1. Quantum Mechanics (Spring 2004)

The table below shows some Clebsch-Gordan coefficients. If two particles have spin $1 / 2$ and $3 / 2$ respectively, write down all composite states $|s m\rangle$ in terms of the uncoupled states using Dirac notation. You may use the following table if you wish. (A square root is understood for all entries in the table below, with the \pm sign outside the radical.)

2. Quantum Mechanics (Spring 2004)

A hydrogen atom is in the ground state $(n=1, l=m=0)$ for $t<0$. Suppose the atom is placed between the plates of a capacitor, and a weak, spatially uniform but time-dependent decaying field is applied at $t=0$. The field (for $t>0$) is

$$
\mathbf{E}=\mathbf{E}_{o} e^{-\gamma t}
$$

for some $\gamma>0$. Take \mathbf{E}_{o} along the z-axis. What is the probability (to first order in E_{o}) that the atom will be in each of the four $n=2$ states as $t \rightarrow \infty$? Neglect spin.
You may need some of the functions $R_{n l}(r)$ and $Y_{l}^{m}(\theta, \phi)$ in the following table:

$$
\begin{aligned}
a^{\frac{3}{2}} R_{10}(r) & =2 e^{-r / a} & a^{\frac{3}{2}} R_{20}(r) & =\frac{1}{\sqrt{2}}\left(1-\frac{r}{2 a}\right) e^{-r / 2 a}
\end{aligned} a^{\frac{3}{2}} R_{21}(r)=\frac{1}{2 \sqrt{6}} \frac{r}{a} e^{-r / 2 a}, ~ Y_{1}^{ \pm 1}(\theta, \phi)=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}
$$

Table 1: Some hydrogen atom radial wave functions and spherical harmonics. a is the Bohr radius: $a=\hbar / m c \alpha$.
And an integral

$$
\int_{0}^{\infty} x^{n} e^{-x / a} d x=a^{n+1} n!
$$

3. Quantum Mechanics (Spring 2004)

The normalized wave function of a one-dimensional particle is

$$
\psi(x)=N e^{-\kappa x^{2} / 2}
$$

for some $\kappa>0 . N$ is real and positive.
(a) What is N ?
(b) What is the expectation value of x^{2} ?
(c) What is the momentum space wave function $\langle p \mid \psi\rangle$?
(d) What is the expectation value of p^{2} ?
(e) The Hamiltonian is

$$
H=\frac{p^{2}}{2 m}+V(x)
$$

What is the potential $V(x)$?
4. Quantum Mechanics (Spring 2004)

The electron neutrino $\left|\nu_{e}\right\rangle$ and the muon neutrino $\left|\nu_{\mu}\right\rangle$ are the possible neutrino states produced and detected in experiments, but they are not necessarily eigenstates of the Hamiltonian. Rather, if the state is known to have momentum p, it is some linear combination of the energy eigenstates $\left|\nu_{1}\right\rangle$ and $\left|\nu_{2}\right\rangle$ of the form

$$
\begin{gathered}
\left|\nu_{e}\right\rangle=\cos (\theta)\left|\nu_{1}\right\rangle+\sin (\theta)\left|\nu_{2}\right\rangle \\
\left|\nu_{\mu}\right\rangle=-\sin (\theta)\left|\nu_{1}\right\rangle+\cos (\theta)\left|\nu_{2}\right\rangle
\end{gathered}
$$

where

$$
\begin{aligned}
& H\left|\nu_{1}\right\rangle=\sqrt{p^{2} c^{2}+m_{1}^{2} c^{4}}\left|\nu_{1}\right\rangle \\
& H\left|\nu_{2}\right\rangle=\sqrt{p^{2} c^{2}+m_{2}^{2} c^{4}}\left|\nu_{2}\right\rangle
\end{aligned}
$$

for two possibly different masses m_{1} and m_{2}, and some "mixing angle" θ. If it is known that a neutrino was definitely a ν_{μ} when it was produced, what is the probability of detecting a ν_{e} after it has traveled a distance L ? Assume that $m_{1} c \ll p$ and $m_{2} c \ll p$, so that the neutrinos are moving at almost (or even exactly) the speed of light, (so you can ignore corrections of the order $1-v / c$ compared to terms of order 1) and state your result to first order in the difference $\Delta m^{2}=m_{1}{ }^{2}-m_{2}{ }^{2}$.
This is a simplified version of an actual neutrino oscillation experiment like the super-Kamiokande detector experiment a few years ago. In reality there is a third neutrino $\left|\nu_{\tau}\right\rangle$.
5. Quantum Mechanics (Spring 2004)

Calculate the transmission coefficient for a particle of energy $E>0$ scattering off the 1D potential well $V(x)=V_{0}$ for $0<x<a, V(x)=0$ elsewhere, $V_{0}<0$. Are there resonance phenomena?
6. Statistical Mechanics and Thermodynamics (Spring 2004)

Consider a gas of relativistic, conserved bosons. The relation between energy and momentum is

$$
E=|\mathbf{p}| c
$$

(a) Derive the condition for Bose-Einstein condensation in three dimensions.
(b) Does Bose-Einstein condensation occur in two dimensions? Justify your answer.
(c) What is the highest dimension for which Bose-Einstein condensation does not occur?

