what is the expectation value of L_{z} ?

$$
L_{z}|n, l, m\rangle=m|n, l, m\rangle
$$

so

$$
\begin{aligned}
\left\langle L_{z}\right\rangle=|N|^{2}[& |2 i|^{2}\langle 2,1,-1| L_{z}|2,1,-1\rangle+|2+i|^{2}\langle 2,1,0| L_{z}|2,1,0\rangle+ \\
& \left.+|3 i|^{2}\langle 2,1,1| L_{z}|2,1,1\rangle\right] \\
= & \frac{1}{18}[4(-1)+5(0)+9(1)]=\frac{5}{18}
\end{aligned}
$$

Spring $2005 \# 5(p 20+2)$
(c) what is the expectation value of L^{2} ?

$$
l^{2}|n, l, m\rangle=l(l+1)|n, l, m\rangle
$$

So,

$$
\begin{aligned}
\left\langle L^{2}\right\rangle= & |N|^{2}\left[\left|2_{1}\right|^{2}\langle 2,1,-1| L^{2}|2,1,-1\rangle+|2+i|^{2}\langle 2,1,0| L^{2}|2,1,0\rangle+\right. \\
& \left.+|3,|^{2}\langle 2,1,1| L^{2}|2,1,1\rangle\right] \\
= & \frac{1}{18}[4 \cdot 1(1+1)+5,1(1+1)+9 \cdot 1(1+1)] \\
= & \frac{1}{9} \cdot 18=2
\end{aligned}
$$

(d) What is the expectation value of the kinetic energy in tums of t, c, the fine stricture constant x, and the auction mass m ?

From the vitial theorem we know that

$$
\langle T\rangle=-E_{n} \leftarrow \text { see Griffith' QM } 4.41
$$

the energy levels for a hydrogen aroma are (in natural units)

$$
E_{n}=-\frac{\alpha^{2} m}{2 n^{2}}
$$

So, for $n=2$

$$
\langle T\rangle=\frac{+\alpha^{2} m}{8}
$$

Spring 2005 \#6

A	B
$V / 2$	$V / 2$
$N / 2$	$N / 2$

a) $Z=\frac{1}{N!}\left(\frac{V}{\left(\sqrt{2 \pi^{2} b^{2} / M K_{b} t}\right)^{3}}\right)^{N}=\frac{1}{N!}\left(\frac{V}{\lambda_{+n}{ }^{3}}\right)^{N}$

Betore

$$
Z_{A}=\frac{1}{N_{A}!}\left(\frac{V_{A}}{x_{+n^{3}}}\right)^{N_{A}} \quad Z_{B}=\frac{1}{N_{B}!}\left(\frac{V_{B}}{\lambda+h^{3}}\right)^{N_{B}}
$$

After

$$
\begin{aligned}
& Z_{a B}=\frac{1}{N_{A}^{\prime}}\left(\frac{V}{\lambda^{+n^{3}}}\right)^{N_{A}} \frac{1}{N_{B}!}\left(\frac{V_{C}}{x^{+n^{3}}}\right)^{N_{B}} \\
& S=k(\ln Z+\beta \bar{\epsilon}) \quad, \quad I \epsilon \quad Z=\frac{z_{1} N}{N_{1}} \\
& \text { Indemal Enersy } \\
& 3 / 2 \text { NKT } \\
& \ln Z=N \ln Z_{1}-\ln N! \\
& =N \ln Z_{1}-N \ln N+N \\
& =K N[\ln V+3 / 2 \ln T+\sigma]+K(-N \ln N+N) \quad \sigma=\frac{3}{2} \ln \left(\frac{2 \gamma m}{n^{2}}\right)+\frac{3}{2} \\
& S=k N\left[\ln \frac{V}{N}+3 / 2 \ln T+\sigma_{0}\right] \quad \sigma_{0}=1+\sigma
\end{aligned}
$$

Before

$$
\begin{aligned}
S=S_{A}+S_{B} & =k \frac{N}{2}\left[\ln \frac{V / 2}{N / 2}+3 / 2 \ln T+\sigma_{0}\right]+\frac{k N}{2}\left[\ln \frac{V / 2}{N / 2}+3 / 2 \ln T+\sigma_{0}\right] \\
& =k N\left[\ln \frac{V}{N}+3 / 2 \ln T+\sigma_{0}\right]
\end{aligned}
$$

Atter

$$
\begin{aligned}
S=S_{A}+S_{B} & =k \frac{N}{2}\left[\ln \frac{V}{N / 2}+3 / 2 \ln T+\sigma_{0}\right]+\frac{k N}{2}\left[\ln \frac{V}{N / 2}+3 / 2 \ln T+\sigma_{0}\right] \\
& =k N\left[\ln \frac{V}{N}+3 / 2 \ln T+\sigma_{0}\right]+N K \ln 2
\end{aligned}
$$

$$
S_{\text {after }}-S_{\text {betcre }}=N k \ln 2
$$

b). If you remove the wall, no work is clone $\Rightarrow \Delta E=\Delta Q$ But since the energy depends only on the temperature for ideal gases and T is fixed $\Delta E=0 \Rightarrow \Delta Q=0$

The process is irreversible though since $\Delta S \geq 0$.
C) $\Delta Q=0$ still for the same reason. $\Delta S=0$ Now so the process is reversible which makes sence with the particles all being identical. Basicly nothing happened.

Spring 2005 (\#6 oof 4)
A closed container is divided by a wall into tan equal pouts like the figure

| $\frac{N}{2}$ | M_{1} | $\frac{N}{2}$ | M_{2} |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{V}{2}$ | $\frac{V}{2}$ | | |
| A | B | | |

where M_{1} i M_{2} are identical types of particles but distinguishable from each other and they both make up ideal gases.
a) the partition function $Z(N)=\frac{1}{N!}\left(\frac{V}{\sqrt{2 \pi t^{2} / M K T}}\right)^{N}$ is for an idoalgas of N particles of mass M in a volume V. Give the partition functim of the gas in the container before and of ter the weill is removed. What are the entropy and pressure be fare ont after the wall is remand?

Before wall is removed we simply have

$$
\begin{aligned}
& Z_{A}=\frac{1}{(V / 2)!}\left(\frac{V / 2}{\sqrt{2 \pi \hbar^{2} / \mu_{1} k T}}\right)^{N / 2} \\
& Z_{B}=\frac{1}{(N / 2)!}\left(\frac{V / 2}{\sqrt{2 \pi \hbar^{2} / A_{2} k T}}\right)^{N / 2}
\end{aligned}
$$

Set $\hbar=1$.
So, the partition function for the system is

$$
\begin{aligned}
& Z=z_{A} z_{B}=\frac{1}{[(N / 2) \cdot]^{2}}\left[\frac{V^{2} / 4}{\frac{2 \pi}{k T} \sqrt{\frac{1}{M_{1} M_{2}}}}\right]^{N / 2} \\
& \left.\therefore \quad Z_{\text {before }}=\frac{1}{[(N / 2)!]^{2}}\left[\frac{V\left(M_{1} M_{2}\right)^{1 / 4}}{2 \sqrt{\beta 2 \pi}}\right]^{N}\right]
\end{aligned}
$$

\rightarrow note partition functions of uncorrelated systems are multiplied ba dak other

Spring $2005 \# 6(p 2$ of 4$)$
After the wall is removed, the partition function is (now $\frac{V}{2} \rightarrow V$)

$$
z_{\text {after }}=\frac{1}{[(N / 2)!]^{2}}\left[V \sqrt{\frac{\left(m_{1} m_{2}\right)^{1 / 2}}{2 \pi \beta}}\right]^{N}
$$

Now, we wat to find the entropy and pressure. To dothis, let's first find the free energy. So,

$$
F=-k T \ln Z \text { and } p=-\left(\frac{\partial F}{\partial V}\right)_{T, W} \quad i \quad S=-\left(\frac{\partial F}{\partial T}\right)_{V, N}
$$

where

$$
\begin{aligned}
\ln z_{\text {before }} & =-2 \ln \left(\frac{N}{2}\right)!+N \ln \frac{V\left(m_{1} m_{2}\right)^{1 / 4}}{2 \sqrt{(\beta 2 \pi}} \quad, N \gg 1 \\
& \cong-N \ln \frac{N}{2}+N+N \ln V+N \ln \frac{\left(m_{1} m_{2}\right)^{1 / 4}}{2 \sqrt{2 \pi \beta}}+\frac{1}{2} N \ln K T
\end{aligned}
$$

and

$$
\ln z_{\text {after }} \simeq-N \ln \frac{N}{2}+N+N \ln V+\frac{N}{2} \ln \frac{\left(\mu_{1} \mu_{2}\right)^{1 / 2}}{2 \overline{\pi B}}+\frac{N}{2} \ln k T
$$

So,

$$
P_{\text {before }}=K T\left(\frac{\partial \ln Z_{\text {before }}}{\partial V}\right)_{T_{i} N}=\frac{K T N}{V}
$$

and

$$
P_{a f t e}=K T\left(\frac{\partial \ln z_{a f t r}}{\partial V}\right)_{T, N}=\frac{k T N}{V}
$$

Also, we know that $S=-\left(\frac{\partial F}{\partial T}\right)_{U, N}$, But the following will be easier to use

$$
S=k(\ln z+\beta \bar{E}) \quad\left(R e, f e_{q} 6.6 .5\right)
$$

Spring 2005-6 (p 3af4)
So,

$$
S_{i}=k\left(\ln z_{i}+\beta \bar{E}\right) \quad, \vec{E}=\frac{3}{2}\left(\frac{\alpha}{2}\right) k T
$$

Then,

$$
\begin{aligned}
S_{\text {be fare }} & =S_{A}+S_{B}=K\left(\ln Z_{A_{\text {before }}}+\frac{3}{2} \frac{N}{2}\right)+K\left(\ln Z_{B_{\text {be fave }}}+\frac{3}{2}\left(\frac{N}{2}\right)\right) \\
& =K \ln Z_{A b e f i r e} Z_{\text {Before }}+\frac{3}{2} N K=K \ln Z_{\text {before }}+\frac{3}{2} N K \\
S_{\text {before }} & =K N\left[-\ln \frac{N}{2}+\frac{5}{2}+N \ln \frac{V\left(m_{1} m_{2}\right) / 4}{2 \sqrt{\beta^{2 \pi} \pi}}\right]
\end{aligned}
$$

And

$$
S_{\text {after }}=S_{\text {before }}+k T \ln 2
$$

Thus,

$$
\Delta S=S_{\text {after }}-S_{\text {before }}=k T \ln 2
$$

(b) How much heat is absorbed or released following the removal af the wall? Is it reversishor irreversible prows?

