
1. **Previous Midterm** (by Prof. Simon). The figure below schematically illustrates a complete toroid with a rectangular cross-section. The wire is wound in N loops.

a) Find the magnetic field B(r) inside the toroid, $a \le r \le b$. [5 points]

b) What is the magnetic flux through each winding in the toroid? [5 points]

c) What is the self-inductance L of the toroid? [5 points]

	d) What is the magnetic energy density, u_B , inside the toroid? [5 points]
	e) Integrate the magnetic energy density over the volume to get the magnetic energy U_B stored in the toroid. Express your answer in terms of the self-inductance L and the current I. [5 points]
2.	Compare the equation for charge motion in an LC circuit with the equation of motion of a mass on a spring. Can you spot an analogy? Predict what role the circuit's resistance would play. [8 points]