7. Statistical Mechanics and Thermodynamics (Spring 2004)

A quantum state at energy E_{T} is embedded in a system with a degenerate Fermi gas as, for instance, occurs with an impurity state with energy E_{T} in a degenerate semiconductor with a sea of conducting electrons at chemical potential μ. You may assume that $E_{T}>\mu$. The impurity, which has a spin of $1 / 2$, can take an additional electron from the large bath of electrons (costs Coulomb energy U), to form a spin-singlet state. For a given temperature T and magnetic field B, calculate the ratio of the probability for the trap being empty to that for the trap being filled by an additional electron.

8. Electricity and Magnetism (Spring 2004)

A point charge q is located a distance d from the center of a conducting sphere of radius R. What must the total charge on the conducting sphere be for the force on the point charge to be zero?

9. Electricity and Magnetism (Spring 2004)

Consider the infinite two-dimensional conducting plane depicted in the figure. The right half is maintained at electrostatic potential V_{0} while the left half is maintained at potential $-V_{0}$. What is the potential above the plane?

10. Electricity and Magnetism (Spring 2004)

Consider a cylindrical capacitor of length L with charge $+Q$ on the inner cylinder of radius a and $-Q$ on the outer cylindrical shell of radius b. The capacitor is filled with a lossless dielectric with dielectric constant equal to 1 . The capacitor is located in a region with a uniform magnetic field B, which points along the symmetry axis of the cylindrical capacitor. A flaw develops in the dielectric insulator, and a current flow develops between the two plates of the capacitor. Because of the magnetic field, this current flow results in a torque on the capacitor, which begins to rotate. After the capacitor is fully discharged (total charge on both plates is zero), what is the magnitude and direction of the angular velocity of the capacitor? The moment of inertia of the capacitor (about the axis of symmetry) is I, and you may ignore fringing fields in the calculation.

11. Electricity and Magnetism (Spring 2004)

Consider a plasma of free charges of mass m and charge e at constant density n. What is the index of refraction for electromagnetic waves of frequency ω which are incident upon this plasma?
12. Electricity and Magnetism (Spring 2004)

The fields due to a charge in motion are:

$$
\begin{gather*}
\mathbf{E}(\mathbf{x}, t)=e\left[\frac{\mathbf{n}-\boldsymbol{\beta}}{\gamma^{2}(1-\boldsymbol{\beta} \cdot \mathbf{n})^{3} R^{2}}\right]_{\mathrm{ret}}+\frac{e}{c}\left[\frac{\mathbf{n} \times[(\mathbf{n}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}]}{(1-\boldsymbol{\beta} \cdot \mathbf{n})^{3} R}\right]_{\mathrm{ret}} \\
\mathbf{B}(\mathbf{x}, t)=[\mathbf{n} \times \mathbf{E}]_{\mathrm{ret}} \tag{1}
\end{gather*}
$$

where $\boldsymbol{\beta}=\mathbf{v} / c, \mathbf{n}$ is a unit vector in the direction of the observation point $\mathbf{x}, \gamma=1 / \sqrt{1-\beta^{2}}$ and 'ret' means the quantities are evaluated at the retarded time (so e.g. \mathbf{n} in (1) is the unit vector pointing from the retarded position of the charge to the observation point).
(a) Identify in the expression (1) 'static fields' and 'radiation fields'. Show how the static field part can be obtained from a Lorentz transformation of the fields of a static charge.
Hint: You may want to refer to Figure 1, where K^{\prime} is the rest frame of the particle and P the observation point (which the particle passes at impact parameter b); suppose K and K^{\prime} coincide at $t=t^{\prime}=0$. Write the fields in K^{\prime}, transform to the K coordinates, then transform the fields to K. Now you have the fields of the moving charge in terms of its present position. Show that the parallel and transverse components of E are the same as given in (1) in terms of the retarded position. Figure 2 may be useful, where R is the retarded distance and r the present distance. You have to express $R^{2}(1-\mathbf{b} \cdot \mathbf{n})^{2}$ in terms of r and b etc.
(b) Using the radiation field part of (1) in the nonrelativistic limit ($\beta \ll 1$), calculate the average power radiated per unit solid angle by a charge q oscillating along the z-axis: $z(t)=A \cos (\omega t)$, where z is the position of the charge. The power is a function of the azimuthal angle θ, and 'average' means average in time (i.e. average over 1 oscillation).