Since $\Delta S>0$, then the process is irreversible. Since no heat is exchared with the environment $d s \neq \frac{d Q}{T}$, so, we must aside list law of the" mo (no work is dore)

$$
d E=d Q
$$

since $d E=0, d Q=0$.

Spring $2005 \# 6$ (p4of4)
(c) let $M_{1}=M_{2}$ and answer the same question as part (b),

Since the particles are noidenticle, $\Delta S=0$, the process is reversible. We still have $d Q=0$.

S'O5 \# 8.; E. M.

Consider a two dimensional (v, θ) electrostatic problem consisting of two infinite plates making an angle α with each other. and held at a potential difference v, es shown below:

Pasta) Fink the potential $\phi(v, \theta)$ in the vacuum region between the plates.

Now insert a wedge dielectric, of dielectric coefficient, and angle β, resting on the bottom plate as shown below:

Part b) Find the pressure experienced bo the bottom plate at a distance r from the apex (from the line joining the two plates).
a) From Prof. wong's lecture notes $\begin{gathered}\left(p_{1} 21\right)\end{gathered} \frac{v_{\alpha}}{v_{1}} \phi=v_{1}-\frac{v_{2}-v_{1}}{\alpha} \theta$
so in our case $v_{1}=0 ; v_{2}=v$:

$$
\phi=\frac{v}{2} \theta
$$

CThis was assuming the first inge was incorrect and there was actually no dielectric material present - orisiad comp. image was identical to the second image).
b) dielectric coefficient $\epsilon=\epsilon_{2}=\frac{\varepsilon}{c_{0}}=\varepsilon_{1} b_{3}$ definition (Griffith p.1894.34) Now the field lines go like: as $\varepsilon_{0} \equiv 1$
 so at a point r:

$$
\begin{aligned}
& \phi=E_{1} S_{1}+E_{2} s_{\alpha} ; S_{1}=r \beta ; s_{2}=r(\alpha-\beta) \\
&=V \\
& \varepsilon E_{1}=D \quad E_{\alpha}=D \\
& \in E_{1}=D
\end{aligned}
$$

$$
\Rightarrow \phi=\frac{D}{\epsilon} r \beta+D r(\alpha-\beta) \text { or } D=\frac{\phi}{r(\beta / \epsilon+\alpha-\beta)}
$$

now $|\vec{D}|=\sigma_{f}$ and Pressure, $P=\frac{1}{2} E_{1} \sigma$ (Griffit hs $p, 102 \mid$ 2.50) $\xrightarrow{D} \xrightarrow{\frac{\pi}{\epsilon}}$
so $P=\frac{1}{2} \frac{D}{\epsilon} \frac{\phi}{r(\alpha-\beta+\beta / \epsilon)}=\frac{1}{2} \frac{\phi^{2}}{\epsilon r^{2}} \frac{1}{[\alpha-\beta+\beta / \epsilon]^{2}}=\frac{1}{2} \frac{v^{2}}{\epsilon r^{2}}[\alpha-\beta+\beta / \epsilon-1$ $\frac{D^{2}}{\epsilon}$

A relativistic charged particle of charge aral rest-mass mo is in a regin of uniform magnetic field $B_{0} \hat{z}$. At i me $t=0$ the particle has zero velocity along \hat{z} (that is $\beta z=v z / v=0$) and finite transierse speech $\beta_{\perp}=\beta_{0}$, with

$$
\beta_{\perp}=\sqrt{v_{x}^{2}+y_{3}^{2}} / c
$$

Here $x, 2$, and z are cartesian coordinates in the lat frame.
Part a) What is the value of $\beta_{1}(t)$ for $t>0$?
Part) what is the angular frequency Ω of rotation (that is, the gyrofrequere 3). No need for a caluelation, just identify Ω.

Puitc) Now apply a zerifurm electric field Eon, parallel to \vec{B}, starting at $t=0$. Withaet solving abtailech equations, concluate what happens to the β I in part (a). Does it change?
a) $\beta_{1}=\sqrt{\beta_{x}^{2}+\beta_{y}^{2}}=$ Const. as a maymetic field can coo no wort, Hence $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$ is also constant.

The only difference between this case and the none relutruistic one is: instead of using regular momentum mo 2 one reals to use the relativistic one como

So

$$
\begin{aligned}
& \frac{\alpha \vec{p}}{\alpha x}=\vec{q}(\vec{v} \times \vec{B})= \\
& \lambda \\
& \operatorname{rm}_{0} \frac{\alpha \vec{\beta}}{\alpha z^{*}}=-\phi \operatorname{dB}(\vec{\beta} \times \hat{z})
\end{aligned}
$$

$$
e^{\text {from }} \vec{B}=B_{c} \hat{z}
$$

This form will be useful fir (c) - here you can already see

$$
r=\frac{z_{i} B}{\gamma m_{0}}
$$

so

$$
\begin{aligned}
\frac{\alpha \vec{\beta}}{\alpha e}=\frac{\partial B_{c}}{\delta m_{c}}\left|\begin{array}{ccc}
\beta_{x} & \beta_{y} & 0 \\
0 & c & i
\end{array}\right| & =\underbrace{\frac{8 B_{c}}{\sigma_{0}}\left[\hat{x} \beta_{y}-\hat{y} \beta_{x}\right]}_{0} \\
& =\Omega
\end{aligned}
$$

hence $\quad \frac{d \beta_{x}}{d x}=\pi B_{y} ; \frac{d \beta_{y}}{d t}=\Omega \beta_{x}$
taking time derivative of second equation and playing into first one:

$$
\frac{d^{2} \beta_{y}}{d t^{2}}=\Omega \frac{\alpha}{d x} \beta_{x}=\Omega^{2} \beta_{y}
$$

So $\quad B_{y}=A \cos (\Omega t)+C \sin (\Omega t)$
similarity $\beta_{x}=D \cos (\mu t)+E \sin (\Omega t)$
From the initial condition $\beta^{\alpha}=\beta_{x}^{2}+\beta^{2} y=\beta_{0}^{2}$

$$
\beta_{x}=\beta_{0} \cos (2 x) ; \beta_{y}=\beta_{0} \sin (-2 x) \quad \text { (just recce to give }
$$ it circular motion)

So $\quad \beta_{L}(t)=\beta_{0}(\cos (2 x), \sin (2 t))$
(6) $R=\frac{z B}{\delta m_{0}}=\frac{\frac{z}{y}}{E_{r e s t}}$ which okiffers from the classical result by $\frac{1}{\gamma}$
(c) with an E-fielle along the \hat{z}. direction there is now an acceleration along \vec{z}-which causes $\vec{\beta} \neq$ constant. This also means γ is no longer constant as well, ie. $\gamma(t)$
So from the previous page:

$$
\frac{\alpha \vec{p}}{d t^{*}}=\nabla C(\vec{\beta} \times \vec{B})=\frac{q \psi B_{0}}{\gamma m_{0}}(\vec{\rho} \times \vec{z})
$$

From dimensions $\frac{\partial B_{0}}{\partial m_{0}}=$ loceonds hence $-R(t)=\frac{\theta B_{0}}{r_{0} \gamma(t)}$ so as $\vec{\beta}$ increases to $1 \gamma \rightarrow \infty$ hence $\rightarrow \rightarrow 0$ or the particle stops rotating! So β_{\perp} decreases to $i 0$.

S'O5\#12; $E . n$.

A thin copper ring (conductivity σ, density e) is suspended so it can rotate freely about one diameter. There is a uniform magnetic field B.perperdicular to the anis of rotation. At time toO the ring is set rotating with frequency w_{0}. calculate the time it ta hes the frequency to decrease to $1 / \mathrm{s}$ of its original value, assuming the energy goes into Joule heating.
-12此

Assuming w_{0} is Verge enough that it doesn'xt change much after one rotation.

$$
T=\frac{1}{2} I w^{2} \quad I=\text { moment of inertia }=\frac{1}{2} M r^{2}
$$

Joule heating $P=I V=\frac{V^{2}}{R}$, now us for V :

$$
\begin{aligned}
& \varepsilon=-\frac{d}{\alpha t} \bar{\alpha} ; \Phi=B \pi r^{2} \cos \left(\omega_{0} t\right) \ll a n \text { also be } \sin \left(\omega_{0} x\right) \\
& \varepsilon=-\frac{d}{d e} B \pi r^{2} \cos \left(\omega_{0} x\right)=B \pi r^{2} \omega_{0} \sin \left(\omega_{0} x\right)
\end{aligned}
$$

so

$$
\begin{aligned}
& \frac{\varepsilon^{2}}{A}=\frac{V^{2}}{R}=\frac{\left(B \pi r^{2} \omega_{0}\right)^{2}}{R} \sin ^{2}\left(\psi_{0} t\right)=P=\frac{\left(B \pi r^{2} \omega_{0}\right)^{2}}{2 A} a s \quad\left(\sin ^{2}\left(\psi_{0}\right)\right) \\
&=\left\langle\cos ^{2}\left(\omega_{0} t\right)\right)=1 /
\end{aligned}
$$

row the change in kinetic every.... over ore period

$$
\frac{\frac{d T}{d t}}{T}=\frac{-p}{T}=\frac{-\left(B \pi r^{2} u_{0}\right)^{2}}{\frac{2 A}{M r^{2} v_{0}^{2}}}=\frac{-\left(Q B^{2} \pi^{2}\right) r^{2} \varphi_{0}^{2}}{R M r^{2} \psi_{0}^{2}}-\frac{2(B \pi r)^{2}}{M R}=\text { cont. }
$$

so

$$
\begin{array}{r}
\frac{d T}{T}=-c d t \Rightarrow T=T_{0} e^{-c t} \Rightarrow w^{2}=w_{0}^{2} e^{-c t} \\
\text { or } w=w_{0} e^{-\frac{c}{\lambda} t}
\end{array}
$$

so the time constant $c^{-1}=\frac{C}{2}=\frac{(B \pi r)^{2}}{M R}$
now $\quad n=e(2 \pi r)\left(\pi r_{w}^{2}\right) ; \quad R=\frac{1}{\sigma} \frac{2 \pi r}{\pi r_{w}^{2}}$
so $\left.\mu A=\rho(\lambda \pi r)(\pi r)^{2}\right) \frac{1}{\sigma} \frac{d \pi r}{\frac{12 x}{1}}=\frac{e}{\sigma}(\lambda \pi r)^{2}$
and then $\sigma^{-1}=\frac{B^{2} \pi^{2} \lambda^{2}}{8 \sigma} \frac{\sigma}{4 x^{2}}-\frac{\sigma}{4 e} B^{2} \int$ or $\tau=\frac{4 g}{\sigma} \frac{1}{B^{2}}$