Figure 1: Rest frame K^{\prime} versus observation frame K

Figure 2: Retarded position versus present position
13. Statistical Mechanics and Thermodynamics (Spring 2004)

A van der Waals gas has the following equation of state:

$$
P(T, V)=\frac{N k T}{(V-b N)}-a\left(\frac{N}{V}\right)^{2}
$$

This gas is held in a container of negligible mass which is isolated from its surroundings. The gas is initially confined to $1 / 3$ of the total volume of the container by a partition (a vacuum exists in the other $2 / 3$ of the volume). The gas is initially in thermal equilibrium with temperature T_{i}. A hole is then opened in the partition, allowing the gas to irreversibly expand to fill the entire volume (V). What is the new temperature of the gas after thermal equilibrium has been re-established?
Hint: Note that the specific heat at constant volume for a van der Waals gas is the same as that for an ideal gas.

Before

After
14. Statistical Mechanics and Thermodynamics (Spring 2004)

Imagine that the sites of a lattice are occupied with probability p and are unoccupied with probability $1-p$. If two neighboring sites are occupied, then we consider them to be part of the same cluster. As p is increased, larger clusters become more likely. When $p>p_{c}$ for some p_{c} (the 'percolation threshold') which depends on the dimension and the particular lattice, there will be a cluster which extends all the way across the system. For $p<p_{c}$, we will call the mean cluster size S.
(a) What is the percolation threshold, p_{c}, of a one-dimensional chain?
(b) In an infinite one-dimensional chain, what is the probability n_{s} that a given site is the left end of a cluster of length precisely s (in terms of p and s)?
(c) $n_{s} s$ is the probability that a given site is on a cluster (anywhere, not just the left end) of length $s . p$ is the probability that a given site is on a cluster of any non-zero size. What is the mean cluster size, S, in terms of $n_{s} s(s=1,2, \ldots)$ and p ?
(d) Using your results from parts (b) and (c), what is the mean cluster size, S, of a one-dimensional chain as a function of p alone?

1. Quantum Mechanics (Spring 2004)

The table below shows some Clebsch-Gordan coefficients. If two particles have spin $1 / 2$ and $3 / 2$ respectively, write down all composite states $|s m\rangle$ in terms of the uncoupled states using Dirac notation. You may use the following table if you wish. (A square root is understood for all entries in the table below, with the \pm sign outside the radical.)

$\left.S_{1}=\frac{1}{2} \quad S_{2}=\frac{3}{2} \quad\left|\frac{1}{2}-\frac{3}{2}\right| \leqslant s \leqslant \frac{1}{2}+\frac{3}{2} \Rightarrow \right\rvert\, \leqslant s \leqslant 2$ and $|\mathrm{m}| \leqslant s$
Uncoupled States $\left|s_{1} s_{2} m_{1} m_{2}\right\rangle$

$$
\left.\begin{array}{lll}
\left\lvert\, \frac{1}{2}\right. & \left.\frac{3}{2}\right\rangle & \left\lvert\,-\frac{1}{2}\right.
\end{array} \frac{3}{2}\right\rangle, \begin{array}{ll}
\left\lvert\, \frac{1}{2}\right. & \left.\frac{1}{2}\right\rangle
\end{array}\left|-\frac{1}{2} \frac{1}{2}\right\rangle, \begin{array}{ll}
\left|\frac{1}{2}-\frac{1}{2}\right\rangle & \left|-\frac{1}{2}-\frac{1}{2}\right\rangle \\
\left|\frac{1}{2}-\frac{3}{2}\right\rangle & \left|-\frac{1}{2}-\frac{3}{2}\right\rangle
\end{array}
$$

The table is really a chain of tables stacked corner-to-comer.