Spring $2005 \# 13$

$$
Z_{N}=\sum_{S_{i}= \pm 1} e^{B J} \sum_{i=1}^{N} S_{i} S_{i+1}+\beta H \sum_{i=1}^{N} S_{i} \quad \beta=1 / k_{T}
$$

Assume periodic boundry conditions

$$
\begin{aligned}
& S_{N+1}=S_{1} \\
& \text { elements } \\
& \langle S| T\left|S^{\prime}\right\rangle=e^{V S S^{\prime}}+\frac{B}{2}\left(S T S^{\prime}\right) \quad V=B_{J} \quad B=B_{H} \quad\left(S_{j} S^{*}= \pm 11\right. \\
& T=\left(\begin{array}{cc}
e^{V} e^{-B} & e^{-v} \\
e^{-V} & e^{v} e^{B} \\
\text { 《ITII〉 }
\end{array}\right) \\
& z_{N} \cdot \sum_{S_{i}= \pm 1}^{S_{N}} e^{V \sum_{i=1}^{N} S_{i} S_{i+1}+\frac{B}{2} \sum_{i=1}^{N} S_{i}+S_{i+1}} \\
& =\sum_{S_{1}=I 1} e^{V S_{1} S_{2}}+\frac{B}{2}\left(S_{1}+S_{2}\right) \cdot e^{V S_{2} S_{3}+\frac{B}{2}\left(S_{2}+S_{3}\right)} \\
& =\sum_{S_{1}=3}\left\langle S_{1}\right| T\left|S_{2}\right\rangle\left\langle S_{2}\right| T\left|S_{3}\right\rangle \cdots\left\langle S_{N}\right| T\left|S_{1}\right\rangle \\
& Z_{N}=\sum_{S_{1}}\left\langle S_{1}\right| T^{N}\left|S_{1}\right\rangle=\operatorname{Tr}\left(T^{N}\right) \\
& \text { Identity } \\
& \sum_{a}\langle k \mid m l a\rangle e a|m 1 y\rangle \\
& =\langle x| m^{2}|y\rangle
\end{aligned}
$$

Trace is not effected by diaganalization． so if Q is diagonlized form of T ，and we found eigenvalues of T

$$
\operatorname{Tr}\left(Q^{N}\right)=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)^{N}=\lambda_{1}^{N}+\lambda_{2}^{N}\left(\begin{array}{c}
\lambda_{1}, \lambda_{2} \\
o \in T)
\end{array}\right.
$$

Cor mare simply a the trace of a matrix is the sum of the eigenvalues.
b)

$$
\begin{aligned}
& \operatorname{dot}(T-\lambda I)=0 \\
& \left(e^{\beta(J-H)}-\lambda\right)\left(e^{\beta(J+H)}-\lambda\right)-e^{-2 \beta J}=0 \\
& e^{2 \beta J}-x e^{\beta(J+H)}-\lambda e^{\beta(J-H)}+x^{2}-e^{-2 \beta J}=0 \\
& x^{2}-x e^{\beta J}\left(e^{\beta H}+e^{-\beta H}\right)+e^{2 \beta J}-e^{-2 \beta J}=0 \\
& x^{2}-\lambda 2 e^{B J} \cosh (\beta H)+2 \sinh (2 \beta J)=0 \\
& \lambda=\frac{2 e^{\beta J} \cosh (\beta H) \pm \sqrt{4 e^{2 \beta J}} \cosh ^{2}(\beta H)-8 \sinh c^{2 / h j)}}{2} \frac{e^{x}}{2}+e^{-x}=\cosh (x) \\
& =e^{B J \cosh (B H) \underset{\lambda_{2}}{\lambda} \underset{\sim}{e^{2} B J} \cosh ^{2}(B H)-2 \sinh (2 B J)} \quad \frac{e^{x}-e^{-x}}{2}=\sinh (x) \\
& \frac{\lambda_{2}}{\lambda_{1}}<1 \\
& \text { as } N \rightarrow 9 \\
& \operatorname{Tr}(T)=\lambda^{N} \\
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
\begin{aligned}
& F=-k T \ln Z^{\circ}=-k T \ln \lambda_{i} N=\frac{-N}{B} \operatorname{lr} \lambda_{i} \\
& -\frac{F}{K T}=\ln \lambda_{1} \text { (per spin) }
\end{aligned}
$$

C)

$$
M=\frac{d F}{d H} \times M=\frac{-N}{\beta} \frac{d \ln \lambda_{1}}{\partial H}=\frac{-N}{\partial(B H)}
$$

polling in constant makes it easier

$$
\begin{aligned}
& M=-N\left(\frac{e^{\beta J} \sinh (\beta H)+\frac{1}{2} \frac{2 \cosh (B H) \sinh (B H) e^{2 \beta J}}{e^{e^{2 B 5} \cosh (B+H)-2 \sinh (2 B J)}} \cosh (B H)+\sqrt{e^{2 B J} \cosh ^{2}(A H)-2 \sinh (2 B J)}}{)}\right. \\
& =-N\binom{\sinh (B H)+\frac{\cosh (B H) \sinh (B H)}{\sqrt{e^{2 B J} \cosh ^{2}(B H)-2 \sinh (2 B J)}}}{\cosh (B H)+\sqrt{\cosh ^{2}(B H)-2 e^{-2 B J} \sinh (2 B J)}}
\end{aligned}
$$

Spring 2005 \# 14 :
photon gas
a) partition function, $\bar{n}_{\text {state }}$

$$
\begin{aligned}
& Z \bar{A}_{G}=\frac{-1}{B} \frac{\partial \ln Z}{\partial G_{S}} \\
& z=\sum_{R} e^{-\beta E_{R}}=\sum_{R-n_{1} n_{2}, n_{3} \ldots}^{-\beta\left(n_{1} \varepsilon_{1}+n_{2} \varepsilon_{2}+\ldots\right)} \\
& \bar{n}_{s}=-1 / \beta \frac{\partial}{d \epsilon_{s}} \ln \left(\sum e^{-\beta n_{s} \varepsilon_{S}}\right) \text { all other terms go away since. } \\
& \text { direvative selects } \varepsilon_{s} \text { state } \\
& =-\frac{1}{\beta} \frac{\partial}{\partial \varepsilon_{s}} \ln \left(\varepsilon e^{-\beta n_{s} \varepsilon_{s}}\right) \\
& \sum_{n=0}^{y} e^{-\beta n_{s} \varepsilon_{s}}=1+e^{-\beta \xi_{s}}+e^{-2 \beta \varepsilon_{s_{+}}} \\
& =\frac{1}{1-e^{-\beta \varepsilon_{s}}} \quad \bar{n}_{s}=\frac{\sum_{n_{s}} e^{-\beta n_{s} \varepsilon_{s}} n_{s}}{\sum_{0}^{-\beta n_{s} \xi_{s}}}=\frac{-1}{\beta} d \beta \ln \left(\sum e^{-\beta n_{s} \varepsilon_{s}}\right) \\
& \Rightarrow \overrightarrow{n_{s}}=-\frac{1}{B} \frac{\partial}{\partial \varepsilon_{s}} \ln \left(\frac{1}{1-e^{-B n_{S} \varepsilon_{s}}}\right) \\
& =1 / B \frac{\partial}{\partial E_{s}} \ln \left(1-e^{-B \epsilon_{S}}\right)=\frac{e^{-\beta \epsilon_{S}}}{1-e^{-B \epsilon_{s}}}=\frac{1}{e^{B \epsilon_{s}}}
\end{aligned}
$$

b) Find relation between radiation pressure and mean energy densit. (U)

Reit 9.13.20

$$
\bar{p}=\sum_{s} \bar{r}_{s}\left(-\frac{\partial \epsilon_{s}}{\partial V}\right) \quad \text { Follows from } \bar{p}=\frac{1}{B} \frac{\operatorname{dnn} m}{\partial \phi} \frac{\beta-1}{\beta} \frac{\partial \ln z}{\partial \epsilon_{s}} \frac{\partial \varepsilon_{s}}{\partial V}
$$ $\frac{N}{N-n_{s}}$

Consider cube $L_{x}=L_{y}=L_{z} \quad V=L^{3}$

$$
\begin{gathered}
G_{s}=\hbar \omega=C k=\hbar c\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)^{1 / 2} \quad k_{i}=\frac{2 \pi}{L_{i}} n_{i} \\
\text { wave vector }
\end{gathered}
$$

$$
\begin{aligned}
&= n_{C}\left(\frac{2 \pi}{L}\right)\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)^{1 / 2} \\
& \Rightarrow \epsilon_{S}=B L^{-1}=B V^{-1 / 3} \quad B=\text { constant } \\
& \frac{\partial \epsilon_{s}}{\partial V}=-1 / 3 B V^{-1 / 3}=-1 / 3 \frac{\epsilon_{s}}{V} \\
& \bar{P}=\sum_{s} n_{s}\left(\frac{1}{3} \frac{c_{s}}{V}\right)=\frac{1}{3 V} \sum_{S} \bar{n}_{s} \epsilon_{s}=\frac{1}{3 V} \bar{E}=\frac{1}{3} \bar{\mu}
\end{aligned}
$$

c) Acdibatic process $d Q=0 \Rightarrow \partial E=-p \partial V$

$$
p=-\frac{\partial \mathcal{E}}{\omega N}
$$

$\Rightarrow \quad \frac{\partial \epsilon_{s}}{\partial v}=-p_{s}=-1 / 3 B v^{-1 / 3}$
$\Rightarrow P V^{4 / 3} \alpha$ constant in general

$$
\begin{aligned}
& P_{0} V_{0}^{4 / 3}=P_{f} V_{f}^{4 / 3} \quad V_{f}=\frac{1}{8} V_{0} \\
& P_{f}=P_{0}\left(\frac{V_{0}}{V_{f}}\right)^{1 / 3}=P_{0}(8)^{4 / 3}
\end{aligned}
$$

1. Quantum Mechanics (Spring 2005)

Consider a particle of charge q in a one-dimensional harmonic oscillator potential. Suppose there is also a weak electric field E so that the potential is shifted by

$$
H^{\prime}=-q E x
$$

(a) Calculate the correction to the simple harmonic oscillator energy levels through second order in perturbation theory.
(b) Now solve the problem exactly. How do the exact energy levels compare with the perturbative result in (a)?
a. Recall $x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{+}\right)$

$$
\begin{aligned}
\Delta_{n}^{(1)} & =H_{n n}^{\prime}=\left\langle\psi_{n}\right| H^{\prime}\left|\psi_{n}\right\rangle=-q E\left\langle\psi_{n}\right| x\left|\Psi_{n}\right\rangle=0 \\
\Delta_{n}^{(2)} & =\sum_{k \neq n} \frac{\left|H_{n k}^{\prime}\right|^{2}}{E_{n}^{(0)}-E_{k}^{(0)}}=\sum_{k \neq n} \frac{\left.\left|\left\langle\psi_{n}\right| H^{\prime}\right| \psi_{k}\right\rangle\left.\right|^{2}}{\left(n+\frac{1}{2}\right) \hbar \omega \cdot\left(k+\frac{1}{2}\right) \hbar \omega} \\
& =\frac{q^{2} E^{2}}{\hbar \omega} \sum_{k+n} \frac{\left.\left|\left\langle\psi_{n}\right| x\right| \psi_{k}\right\rangle\left.\right|^{2}}{n-k} \\
& =\frac{q^{2} E^{2}}{\hbar \omega} \frac{\hbar}{2 m w} \sum_{k \neq n} \frac{\left.\left|\left\langle\psi_{n}\right| a+a^{+}\right| \psi_{k}\right\rangle\left.\right|^{2}}{n-k} \\
& =\frac{9^{2} E^{2}}{2 m \omega^{2}} \sum_{k \neq n} \frac{\left|\sqrt{k} \delta_{n, k-1}+\sqrt{k+1} \delta_{n, k+1}\right|^{2}}{n-k} \\
& =\frac{q^{2} E^{2}}{2 m \omega^{2}}\left(\frac{n+1}{-1}+\frac{n}{1}\right)=-\frac{q^{2} E^{2}}{2 m \omega^{2}}
\end{aligned}
$$

b. Complete the square in the potential.

$$
\begin{aligned}
& \text { Complete the square in the potential. } \\
& \begin{aligned}
& V=\frac{1}{2} m \omega^{2} x^{2}-q E x \Rightarrow \frac{2}{m \omega^{2}} V=x^{2}-\frac{2}{m \omega^{2}} q E x+\left(\frac{q^{2} E^{2}}{m^{2} \omega^{4}}-\frac{q^{2} E^{2}}{m^{2} \omega^{4}}\right) \\
& \Rightarrow \frac{2}{m \omega^{2}} V=\left(x-\frac{q E}{m \omega^{2}}\right)^{2}-\frac{q^{2} E^{2}}{m^{2} \omega^{4}} \\
& \Rightarrow V=\frac{1}{2} m \omega^{2}\left(x-\frac{q E}{m \omega^{2}}\right)^{2}-\frac{q^{2} E^{2}}{2 m \omega^{2}}
\end{aligned}
\end{aligned}
$$

$$
\text { So the exact shift is } \Delta_{n}=-\frac{9^{2} E^{2}}{2 m w^{2}} \text {, which is exactly }
$$

$$
\text { the perturbative result found in part } a \text {. }
$$

1. Quantum Mechanics (Spring 2006)

An electron is at rest in a constant magnetic field pointing along the z-direction. The Hamiltonian is

$$
H=-\boldsymbol{\mu} \cdot \mathbf{B}=g \mu_{0} \frac{\mathbf{s}}{\hbar} \cdot \mathbf{B}
$$

where $\mathbf{B}=B_{0} \hat{\boldsymbol{n}}_{z}$. Since the electron is at rest, you can treat this as a two-state system. Let $\left|\psi_{ \pm}\right\rangle$be the eigenstates of s_{z} with eigenvalues $\pm \frac{\hbar}{2}$ respectively.
(a) What are the eigenstates of the Hamiltonian in terms of $\left|\psi_{ \pm}\right\rangle$, and what is the energy difference between them?
(b) At time $t=0$ the electron is in an eigenstate of s_{x} with eigenvalue $+\hbar / 2$. What is $|\psi(0)\rangle$ in terms of $\left|\psi_{ \pm}\right\rangle$? Calculate $|\psi(t)\rangle$ for any later time t in terms of these same two states.
(c) For the state you calculated in part (b), what are the expectation values of the three components of the spin at any time t ?
a. $H=g \mu_{0} \frac{\vec{s}}{\hbar} \cdot \vec{B}=\frac{g}{2} \mu_{0} \vec{\sigma} \cdot \vec{B}=\frac{9}{2} \mu_{0} \sigma_{z} B_{0} \cong \mu_{0} \sigma_{z} B_{0}$

The eigenvalues of σ_{z} are ± 1, so the eigenvalues

$$
\text { of } H \text { are } \pm \mu_{0} B_{0} \Rightarrow \Delta E=\mu_{0} B_{0}-\left(-\mu_{0} B_{0}\right)=2 \mu_{0} B_{0}
$$

b. $\quad \sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \Rightarrow\left|\psi_{x+}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}$ since $\sigma_{x}\left|\psi_{x+1}\right\rangle=(+1)\left|\psi_{x+}\right\rangle$ So $|\psi(0\rangle\rangle=\left|\psi_{x}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{\sqrt{2}}\binom{1}{0}+\frac{1}{\sqrt{2}}\binom{0}{1}=\frac{1}{\sqrt{2}}\left|\psi_{z+}\right\rangle+\frac{1}{\sqrt{2}}\left|\psi_{z}\right\rangle$

$$
|\psi(t)\rangle=e^{-i H+/ \hbar}|\psi(0)\rangle=\frac{1}{\sqrt{2}} e^{-i \mu_{0} B_{0} t / \hbar}\left|\psi_{z^{+}}\right\rangle+\frac{1}{\sqrt{2}} e^{i \mu_{0} B_{0}+/ \hbar}\left|\psi_{z-}\right\rangle
$$

c. $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \Rightarrow \pm\binom{ a}{b}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{a}{b}=\binom{b}{a} \Rightarrow a= \pm b$

$$
\Rightarrow\left|\psi_{x+}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{1} \text { and }|\psi-\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

$$
\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \Rightarrow \pm\binom{ a}{b}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{0}{b}=\binom{-i b}{i a} \Rightarrow b= \pm i a
$$

$$
\Rightarrow\left|\psi_{y+}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{i} \text { and }\left|\psi_{y-}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{-i}
$$

$$
\sigma_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \Rightarrow \pm\binom{ a}{b}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{a}{b}=\binom{a}{-b} \Rightarrow a=0 \text { or } b=0
$$

$$
\Rightarrow\left|\psi_{z+}\right\rangle=\binom{1}{0} \text { and }\left|\psi_{z_{-}}\right\rangle=\binom{0}{1}
$$

$$
\left.\left\langle s_{x}\right\rangle=\frac{\hbar}{2}\left|\left\langle\psi_{x+} \mid \psi(t)\right\rangle\right|^{2}+\left(-\frac{\hbar}{2}\right) \right\rvert\,\left.\left\langle\psi_{x-}\right| \psi(t\rangle\right|^{2}
$$

$$
=\frac{\hbar}{2}\left|\cos \left(\mu_{0} B_{0} t / \hbar\right)\right|^{2}+\left(-\frac{\hbar}{2}\right)\left|-\sin \left(\mu_{0} B_{0} t / \hbar\right)\right|^{2}
$$

$$
=\frac{\hbar}{2} \cos \left(2 \mu_{0} B_{0} t / \hbar\right)
$$

$$
\left\langle S_{y}\right\rangle=\frac{\hbar}{2}\left|\left\langle\psi_{y+} \mid \psi(t)\right\rangle\right|^{2}+\left(-\frac{\hbar}{2}\right)\left|\left\langle\psi_{y}-\mid \psi(t)\right\rangle\right|^{2}
$$

$$
=\frac{\hbar}{2}\left|\frac{1}{2}\left(e^{-i \mu_{0} B_{0} t / \hbar}+i e^{i \mu_{0} B_{0}+/ \hbar}\right)\right|^{2}+\left(-\frac{\hbar}{2}\right)\left|\frac{1}{2}\left(e^{-i \mu_{0} B_{0} t / \hbar}-i e^{i \mu_{0} B_{0} t / \hbar}\right)\right|^{2}
$$

$$
=\frac{\hbar}{2} \frac{1}{4}\left[(\cos -\sin)^{2}+\left(-\sin +(\cos)^{2}\right]+\left(-\frac{\hbar}{2}\right) \frac{1}{4}\left[(\cos +\sin)^{2}+(-\sin -\cos)^{2}\right]\right.
$$

$$
=\frac{\hbar}{2} \frac{1}{2}(\cos -\sin)^{2}-\frac{\hbar}{2} \frac{1}{2}(\cos +\sin)^{2}
$$

$$
=-\frac{\hbar}{2} \frac{1}{2} 4 \sin \cos =-\frac{\hbar}{2} \sin \left(2 \mu_{0} B_{0}+/ \hbar\right)
$$

$$
\left\langle s_{z}\right\rangle=\frac{\hbar}{2}\left|\left\langle\psi_{z+} \mid \psi(t)\right\rangle\right|^{2}+\left(-\frac{\hbar}{2}\right)\left|\left\langle\psi_{z-} \mid \psi(t)\right\rangle\right|^{2}=\frac{\hbar}{2}\left(\frac{1}{2}\right)-\frac{\hbar}{2}\left(\frac{1}{2}\right)=0
$$