$$
\begin{aligned}
& |22\rangle=\left|\frac{3}{2} \frac{1}{2}\right\rangle \\
& |2|\rangle=\sqrt{\frac{1}{4}}\left|\frac{3}{2}-\frac{1}{2}\right\rangle+\sqrt{\frac{3}{4}}\left|\frac{1}{2} \frac{1}{2}\right\rangle \\
& |20\rangle=\sqrt{\frac{1}{2}}\left|\frac{1}{2}-\frac{1}{2}\right\rangle+\sqrt{\frac{1}{2}}\left|-\frac{1}{2} \frac{1}{2}\right\rangle \\
& |2-1\rangle=\sqrt{\frac{3}{4}}\left|-\frac{1}{2}-\frac{1}{2}\right\rangle+\sqrt{\frac{1}{4}}\left|-\frac{3}{2} \frac{1}{2}\right\rangle \\
& |2-2\rangle=\left|-\frac{3}{2}-\frac{1}{2}\right\rangle \\
& |1|\rangle=\sqrt{\frac{3}{4}}\left|\frac{3}{2}-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{4}}\left|\frac{1}{2} \frac{1}{2}\right\rangle \\
& |10\rangle=\sqrt{\frac{1}{2}}\left|\frac{1}{2}-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{2}}\left|-\frac{1}{2} \frac{1}{2}\right\rangle \\
& |1-1\rangle=\sqrt{\frac{1}{4}}\left|-\frac{1}{2}-\frac{1}{2}\right\rangle-\sqrt{\frac{3}{4}}\left|-\frac{3}{2} \frac{1}{2}\right\rangle
\end{aligned}
$$

2. Quantum Mechanics (Spring 2004)

A hydrogen atom is in the ground state $(n=1, l=m=0)$ for $t<0$. Suppose the atom is placed between the plates of a capacitor, and a weak, spatially uniform but time-dependent decaying field is applied at $t=0$. The field (for $t>0$) is

$$
\mathbf{E}=\mathbf{E}_{o} e^{-\gamma t}
$$

for some $\gamma>0$. Take \mathbf{E}_{o} along the z-axis. What is the probability (to first order in E_{o}) that the atom will be in each of the four $n=2$ states as $t \rightarrow \infty$? Neglect spin.
You may need some of the functions $R_{n l}(r)$ and $Y_{l}^{m}(\theta, \phi)$ in the following table:

$$
\begin{array}{cc}
a^{\frac{3}{2}} R_{10}(r)=2 e^{-r / a} & a^{\frac{3}{2}} R_{20}(r)=\frac{1}{\sqrt{2}}\left(1-\frac{r}{2 a}\right) e^{-r / 2 a} \quad a^{\frac{3}{2}} R_{21}(r)=\frac{1}{2 \sqrt{6}} \frac{r}{a} e^{-r / 2 a} \\
Y_{0}^{0}(\theta, \phi)=\frac{1}{\sqrt{4 \pi}} \quad Y_{1}^{0}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos (\theta) \quad Y_{1}^{ \pm 1}(\theta, \phi)=\mp \sqrt{\frac{3}{8 \pi}} \sin (\theta) e^{ \pm i \phi}
\end{array}
$$

Table 1: Some hydrogen atom radial wave functions and spherical harmonics. a is the Bohr radius: $a=\hbar / m c \alpha$.
And an integral

This is Abers problem 9.1 .

$$
\int_{0}^{\infty} x^{n} e^{-x / a} d x=a^{n+1} n!
$$

$\left.P(f)=\left|\left\langle\phi_{f}\right| U(t)\right| \phi_{i}\right\rangle\left.\right|^{2}=\left|\left\langle\psi_{f} \mid \psi\right\rangle\right|^{2}$ where $|\psi\rangle=U(t)\left|\phi_{i}\right\rangle$ and $\left|\psi_{f}\right\rangle=e^{-i H^{\circ}+/ \hbar}\left|\phi_{f}\right\rangle$. Ho is the unperturbed hydrogen atom Hamiltonian and $H=H^{\circ}+H^{\prime}$ where $H^{\prime}=-e E z=-e E_{0} e^{-\gamma+} z$ To derive the formula we need, start with the time dependent S.E.

$$
H(t)|\psi\rangle=i \hbar|\dot{\psi}\rangle \Rightarrow\left\langle\psi_{f}\right| H(t)|\psi\rangle=i \hbar\left\langle\psi_{f} \mid \dot{\psi}\right\rangle
$$

$$
\Rightarrow\left\langle\psi_{f}\right| H(t)|\psi\rangle=i \hbar\left[\frac{\partial}{\partial t}\left\langle\psi_{f} \mid \psi\right\rangle-\left\langle\dot{\psi}_{f} \mid \psi\right\rangle\right]
$$

$$
\Rightarrow\left\langle\psi_{f}\right| H^{\circ}|\psi\rangle+\left\langle\psi_{f}\right| H^{\prime}(t)|\psi\rangle=i \hbar \frac{\partial}{\partial f}\left\langle\psi_{f} \mid \psi\right\rangle-i \hbar\left(\frac{i}{\hbar}\left\langle\psi_{f}\right| H^{0}\right)|\psi\rangle
$$