2. Quantum Mechanics (Spring 2005)

Show that in one space dimension any attractive potential, no matter how weak, always has at least one bound state. Hint: Use the variational principle with some appropriate trial wave function such as the normalized Gaussian

$$
\psi(x)=\left(\frac{2 b}{\pi}\right)^{1 / 4} e^{-b x^{2}}
$$

where b is a parameter.
This is Shankar 5.2 .2 b
We must assume as shankar does that an attractive potential is everywhere less than its limiting values as $x \rightarrow \pm \infty$.
Then we define $V(\pm \infty)=0$ so that $V(x)=-|V(x)|$ for all x.

$$
\begin{aligned}
& H=\frac{p^{2}}{2 m}+V(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}-|V(x)| \\
\Rightarrow & E(b)=\left\langle\psi_{b}\right| H\left|\psi_{b}\right\rangle=\left\langle\psi_{b}\right|-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}-|V(x)|\left|\psi_{b}\right\rangle
\end{aligned}
$$

Where $\Psi_{b}(x)=\left(\frac{2 b}{\pi}\right)^{1 / 4} e^{-b x^{2}}$

$$
\begin{aligned}
\Rightarrow E(b) & =-\frac{\hbar^{2}}{2 m} \int_{-\infty}^{\infty}\left(\frac{2 b}{\pi}\right)^{1 / 2} e^{-b x^{2}} \frac{\partial^{2}}{\partial x^{2}} e^{-b x^{2}} d x-\left\langle\psi_{b}\right||v(x)|\left|\psi_{b}\right\rangle \\
& =-\frac{\hbar^{2}}{2 m}\left(\frac{2 b}{\pi}\right)^{1 / 2} \int_{-\infty}^{\infty} e^{-b x^{2}} \frac{\partial}{\partial x}\left(-2 b x e^{-b x^{2}}\right) d x-\left\langle\psi_{b}\right||v(x)|\left|\psi_{b}\right\rangle \\
& =-\frac{\hbar^{2}}{2 m}\left(\frac{2 b}{\pi}\right)^{1 / 2} \int_{-\infty}^{\infty} e^{-b x^{2}}\left(-2 b e^{-b x^{2}}+4 b^{2} x^{2} e^{-b x^{2}}\right) d x-\left\langle\psi_{b}\right||v(x)|\left|\psi_{b}\right\rangle \\
& =-\frac{\hbar^{2}}{2 m}\left(\frac{2 b}{\pi}\right)^{1 / 2} \int_{-\infty}^{\infty}\left(4 b^{2} x^{2}-2 b\right) e^{-2 b x^{2}} d x-\left\langle\psi_{b}\right||v(x)|\left|\Psi_{b}\right\rangle \\
& =-\frac{\hbar^{2}}{2 m}\left(\frac{2 b}{\pi}\right)^{1 / 2}\left(4 b^{2} \frac{1}{4 b} \sqrt{\frac{\square}{2 b}}-2 b \sqrt{\frac{\pi x}{2 b}}\right)-\left\langle\psi_{b}\right||v(x)|\left|\psi_{b}\right\rangle \\
& =\frac{\hbar^{2} b}{2 m}-\int_{-\infty}^{\infty}\left(\frac{2 b}{\pi}\right)^{1 / 2} e^{-2 b x^{2}}|v(x)| d x
\end{aligned}
$$

In the limit of very small b,

$$
E(b) \cong \frac{\hbar^{2} b}{2 m}-\left(\frac{2 b}{\pi}\right)^{1 / 2} \int_{-\infty}^{\infty}|V(x)| d x
$$

We have a bound state iff $E(b)<0$ iff

$$
\begin{array}{ll}
& \frac{\hbar^{2} b}{2 m}-\left(\frac{2 b}{\pi}\right)^{1 / 2} \int_{-\infty}^{\infty}|v(x)| d x<0 \\
\Leftrightarrow & \frac{\hbar^{2} b}{2 m}\left(\frac{\pi}{2 b}\right)^{1 / 2}<\int_{-\infty}^{\infty}|v(x)| d x \\
\Leftrightarrow & \frac{\hbar^{2} \sqrt{\pi}}{2 \sqrt{2} m} b^{1 / 2}<\int_{-\infty}^{\infty}|v(x)| d x \\
\Leftrightarrow & b<\frac{8 m^{2}}{\pi \hbar^{4}}\left[\int_{-\infty}^{\infty}|v(x)| d x\right]^{2}
\end{array}
$$

So whenever b satisfies this condition and is very small we have a bound state. Then the variational principle tells us that the ground state has an energy less than this, so the ground state also has an energy less than zero, so the ground state must be a bound state.
3. Quantum Mechanics (Spring 2005)

A beam of particles scatters off an impenetrable sphere of radius a. That is, the potential is zero outside the sphere, and infinite inside. The wave function must therefore vanish at $r=a$.
(a) What is the S-wave $(l=0)$ phase shift as a function of the incident energy or momentum?
(b) What is the total cross section in the limit of zero incident kinetic energy?

See Sakurai pages 406-408
a. Recall $A_{l}(r)=e^{i \delta_{l}}\left[\cos \left(\delta_{l}\right) j_{l}(k r)-\sin \left(\delta_{l}\right) n_{l}(k r)\right]$ which is Sakurai (7.6.33)
The wavefunction must vanish at $r=\left.a \Rightarrow A_{l}(r)\right|_{r=a}=0$

$$
\begin{aligned}
& \Rightarrow \cos \left(\delta_{l}\right) j_{l}(K R)-\sin \left(\delta_{l}\right) n_{l}(K R)=0 \\
& \Rightarrow \tan \left(\delta_{l}\right)=\frac{j_{l}(K R)}{n_{l}(k R)}
\end{aligned}
$$

We are trying to find the S-wave $(l=0)$ phase shift so

$$
\begin{aligned}
& \Rightarrow \tan \left(\delta_{0}\right)=\frac{j_{0}(K R)}{n_{0}(K R)}=\frac{\sin (K R) / K R}{-\cos (K R) / K R}=-\tan (K R) \\
& \Rightarrow \delta_{0}=-K R
\end{aligned}
$$

b. Recall $\sigma_{\text {tot }}=\int|f(\theta)|^{2} d \Omega=\frac{4 \pi}{k^{2}} \sum_{l}(2 l+1) \sin ^{2}\left(\delta_{l}\right)$

$$
\text { which is Sakurai }(7.6 .18)
$$

I_{n} the limit of zero incident kinetic energy only the $l=0$ term contributes so

$$
\begin{aligned}
& \lim _{k \rightarrow 0} \sigma_{\text {to+ }}=\lim _{k \rightarrow 0} \frac{4 \pi}{k^{2}} \sin ^{2}\left(\delta_{0}\right)=\lim _{k \rightarrow 0} \frac{4 \pi}{k^{2}} \sin ^{2}(-k R) \\
& =\lim _{k \rightarrow 0} \frac{4 \pi}{k^{2}} k^{2} R^{2}=4 \pi R^{2}
\end{aligned}
$$

5. Quantum Mechanics (Spring 2005)

An electron moves in a hydrogen atom potential - ignoring spin and relativity - in a state $|\psi\rangle$ that has the wave function

$$
\psi(r, \theta, \phi)=N R_{21}(r)\left[2 i Y_{1}^{-1}(\theta, \phi)+(2+i) Y_{1}^{0}(\theta, \phi)+3 i Y_{1}^{1}(\theta, \phi)\right]
$$

where the $Y_{l}^{m}(\theta, \phi)$ are the spherical harmonics, $R_{n l}(r)$ are the normalized hydrogen atom wave functions, and N is a positive real number.
(a) Calculate N.
(b) What is the expectation value of L_{z} ? $(\hbar \mathbf{L}=\mathbf{r} \times \mathbf{p})$
(c) What is the expectation value of \mathbf{L}^{2} ?
(d) What is the expectation value of the kinetic energy in terms of \hbar, c, the electron charge e or the fine-structure constant α, and the electron mass m ?

Note: The explicit forms of the functions that appear in $\psi(r, \theta, \phi)$ above are

$$
R_{21}(r)=\frac{1}{2 \sqrt{6}} \frac{r}{a^{5 / 2}} e^{-r / 2 a} \quad Y_{1}^{ \pm 1}(\theta, \phi)=\mp \sqrt{\frac{3}{8 \pi}} \sin (\theta) e^{ \pm i \phi} \quad Y_{1}^{0}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos (\theta)
$$

a. By normalization, $1=\langle\psi \mid \psi\rangle=\int_{-\infty}^{\infty} \int \psi^{*}(r, \theta, \phi) \psi(r, \theta, \phi) r^{2} d r d \Omega$

$$
\begin{aligned}
& =\mid N R^{2} \int_{0}^{\infty} R_{z_{1}}^{*}(r) R_{2_{1}}(r) r^{2} d r(4+5+9) \text { since } \int\left(Y_{l^{\prime}}^{m}\right) Y_{\ell}^{m} d \Omega=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \\
& =\left.|8| N\right|^{2} \int_{0}^{\infty} \frac{1}{24} \frac{r^{4}}{a^{5}} e^{-r / a} d r \\
& =\frac{3}{4}|N|^{2} a^{-5}\left(a^{5} 4!\right)=18|N|^{2} \Rightarrow N=\frac{1}{\sqrt{18}} \text { up to a phase }
\end{aligned}
$$

b. $\left.\left.\left.|\psi\rangle=\frac{2 i}{\sqrt{18}}|2|-1\right\rangle+\frac{2+i}{\sqrt{18}}|2| 0\right\rangle+\frac{3 i}{\sqrt{18}}|2| 1\right\rangle$
and $L_{z}|n \ell m\rangle=\hbar m|n \ell m\rangle$
$\Rightarrow\langle\psi| L_{z}|\psi\rangle=\frac{4}{18}\langle 21-1| L_{2}|21-1\rangle+\frac{5}{18}\langle 210| L_{2}|210\rangle$
$+\frac{9}{18}\langle 211| L_{2}|211\rangle=-\frac{4}{18} \hbar+\frac{9}{18} \hbar=\frac{5}{18} \hbar$
C. $L^{2}|n l m\rangle=\hbar^{2} l(l+1)|n l m\rangle$

$$
\begin{aligned}
\Rightarrow\langle\psi| L^{2}|\psi\rangle= & \left.\frac{4}{18}\langle 21-1| L^{2}|21-1\rangle+\frac{5}{18}\langle 2| 0\left|L^{2}\right| 210\right\rangle \\
& +\frac{9}{18}\langle 211| L^{2}|211\rangle=\frac{8}{18} \hbar^{2}+\frac{10}{18} \hbar^{2}+\frac{18}{18} \hbar^{2}=2 \hbar^{2}
\end{aligned}
$$

d. We know the total energy because this is a Hydrogen atom in an $n=2$ energy eigenstate, so $E=-\frac{m e^{4}}{2 \hbar^{2}(2)^{2}}=-\frac{m e^{4}}{8 \hbar^{2}}$ So we can use the virial theorem to get the kinetic energy $\langle T\rangle=-\langle E\rangle=\frac{m e^{4}}{8 \hbar^{2}}$