$$
\Rightarrow\left\langle\psi_{f}\right| H^{\prime}(t)|\psi\rangle=i \hbar \frac{\partial}{\partial t}\left\langle\psi_{f} \mid \psi\right\rangle \Rightarrow\left\langle\psi_{f} \mid \psi\right\rangle=\left.\left\langle\psi_{f} \mid \psi\right\rangle\right|_{+=0}-\frac{i}{\hbar} \int_{0}^{+}\left\langle\psi_{f}\right| H^{\prime}\left(t^{\prime}\right)|\psi\rangle d t^{\prime}
$$ Approximate $|\psi\rangle$ in the integrand as $\left|\psi_{i}\right\rangle$ like the Born approximation. $\Rightarrow\left\langle\psi_{t} \mid \psi\right\rangle \cong \delta_{f i}-\frac{i}{\hbar} \int_{0}^{t}\left\langle\phi_{f}\right| H^{\prime}\left(t^{\prime}\right)\left|\phi_{i}\right\rangle e^{i \omega_{f_{i} t}} d t^{\prime}$

For our problem, the perturbation is the orth spherical component of a rank 1 tensor so $|1-l| \leqslant l^{\prime} \leqslant 1+l \Rightarrow l^{\prime}=1$ and $m^{\prime}=m+0 \Rightarrow m^{\prime}=0$ by the Wigner-Eckart Theorem selection rules, so only $\left.\left|\phi_{f}\right\rangle=|z| 0\right\rangle$ is nonzero.

$$
\begin{aligned}
& \langle 2| 0|z| 100\rangle=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} R_{2_{1}}(r) Y_{i}(\theta, \phi) r \cos (\theta) R_{10}(r) Y_{0}^{0}(\theta, \phi) r^{2} \sin (\theta) d r d \theta d \phi \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} \frac{1}{x \sqrt{6}} a^{-5 / 2} r e^{-r / 2 a} \sqrt{\frac{3}{4 \pi}} \cos (\theta) r \cos (\theta) 2\left(a^{-3 / 2} e^{-r / a} \frac{1}{\sqrt{4 \pi}} r^{2} \sin (\theta) d r d \theta d \phi\right. \\
& =\frac{2 \pi}{4 \pi} \frac{1}{\sqrt{2}} a^{-4} \int_{0}^{\pi} \cos ^{2}(\theta) \sin (\theta) d \theta \int_{0}^{\infty} r^{4} e^{-3 r / 2 a} d r \\
& =\frac{1}{2 \sqrt{2}} a^{-4}\left(\frac{2}{3}\right)\left(\frac{2 a}{3}\right)^{5} 4!=\frac{2^{2} a}{3^{5} \sqrt{2}} \\
& \left.\left.P(|210\rangle)\right|_{+\rightarrow \infty}=\left|\frac{-i}{\hbar} \int_{0}^{+}\langle 210|-e E_{0} e^{-\gamma t^{\prime}} z\right| 100\right\rangle\left. e^{i \omega_{f i} t^{\prime}} d t^{\prime}\right|_{+\infty} ^{2} \\
& \left.=\frac{e^{2} E_{0}^{2}}{\hbar^{2}}\left(\frac{2^{15} a^{2}}{3^{10}}\right) \right\rvert\, \int_{0}^{\infty} e^{\left.\left(i \omega_{f i}-\gamma\right) t^{\prime} d t^{\prime}\right|^{2}} \\
& =\frac{2^{\hbar^{1}}}{3^{10}} \frac{e^{2} a^{2} E_{0}^{2}}{\hbar^{2}}\left|\frac{1}{i \omega_{4_{i}}-\gamma}(-1)\right|^{2}=\frac{2^{15}}{3^{10}} \frac{e^{2} a^{2} E_{0}^{2}}{\hbar^{2}} \frac{1}{\gamma^{2}+\omega_{i}^{2}} \quad\left(\omega_{f_{i}}=\frac{E_{2}-E_{1}}{\hbar}=-\frac{3 E_{1}}{4 \hbar}\right)
\end{aligned}
$$

3. Quantum Mechanics (Spring 2004)

The normalized wave function of a one-dimensional particle is

$$
\psi(x)=N e^{-\kappa x^{2} / 2}
$$

for some $\kappa>0 . N$ is real and positive.
(a) What is N ?
(b) What is the expectation value of x^{2} ?
(c) What is the momentum space wave function $\langle p \mid \psi\rangle$?
(d) What is the expectation value of p^{2} ?
(e) The Hamiltonian is

$$
H=\frac{p^{2}}{2 m}+V(x)
$$

What is the potential $V(x)$?
a. By normalization $1=\langle\psi \mid \psi\rangle=\int_{-\infty}^{\infty} N^{*} N e^{-k x^{2}} d x=2|N|^{2} \int_{0}^{\infty} e^{-k x^{2}} d x$ $=2|N|^{2} \frac{1}{\sqrt{k}} \int_{0}^{\infty} e^{-u^{2}} d u=2|N|^{2} \frac{1}{\sqrt{k}} \frac{\sqrt{\pi}}{2} \Rightarrow|N|^{2}=\sqrt{\frac{k}{\pi}}$ $\Rightarrow N=\left(\frac{k}{\pi}\right)^{1 / 4}$ since N is real and positive
b. $\langle\psi| x^{2}|\psi\rangle=\sqrt{\frac{k}{\pi}} \int_{-\infty}^{\infty} x^{2} e^{-k x^{2}} d x=\sqrt{\frac{k}{\pi}} k^{-3 / 2} 2 \int_{0}^{\infty} u^{2} e^{-u^{2}} d u$

$$
=\frac{1}{k \sqrt{\pi}} \nsim\left(\frac{1}{2} \Gamma\left(\frac{2+1}{2}\right)\right)=\frac{1}{k \sqrt{\pi}}\left(\frac{1}{2} \Gamma\left(\frac{1}{2}\right)\right)=\frac{1}{k \sqrt{\pi}}\left(\frac{\sqrt{\pi}}{2}\right)=\frac{1}{2 k}
$$

Using the formula $\int_{0}^{\infty} x^{n} e^{-x^{2}} d x=\frac{1}{2} \Gamma\left(\frac{n+1}{2}\right)$
c. Recall $\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \exp \left(\frac{i \varphi x}{\hbar}\right)$

$$
\begin{aligned}
&\langle p \mid \psi\rangle=\int_{-\infty}^{\infty}\langle p \mid x\rangle\langle x \mid \psi\rangle d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} N e^{-k x^{2} / 2} d x \\
&=\frac{1}{\sqrt{2 \pi \hbar}}\left(\frac{k}{\pi}\right)^{1 / 4} \int_{-\infty}^{\infty} e^{-k x^{2} / 2+i p x / \hbar} d x \\
&=\frac{1}{\sqrt{2 \pi \hbar}}\left(\frac{k}{\pi}\right)^{1 / 4} \int_{-\infty}^{\infty} e^{-\frac{k}{2}\left[\left(x-\frac{i p}{k \hbar}\right)^{2}+\frac{p^{2}}{k^{2}}\right]} d x \quad \text { (completing } \\
& \text { the square) } \\
&=\frac{1}{\sqrt{2 \pi \hbar}}\left(\frac{k}{\pi}\right)^{1 / 4} e^{-p^{2} / 2 k \hbar^{2}} \int_{-\infty}^{\infty} e^{-\frac{k}{2} u^{2}} d u \\
&=\frac{1}{\sqrt{2 \pi \hbar}}\left(\frac{k}{\pi}\right)^{1 / 4} e^{-p^{2} / 2 k \hbar^{2}} \sqrt{\frac{z}{k}} \sqrt{\pi}=\frac{1}{\sqrt{\hbar}(k \pi)^{1 / 4}} e^{-p^{2} / 2 k \hbar^{2}}
\end{aligned}
$$

d. $\langle\psi| p^{2}|\psi\rangle=\int_{-\infty}^{\infty} p^{2}|\langle\rho \mid \psi\rangle|^{2} d p=\frac{1}{\hbar \sqrt{k \pi}} \int_{-\infty}^{\infty} p^{2} e^{-p^{2} / k \hbar^{2}} d p$ $=\frac{1}{\hbar \sqrt{k \pi}}\left(k \hbar^{2}\right)^{3 / 2} \frac{\sqrt{\pi}}{2}=\frac{1}{2} \hbar^{2} K$
e. $-\frac{\hbar 2}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V \psi=E \psi \Rightarrow \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{2 m(V-E)}{\hbar^{2}} \psi$ $\frac{\partial \psi}{\partial x}=-k x N e^{-k x^{2} / 2} \quad \frac{\partial 2 \psi}{\partial x^{2}}=k^{2} x^{2} N e^{-k x / 2}-k N e^{-k x^{2} / 2}=\left(k^{2} x^{2}-k\right) \psi$
$\Rightarrow \frac{2 m(V-E)}{\hbar^{2}}=k^{2} x^{2}-k \Rightarrow V-E=\frac{\hbar^{2} K^{2}}{2 m} x^{2}-\frac{\hbar^{2} k}{2 m}$
$\Rightarrow V(x)=\frac{\hbar^{2} k^{2}}{2 m} x^{2}+C$ where C is a constant equal to $E-\frac{\hbar^{2} k}{2 m}$ Which makes sense because the ground state of the SHO is gaussian like $\Psi(x)$ and the SHO potential is quadratic.