6. Statistical Mechanics and Thermodynamics (Spring 2005)

A closed container is divided by a wall into two equal parts (A and B), each of volume $V / 2$. Part A contains an ideal gas with $N / 2$ molecules of mass M_{1} while part B contains an ideal gas with $N / 2$ molecules of mass M_{2}. The container is kept at a fixed temperature T. The molecules of each kind are all identical, but distinguishable from the molecules of the other kind.
(a) The partition function $Z(N)$ of an ideal gas of N particles of mass M in a volume V is given by

$$
Z(N)=\frac{1}{N!}\left(\frac{V}{\sqrt{2 \pi \hbar^{2} / M k_{B} T}}\right)^{N}
$$

Give the partition function of the gas in the container before and after the wall is removed. What are the entropy and pressure before and after the wall is removed?
(b) How much heat is absorbed or released following the removal of the wall? Is the removal of the wall a reversible or irreversible process?
(c) Same question as (b), but now for the case that the two kinds of molecules are indistinguishable from each other (so $M_{1}=M_{2}$). Compare your answers for (b) and (c) and provide a physical explanation for the difference in entropy between the two cases.
a. Before: $Z_{0}(N)=\sum_{r} e^{-\beta E_{r}} \cong \int \cdots \int e^{-\beta E_{r}} d x_{1}^{(1)} \cdots d x_{N / 2}^{(1)} d p_{1}^{(1)} \cdots d p_{N / 2}^{(1)} d x_{1}^{(2)} \cdots d x_{N / 2}^{(2)} d p_{1}^{(2)} \cdots d p_{N / 2}^{(2)}$

$$
\begin{aligned}
& =\int \cdots \int e^{-\beta E_{r}^{(1)}} d x_{1}^{(1)} \cdots d x_{N / 2}^{(1)} d p_{1}^{(1)} \cdots d p_{N / 2}^{(n)} \int \cdots \int_{1} e^{-\beta E_{r}^{(2)}} d x_{1}^{(2)} \cdots d x_{N / 2}^{(2)} d p_{1}^{(2)} \cdots d p_{N / 2}^{(2)} \\
& =Z_{1}\left(\frac{N}{2}\right) Z_{2}\left(\frac{N}{2}\right)=\frac{V^{2} / 4}{\left(\frac{N}{2}!\right)\left(\frac{N}{2}!\right)}\left(\frac{\pi \hbar^{2} / M_{1} M_{2} K T}{2 / 2}\right.
\end{aligned}
$$

After the partition is removed, the only difference is the volume doubles. After: $Z_{0}^{\prime}(N)=\frac{1}{\left(\frac{N}{2}!\right)\left(\frac{N!}{2}!\right)} \quad\left(\frac{V^{2}}{2 \pi \hbar^{2} \sqrt{M_{1} M_{2} k T}}\right)^{N / 2}$
The pressure is $p=\frac{1}{\beta} \frac{\partial \ln (z)}{\partial v}=\frac{1}{\beta} \frac{\partial}{\partial v}(N \ln (v))=\frac{1}{\beta} \frac{N}{V}=\frac{N K T}{v}$ before \& after
The entropy is $S=K(\ln (z)+\beta E)=K\left(\ln (z)-\beta \frac{\partial \ln (z)}{\partial \beta}\right)$
Before: $\ln \left(Z_{0}\right)=N \ln \left(\frac{V}{2}\right)-\frac{N}{2} \ln (\beta)+\frac{N}{2} \ln \left(\frac{\sqrt{M_{1} M_{2}}}{2 \pi \hbar^{2}}\right)-2 \ln \left(\frac{N}{2}!\right)$
$\Rightarrow S=K\left(N \ln \left(\frac{V}{2}\right)-\frac{N}{2} \ln (\beta)+\frac{N}{2} \ln \left(\frac{\sqrt{M_{1} M_{2}}}{2 \pi \hbar^{2}}\right)-2 \ln \left(\frac{N}{2}!\right)+\frac{N}{2}\right)$
and $S^{\prime}=K\left(N \ln (V)-\frac{N}{2} \ln (\beta)+\frac{N}{2} \ln \left(\frac{\frac{\sqrt{M \hbar^{2}}}{2 M_{2}}}{2 \pi \hbar^{2}}\right)-2 \ln \left(\frac{N}{2}!\right)+\frac{N}{2}\right)$
b. $\Delta S=K N\left(\ln (V)-\ln \left(\frac{V}{2}\right)\right)=K N \ln (2)^{2 \pi \hbar^{2}}$ so it is irreversible, but $\triangle Q \neq T \triangle S$ because a free expansion of a gas is not quasistatic. In fact, for an adiabatic free expansion, $Q=0$ and $W=0 \Rightarrow \triangle E=0$ and for an ideal gas $E=\frac{3}{2} N K T$ so $\Delta T=0$. Therefore the reservoir at temperature T never exchanges any heat because it is always at the same temperature,
c. Before: $Z_{0}(N)=\frac{1}{\left(\frac{N!}{2!}\right)^{2}}\left(\frac{V^{2} / 4}{2 \pi \hbar^{2} / M k T}\right)^{N / 2}$ After: $Z_{0}^{\prime}(N)=\frac{1}{N!}\left(\frac{V^{2}}{\sqrt{2 \pi \hbar^{2} / M K T}}\right)^{N}$ $\Delta S=K \Delta(\ln (Z))=K\left[N \ln (V)-\ln (N!)-N \ln \left(\frac{v}{2}\right)+2 \ln \left(\frac{N}{2}!\right)\right]$ If N is large, $\begin{aligned} \Delta S & =K\left[N \ln (2)-N \ln (N)+N+2\left(\frac{N}{2} \ln \left(\frac{N}{2}\right)-\frac{N}{2}\right)\right] \\ & =K[N \ln (2)-N \ln (N)+N \ln (N)-N \ln (Z)]=0\end{aligned}$ So it is reversible and $\Delta Q=T \Delta S=0$. The difference in entropy is due to the decrease in entropy due to indistinguishability.

7. Statistical Mechanics and Thermodynamics (Spring 2005)

A (nearly) ideal gas with a temperature T and pressure P contains atoms of mass M that are either in the ground state or in the first excited state. An atom that returns to the ground state from the first excited state emits a photon of frequency f_{o}. For a stationary observer observing the spectral line emitted by a moving atom, this frequency is shifted by the Doppler effect to

$$
f\left(v_{\|}\right)=f_{o}\left(1+v_{\|} / c\right)
$$

where c is the velocity of light and $v_{\|}$is the projection of the velocity of the atom on the line of sight from the observer to the atom.
(a) What is the statistical distribution $P(f)$ of the frequency of the spectal line? Assume the atoms obey the Maxwell-Boltzmann distribution.
(b) Obtain from $P(f)$ the contribution by the Doppler effect to the width $\sqrt{\left\langle\left(f-f_{o}\right)^{2}\right\rangle}$ of the spectral line. Can you think of a way this effect could be exploited in the study of stellar atmospheres?
(c) The natural line shape $P(f)$ of an atomic spectral line is, according to quantum mechanics, given by

$$
P(f) \sim \frac{1}{\left(f-f_{o}\right)^{2}+\tau^{-2}}
$$

where τ is the lifetime of the excited state. For atoms in a dense gas, the actual lifetime of the excited state is not intrinsic, but instead determined by the time interval between successive collisions between atoms. Let the cross section of an atom equal σ. Obtain an expression for τ in terms of σ, the pressure P and the temperature T. Under which conditions will this "collisional" broadening of the spectral line dominate over the Doppler broadening as computed under (b)?
a. We start from $P_{f}(f) d f=P_{v_{11}}\left(v_{11}\right) d v_{11}$. Then $f=f_{0}\left(1+v_{11} / c\right)$ $\Rightarrow f-f_{0}=\frac{f_{0}}{c} v_{11} \Rightarrow v_{11}=\frac{c}{f_{0}}\left(f-f_{0}\right)$ Therefore $P_{f}(f)=P_{v_{11}}\left(\frac{c}{f_{0}}\left(f-f_{0}\right)\right) \frac{d v_{11}}{d f}=P_{v_{11}}\left(\frac{c}{f_{0}}\left(f-f_{0}\right)\right) \frac{c}{f_{0}}$ By the Maxwell-Boltamann distribution, $P_{v_{1}}\left(v_{11}\right) d v_{11}=\left(\frac{m}{2 \pi k T}\right)^{1 / 2} e^{-m v_{11}^{2} / 2 k T} d v_{11}$ $\Rightarrow P_{f}(f)=\frac{c}{f_{0}}\left(\frac{m}{2 \pi K T}\right)^{1 / 2} e^{-m\left(\frac{c}{f_{0}}\right)^{2}\left(f-f_{0}\right)^{2} / 2 K T}$
b. The equation for a Gaussian is $G(x)=A e^{-\left(x-x_{0}\right)^{2} / 2 \sigma^{2}}$
$\Rightarrow m\left(\frac{c}{f_{0}}\right)^{2} / 2 K T=\frac{1}{2 \sigma^{2}} \Rightarrow \sigma^{2}=\frac{k T}{m}\left(\frac{f_{0}}{c}\right)^{2} \Rightarrow \sigma=f_{0} \sqrt{\frac{k T}{m c^{2}}}$ So the linewidth can be used to determine the temperature of a stellar atmosphere.
c. $n \bar{v} \sigma$ particles scatter per unit time off one particle

$$
\begin{aligned}
& n \bar{v} \sigma \text { particles scatter per unit time off one particle } \\
& \Rightarrow \tau^{-1}=n \bar{v} \sigma \text { and for an ideal gas } p V=N K T \Rightarrow n=\frac{p}{k T} \\
& \Rightarrow \tau^{-1}=\frac{p}{K T} \bar{v} \sigma \Rightarrow \tau=\frac{K T}{p \bar{v} \sigma} \text { and } \bar{V}=\sqrt{\frac{8 k T}{\pi M}} \\
& \Rightarrow \tau=
\end{aligned}
$$

$$
\Rightarrow \tau=\frac{K T}{P \sigma} \sqrt{\frac{\pi M}{8 K T}}=\frac{\sqrt{M \pi / \delta}}{\rho \sigma}(K T)^{1 / 2}
$$

The broadening is largest when $P(f)$ is large when f is far from f_{0}, which happens when τ^{-2} is lorge, so τ is small, so either T is small or p is large.