4. Quantum Mechanics (Spring 2004)

The electron neutrino $\left|\nu_{e}\right\rangle$ and the muon neutrino $\left|\nu_{\mu}\right\rangle$ are the possible neutrino states produced and detected in experiments, but they are not necessarily eigenstates of the Hamiltonian. Rather, if the state is known to have momentum p, it is some linear combination of the energy eigenstates $\left|\nu_{1}\right\rangle$ and $\left|\nu_{2}\right\rangle$ of the form

$$
\begin{gathered}
\left|\nu_{e}\right\rangle=\cos (\theta)\left|\nu_{1}\right\rangle+\sin (\theta)\left|\nu_{2}\right\rangle \\
\left|\nu_{\mu}\right\rangle=-\sin (\theta)\left|\nu_{1}\right\rangle+\cos (\theta)\left|\nu_{2}\right\rangle
\end{gathered}
$$

where

$$
\begin{aligned}
& H\left|\nu_{1}\right\rangle=\sqrt{p^{2} c^{2}+m_{1}^{2} c^{4}}\left|\nu_{1}\right\rangle \\
& H\left|\nu_{2}\right\rangle=\sqrt{p^{2} c^{2}+m_{2}^{2} c^{4}}\left|\nu_{2}\right\rangle
\end{aligned}
$$

for two possibly different masses m_{1} and m_{2}, and some "mixing angle" θ. If it is known that a neutrino was definitely a ν_{μ} when it was produced, what is the probability of detecting a ν_{e} after it has traveled a distance L ? Assume that $m_{1} c \ll p$ and $m_{2} c \ll p$, so that the neutrinos are moving at almost (or even exactly) the speed of light, (so you can ignore corrections of the order $1-v / c$ compared to terms of order 1) and state your result to first order in the difference $\Delta m^{2}=m_{1}^{2}-m_{2}^{2}$.
This is a simplified version of an actual neutrino oscillation experiment like the super-Kamiokande detector experiment a few years ago. In reality there is a third neutrino $\left|\nu_{\tau}\right\rangle$.

$$
\begin{aligned}
& |\psi(t)\rangle=U(t)|\psi(0)\rangle=e^{-i H t / \hbar}|\psi(0)\rangle=e^{-i H t / \hbar}\left|V_{\mu}\right\rangle \\
& =-\sin (\theta) e^{-i H+/ \hbar}\left|V_{1}\right\rangle+\cos (\theta) e^{-i H+/ \hbar}\left|v_{2}\right\rangle \\
& =-\sin (\theta) \exp \left[-i \sqrt{p^{2} c^{2}+m_{1}^{2} c^{4}}+/ \hbar\right]\left|v_{1}\right\rangle+\cos (\theta) \exp \left[-i \sqrt{p^{2} c^{2}+m_{2}^{2} c^{4}}+/ \hbar\right]\left|v_{2}\right\rangle \\
& \left\langle V_{e} \mid \psi(t)\right\rangle=-\sin (\theta) \cos (\theta) \exp \left[-i \sqrt{p^{2} c^{2}+m_{1}^{2} c^{4}}+/ \hbar\right]+\sin (\theta) \cos (\theta) \exp \left[-i \sqrt{p^{2} c^{2}+m_{2}^{2} c^{4}}+/ \hbar\right] \\
& \text { Now } \sqrt{1+x} \cong 1+\frac{x}{2} \text { for small } x \text {, so } \sqrt{p^{2} c^{2}+m^{2} c^{4}}=p c \sqrt{1+\frac{m^{2} c^{2}}{p^{2}}} \cong p c\left(1+\frac{m^{2} c^{2}}{2 p}\right) \\
& \text { Since we are assuming } m_{1} c \ll p \text { and } m_{2} c \ll p \\
& \left\langle v_{e} \mid \psi(t)\right\rangle \cong \frac{1}{2} \sin (2 \theta)\left\{\exp \left[-i p c\left(1+\frac{m_{2}^{2} c^{2}}{2 p^{2}}\right)+1 \hbar\right]-\exp \left[-i p c\left(1+\frac{m_{1}^{2} c^{2}}{2 p^{2}}\right) t / \hbar\right]\right\} \\
& P\left(v_{e}\right)=\left|\left\langle v_{e} \mid \psi(t)\right\rangle\right|^{2} \cong \frac{1}{4} \sin ^{2}(2 \theta)\left\{1-\exp \left[i \frac{m_{2}^{2}-m_{1}^{2}}{2 p} c^{3}+/ \hbar\right]-\exp \left[; \frac{m_{1}^{2}-m_{2}^{2}}{2 p} c^{3} t / \hbar\right]+1\right\} \\
& =\frac{1}{4} \sin ^{2}(2 \theta)\left\{2-2 \cos \left(\frac{1}{2} \frac{\Delta m^{2}}{p} c^{3}+/ \hbar\right)\right\} \\
& =\frac{1}{2} \sin ^{2}(2 \theta)\left\{1-\cos \left(\frac{1}{2} \frac{\Delta m^{2} c^{2}}{p} L / \hbar\right)\right\} \text { since } t=\frac{L}{c} \\
& \text { Now } \cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=1-2 \sin ^{2}(\theta) \\
& \Rightarrow 1-\cos (2 \theta)=2 \sin ^{2}(\theta) \Rightarrow 1-\cos (\theta)=2 \sin ^{2}(\theta / 2) \\
& P\left(v_{e}\right)=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2} c^{2}}{4 p} L / \hbar\right)
\end{aligned}
$$