8. Electricity and Magnetism (Spring 2005)

Consider a two-dimensional (r, θ) electrostatic problem consisting of two infinite plates making an angle α with each other and held at a potential difference V, as shown below:
(a) Find the potential $\phi(r, \theta)$ in the vacuum region between the plates.

Now insert a wedge dielectric, of dielectric coefficient ϵ, and angle β, resting on the bottom plate as shown below:
(b) Find the pressure experienced by the bottom plate at a distance r from the apex (from the line joining the two plates).

a. We must solve $\nabla^{2} \Phi=-\frac{\rho}{\epsilon_{0}}=0$ in a cylindrical geometry $\nabla^{2} \Phi=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}=0 \quad \frac{\partial^{2} \Phi}{\partial z^{2}}=0 \quad$ by symmetry We seek solutions of the form $\Phi(r, \theta)=R(r) Q(\theta)$

$$
\begin{aligned}
& \Rightarrow \frac{Q}{r} \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)+\frac{R}{r^{2}} \frac{\partial^{2} Q}{\partial \theta^{2}}=0 \quad \text { and dividing by } \Phi, \\
& \Rightarrow \frac{1}{r R} \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)+\frac{1}{Q r^{2}} \frac{\partial^{2} Q}{\partial \theta^{2}}=0 \quad \text { and multiplying by } r^{2} \text {, } \\
& \Rightarrow \frac{r}{R} \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)+\frac{1}{Q} \frac{\partial^{2} Q}{\partial \theta^{2}}=0 \\
& \Rightarrow r \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)=\lambda^{2} R \quad \text { and } \quad \frac{\partial^{2} Q}{\partial \theta^{2}}=-\lambda^{2} Q
\end{aligned}
$$

$$
\begin{aligned}
& \text { Br } \lambda=0: R(r)=A \ln (r)+B \quad \text { and } Q(\theta)=C \theta+D \\
& B . C \Rightarrow \lambda=0 \text { and } A=0 \text { and } D=0 \text {, then } B C=\frac{v}{\alpha} \Rightarrow \Phi(r, \theta)=\frac{v}{\alpha} \theta
\end{aligned}
$$

b. The pressure is caused by the force from the wedge due to its
Polarization charge at $\theta=0$ and $\theta=\beta$ interacting with the field.
$-V=\int_{0}^{\alpha} \vec{E} \cdot d \vec{l}=\int_{0}^{\beta} E_{\theta} d l+\int_{R}^{\alpha} E_{\theta} d l$ where $d l=r d \theta$
$-V=r \beta E_{\theta}^{(\epsilon)}+r(\alpha-\beta) E_{\theta}^{\left(\epsilon_{0}\right)}=r \beta \frac{D_{\theta}}{\epsilon}+r(\alpha-\beta) \frac{D_{\theta}}{\epsilon_{\theta}}$
$\Rightarrow D_{\theta}=-\underline{V}\left[\beta\left(\frac{1}{\epsilon}-\frac{1}{\epsilon_{0}}\right)+\frac{\alpha}{\epsilon_{0}}\right]^{-1}$
$\Rightarrow D_{\theta}=-\frac{V}{r}\left[\beta\left(\frac{1}{\epsilon}-\frac{1}{\epsilon_{0}}\right)+\frac{\alpha}{\epsilon_{0}}\right]^{-1}{ }^{\epsilon}$
Let $E_{\theta}^{\circ}=E_{\theta}(\theta<0)=0, E_{\theta}^{\prime}=E_{\theta}(O<\theta<\beta)=\epsilon_{0}, E_{\theta}^{2}=E_{\theta}(\beta<\theta<\alpha)=\epsilon_{0} D_{\theta}$
$P_{\beta}=\sigma_{\beta} E_{a v g}(\beta)=\frac{E_{\theta}^{2}-E_{\theta}^{\prime}}{\epsilon_{0}} \frac{1}{2}\left(E_{\theta}^{2}+E_{\theta}^{\prime}\right)=\frac{1}{2 \epsilon_{0}}\left[\left(E_{\theta}^{2}\right)^{2}-\left(E_{\theta}^{\prime}\right)^{2}\right]=\frac{1}{2 \epsilon_{0}}\left(\epsilon_{0}^{2}-\epsilon^{2}\right) \frac{V^{2}}{r^{2}}\left[\beta\left(\frac{1}{\epsilon}-\frac{1}{\epsilon_{0}}\right)+\frac{\alpha}{\epsilon_{0}}\right]^{-2}$
$P_{0}=\sigma_{0} E_{\text {avg }}(0)=\frac{E_{0}^{\prime}-E_{\theta}^{0}}{\epsilon_{0}^{0}} \frac{1}{2}\left(E_{0}^{\prime}+E_{\theta}^{0}\right)=\frac{1}{2 \epsilon_{0}}\left[\left(E_{0}^{\prime}\right)^{2}-\left(E_{\theta}^{0}\right)^{2}\right]=\frac{1}{2 \epsilon_{0}} \epsilon^{2} \frac{V^{2}}{r^{2}}\left[\beta\left(\frac{1}{\epsilon}-\frac{1}{\epsilon_{0}}\right)+\frac{\theta_{0}}{\epsilon_{0}}\right]-2$
$P=P_{\beta}+P_{0}=\frac{1}{2} \epsilon_{0} \frac{v^{\epsilon_{0}}}{r^{2}}\left[\beta\left(\frac{1}{\epsilon}-\frac{1}{\epsilon_{0}}\right)+\frac{\alpha}{\epsilon_{0}}\right]^{-2}=\frac{1}{2} \frac{v^{2}}{r^{2}} \frac{\epsilon_{0}^{3}}{\left(\alpha-\beta+\beta \epsilon_{0} / \epsilon\right)^{2}}$
9. Electricity and Magnetism (Spring 2005)

An infinitely thin current sheet carrying a surface current $\lambda=\lambda_{o} \hat{z} \cos (\omega t)$ is sandwiched between a perfect conductor $(\sigma=\infty)$ and a material having finite conductivity σ and magnetic permeability μ. The angular frequency ω is sufficiently low that magnetostatic conditions prevail. λ_{o} is a constant, \hat{z} is a unit vector parallel to the interface located at $x=0$, and t is the time.

Here σ, μ finite

Here $\sigma=\infty$

(a) Find the appropriate partial differential equation that governs the behavior of the magnetic field \mathbf{H} for $x>0$ (above the current sheet). Do not solve.
(b) What is the appropriate boundary condition for \mathbf{H} in this system?
(c) Find the magnetic field \mathbf{H} at an arbitrary distance $x>0$ at time t.

$$
\text { See Griffith Ex } 5.8
$$

a. $\vec{\nabla} \times \vec{H}=\vec{J}_{f}+\frac{\partial \vec{D}}{\partial t}=\lambda_{0} \hat{z} \cos (\omega t) \delta(x)$ sincemagnetostaties is the study of steady currents, so $\frac{\partial \vec{D}}{\partial t}=0$.

$$
\Rightarrow\left|\begin{array}{lll}
\hat{x} & \hat{y} & \hat{z} \\
\partial_{x} & \partial y \\
H_{x} & H_{y} & H_{z}
\end{array}\right|_{z}=\frac{\partial H_{x}}{\partial x}-\frac{\partial H_{x}}{\partial y}=\lambda_{0} \cos (\omega t) \delta(x)
$$

b. $H_{1}^{2}-H_{1}^{1}=0 \Rightarrow H_{x}(0, y, z)=0$ since it must be zero inside a perfect conductor, so it is also zero on the otherside.
$\vec{H}_{11}^{2}-\vec{H}_{11}^{\prime}=\vec{K}_{f} \times \hat{n} \Rightarrow \vec{H}_{11}(0, y, z)=\vec{\lambda} \hat{y}$
Combining these two we get $\vec{H}(0, y, z)=\lambda_{0} \cos (\omega t) \hat{y}$
c. The problem is totally symmetric in the y direction.

$$
\text { so } \begin{aligned}
\frac{\partial H_{x}}{\partial y}=0 & \Rightarrow \frac{\partial H_{y}}{\partial x}=\lambda_{0} \cos (\omega t) \delta(x) \\
& \Rightarrow H_{y}(x, y, z, t)=\int_{0}^{x} \lambda_{0} \cos (\omega t) \delta\left(x^{\prime}\right) d x^{\prime}+C \\
& =\lambda_{0} \cos (\omega t)+C
\end{aligned}
$$

Now $C=0$ because of the B.C., $50 H_{y}(x, y, z)=\lambda_{0} \cos (\omega t)$ The field can't have a z-component because the field must be perpendicular to the current by the Biot-Savart law. It also can't have an x-component because contributions from $-y$ cancel those from y. Therefore $\vec{H}(x, y, z, t)=\lambda_{0} \cos (\omega t) \hat{y}$
10. Electricity and Magnetism (Spring 2005)

A relativistic charged particle of charge q and rest-mass m_{o} is in a region of uniform magnetic field $B_{o} \hat{z}$. At time $t=0$ the particle has zero velocity along \hat{z} (that is $\beta_{z}=v_{z} / c=0$) and finite transverse speed $\beta_{\perp}=\beta_{o}$, with

$$
\beta_{\perp}=\sqrt{v_{x}^{2}+v_{y}^{2}} / c
$$

Here, x, y, and z are Cartesian coordinates in the lab frame.
(a) What is the value of $\beta_{\perp}(t)$ for $t>0$?
(b) What is the angular frequency Ω of rotation (that is, the gyrofrequency)? No need for a calculation, just identify Ω.
(c) Now apply a uniform electric field $E_{o} \hat{z}$, parallel to \mathbf{B}, starting at $t=0$. Without solving the detailed equations, conclude what happens to the β_{\perp} in part (a). Does it change?
a. Magnetic forces are always perpendicular to the direction of the field, so $\beta_{2}(t)=0$. Also, magnetic forces do no work, so $\beta(t)=\beta(0) \Rightarrow \beta_{\perp}(t)=\beta_{0}$
b. Basically we just have to use the relativistic momentum $\vec{p}=\gamma m_{0} \vec{v}$. The force is $\vec{F}=q \vec{v} \times \vec{B}=q c \vec{\beta} \times \vec{B}$ $\Rightarrow \vec{F}=q c B_{0}\left(\beta_{y} \hat{x}-\beta_{x} \hat{y}\right)$
$\vec{F}=\frac{d \vec{p}}{d t} \Rightarrow \frac{d p_{x}}{d t}=q \subset B_{0} \beta_{y}$ and $\frac{d p_{y}}{d t}=-q \subset B_{0} \beta_{x}$ γ is constant $\Rightarrow \frac{d v_{x}}{d t}=\frac{q c B_{0}}{\gamma m_{0}} \beta_{y}$ and $\frac{d v_{y}}{d t}=-\frac{q c B_{0}}{\gamma m_{0}} \beta_{x}$ $\Rightarrow \frac{d^{2} v_{x}}{d t^{2}}=\frac{q B_{0}}{\gamma m_{0}} \frac{d V_{y}}{d t}=-\left(\frac{q B_{0}}{\gamma m_{0}}\right)^{2} V_{x}$ $\Rightarrow v_{x}(t)=A \sin \left(\frac{q B_{0}}{\gamma m_{0}} t+\phi\right)$

$$
\Rightarrow \Omega=\frac{q B_{0}}{\gamma m_{0}}
$$

C. There is the constraint $\beta^{2}=\beta_{1}^{2}+\beta_{2}^{2} \leq 1$, so as the electric field accelerates β_{2} toward 1, β_{\perp} must approach o.
12. Electricity and Magnetism (Spring 2005)

A thin copper ring (conductivity σ, density ρ) is suspended so it can rotate freely about one diameter. There is a uniform magnetic field \mathbf{B} perpendicular to the axis of rotation. At time $t=0$ the ring is set rotating with frequency ω_{o}. Calculate the time it takes the frequency to decrease to $1 / e$ of its original value, assuming the energy goes into Joule heating.

$$
\begin{aligned}
\varepsilon & =-\frac{\partial \Phi_{B}}{\partial t}=-\frac{\partial}{\partial t}\left(\int_{s} \vec{B} \cdot d \vec{a}\right)=-\frac{\partial}{\partial t}\left(\int_{S} B d a \cos (\omega t)\right) \\
& =-B \frac{\partial}{\partial t}\left(\cos (\omega t) \int_{5} d a\right)=+\pi a^{2} B \omega \sin (\omega t) \\
\frac{d E_{J}}{d t} & =P=\frac{\varepsilon^{2}}{R} \quad \text { where } R=\rho_{R} \frac{l}{A}=\frac{1}{\sigma} \frac{2 \pi a}{\pi b^{2}}=\frac{2 a}{\sigma b^{2}} \\
\Rightarrow \frac{d E_{J}}{d t} & =\frac{\sigma b^{2}}{2 a} \pi^{2} a^{4} B^{2} \omega^{2} \sin ^{2}(\omega t)=\frac{1}{2} \pi^{2} \sigma a^{3} b^{2} B^{2} \omega^{2} \sin ^{2}(\omega t)
\end{aligned}
$$

We must assume ω is large enough that we can use the average power

$$
\left\langle\frac{d E_{J}}{d t}\right\rangle=\frac{1}{4} \pi^{2} \sigma a^{3} b^{2} B^{2} w^{2}
$$

Now, the Kinetic energy is $T=\frac{1}{2} I \omega^{2}$ where $I=\int r^{2} d m$ with $r=a \sin (\theta), m(\theta)=\left(\pi b^{2} \rho\right)(a \theta) \Rightarrow \frac{d m}{d \theta}=\pi a b^{2} \rho$
So $I=2 \int_{0}^{\pi} a^{2} \sin ^{2}(\theta) \pi a b^{2} \rho d \theta=2 \pi a^{3} b^{2} \rho \int_{0}^{\pi} \sin ^{2}(\theta) d \theta=\pi^{2} a^{3} b^{2} \rho$
Therefore $T=\frac{1}{2} I \omega^{2}=\frac{1}{2} \pi^{2} a^{3} b^{2} \rho \omega^{2}$

$$
\Rightarrow \frac{d T}{d t}=\pi^{2} a^{3} b^{2} \rho \omega \frac{d \omega}{d t}
$$

By conservation of energy, the kinetic energy is decreasing at the instantaneous average rate that Joule heating energy is increasing.

$$
\begin{aligned}
\Rightarrow \frac{d T}{d t}=-\left\langle\frac{d E_{s}}{d t}\right\rangle & \Rightarrow \pi^{2} a^{3} b^{2} \rho \omega \frac{d w}{d t}=-\frac{1}{4} \pi^{2} \sigma a^{3} b^{2} B^{2} w^{2} \\
& \Rightarrow \frac{d w}{d t}=-\frac{\sigma B^{2}}{4 \rho} \omega \\
& \Rightarrow w(t)=\omega_{0} e-\frac{\sigma B^{2}}{4 \rho}+
\end{aligned}
$$

So the frequency reaches $\frac{\omega_{0}}{e}$ when $t=\frac{4 \rho}{\sigma B^{2}}$
14. Statistical Mechanics and Thermodynamics (Spring 2005)

A photon gas in thermal equilibrium is contained within a box of volume V at temperature T.
(a) Use the partition function to find the average number of photons \bar{n}_{r} in the state having energy E_{r}.
(b) Find a relationship between the radiation pressure P and the energy density u (i.e. the average energy per unit volume).
(c) If the volume containing the photon gas is decreased adiabatically by a factor of 8 , what is the final pressure if the initial pressure is P_{o} ?
a. $Z=\sum_{r} e^{-\beta E_{r}}=\sum_{r} e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\cdots\right)}$ $=\sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \cdots e^{-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\cdots\right)}$
$=\left(\sum_{n_{1}=0}^{\infty} e^{-\beta n_{1} \epsilon_{1}}\right)\left(\sum_{n_{2}=0}^{\infty} e^{-\beta n_{2} \epsilon_{2}}\right) \ldots$ $=\left(\frac{1}{1-e^{-\beta \epsilon_{1}}}\right)\left(\frac{1}{1-e^{-\beta \epsilon_{2}}}\right) \cdots$
$\Rightarrow \ln (z)=\sum_{r=1}^{\infty} \ln \left(\frac{1}{1-e^{-\beta \epsilon_{r}}}\right)=-\sum_{r=1}^{\infty} \ln \left(1-e^{-\beta \epsilon_{r}}\right)$
Therefore $\bar{n}_{r}=-\frac{1}{\beta} \frac{\partial \ln (z)}{\partial \epsilon_{r}}=+\frac{1}{\beta} \frac{1}{1-e^{-\beta \epsilon_{r}}} \beta^{-\beta e^{-\beta}}=\frac{1}{e^{\beta \epsilon_{r}}-1}$
b. $p=\frac{1}{\beta} \frac{\partial \ln (2)}{\partial V}=-\frac{1}{\beta^{r}} \sum_{r=1}^{\infty} \frac{1}{1-e^{-\beta \epsilon_{r}}} \beta^{\infty} \frac{\partial \epsilon_{r}}{\partial v} e^{-\beta \epsilon_{r}}$

$$
=-\sum_{r=1}^{\infty} \frac{1}{e^{B \epsilon_{r}-1}} \frac{\partial \epsilon_{r}}{\partial v}=-\sum_{r=1}^{\infty} \bar{n}_{r} \frac{\partial \epsilon_{r}}{\partial v}
$$

Now $\epsilon_{r}=\hbar K C=\hbar c \sqrt{\left(\frac{n_{x} \pi}{L}\right)^{2}+\left(\frac{n_{x} \pi}{L}\right)^{2}+\left(\frac{n_{z} \pi}{L}\right)^{2}}=\frac{\hbar c \pi}{V^{1 / 3}} \sqrt{n_{x}{ }^{2}+n_{y}^{2}+n_{z}^{2}}$
$\Rightarrow \frac{\partial \epsilon_{r}}{\partial V}=-\frac{1}{3} \frac{\hbar c \pi}{V^{4 / 3}} \sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}}=-\frac{\epsilon_{r}}{3 V}$
$\Rightarrow P=\sum_{r=1}^{\infty} \bar{n}_{r} \frac{\epsilon_{r}}{3 v}=\frac{1}{3 v} \sum_{r=1}^{\infty} \bar{n}_{r} \epsilon_{r}=\frac{E}{3 v}=\frac{1}{3} u$
C. $d E=-\rho d V$ since $t Q=0$ for an adiabatic process

$$
\Rightarrow d(u V)=-\frac{u}{3} d V
$$

$$
\Rightarrow u d v+v d u=-\frac{u}{3} d v
$$

$$
\Rightarrow \frac{d v}{v}+\frac{d u}{u}=-\frac{1}{3} \frac{d v}{v}
$$

$$
\Rightarrow \quad \frac{d u}{u}=-\frac{u}{3} \frac{d v}{v}
$$

$$
\Rightarrow \quad \ln (u)=-\frac{4}{3} \ln (v)+C
$$

$$
\Rightarrow u=A V^{-4 / 3}
$$

$$
\Rightarrow p=A^{\prime} V^{-4 / 3} \text { so this is a polytropic process }
$$

$$
\Rightarrow P_{0} V_{0}^{4 / 3}=P_{f} V_{f}^{4 / 3}=A^{\prime} \Rightarrow P_{f}=P_{0}\left(\frac{V_{0}}{V_{f}}\right)^{4 / 3}=P_{0}(8)^{4 / 3}=16 P_{0}
$$