5. Quantum Mechanics (Spring 2005)

Calculate the transmission coefficient for a particle of energy $E>0$ scattering off the $1 D$ potential well $V(x)=V_{0}$ for $0<x<a, V(x)=0$ elsewhere, $V_{0}<0$. Are there resonance phenomena?

$$
\begin{aligned}
& \text { See Griffith Section } 2.6 \\
& \frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V \psi=E \psi \\
\Rightarrow & \frac{\partial^{2} \psi}{\partial x^{2}}=-\frac{2 m(E-V)}{\hbar^{2}} \psi
\end{aligned}
$$

Let $K=\sqrt{\frac{2 m E}{\hbar^{2}}}$ and $\ell=\sqrt{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}}$ which is real because $V_{0}<0<E$

$$
\Rightarrow \Psi_{1}(x)=A e^{i k x}+B e^{-i k x}, \Psi_{2}(x)=C e^{i l x}+D e^{-i l x}, \psi_{3}(x)=F e^{i k x}+G e^{-i k x}
$$

$G=0$ since there is no wave coming from the right.
Since $V(x)<\infty \quad \forall x$, we impose continuity on $\psi(x)$ and $\psi^{\prime}(x)$:

$$
\begin{aligned}
& \psi_{1}(0)=\psi_{2}(0) \Rightarrow A+B=C+D \\
& \psi_{1}^{\prime}(0)=\psi_{2}^{\prime}(0) \Rightarrow K(A-B)=l(C-D) \\
& \psi_{2}(a)=\psi_{3}(a) \Rightarrow C e^{i l a}+D e^{-i l a}=F e^{i k a} \\
& \psi_{2}^{\prime}(a)=\psi_{3}^{\prime}(a) \Rightarrow l\left(C e^{i l a}-D e^{-i l a}\right)=K F e^{i k a}
\end{aligned}
$$

Now use the second two equations to solve for C and D :

$$
\begin{aligned}
& 2 C e^{i l a}=\left(1+\frac{k}{l}\right) F e^{i k a} \Rightarrow C=\frac{1}{2}\left(1+\frac{k}{l}\right) F e^{i k a} e^{-i l a} \\
& 2 D e^{-i l a}=\left(1-\frac{k}{l}\right) F e^{i k_{a}} \Rightarrow D=\frac{1}{2}\left(1-\frac{k}{l}\right) F e^{i k a} e^{i l a}
\end{aligned}
$$

Next use the first two equations to eliminate B and insert C, D :

$$
\begin{aligned}
& 2 A=C+D+\frac{l}{k}(C-D) \Rightarrow A=\frac{1}{2}\left(1+\frac{l}{k}\right) C+\frac{1}{2}\left(1-\frac{l}{k}\right) D \\
\Rightarrow A & =\frac{1}{4}\left(2+\frac{k}{l}+\frac{l}{k}\right) F e^{i k a} e^{-i l a}+\frac{1}{4}\left(2-\frac{k}{l}-\frac{l}{k}\right) F e^{i k a} e^{i l a} \\
& =F e^{i k a} \cos (l a)-\frac{i}{2} \frac{k^{2}+l^{2}}{k l} F e^{i k a} \sin (l a) \\
\Rightarrow & F=A e^{-i k a}\left[\cos (l a)-\frac{i}{2} \frac{k^{2}+l^{2}}{k l} \sin (l a)\right]^{-1}
\end{aligned}
$$

Therefore $T \equiv \frac{|F|^{2}}{|A|^{2}}=\left[\cos ^{2}(l a)+\frac{1}{4}\left(\frac{k^{2}+l^{2}}{k l}\right)^{2} \sin ^{2}(l a)\right]^{-1}$

$$
\begin{aligned}
& =\left[1+\left(\frac{1}{4} \frac{k^{4}+2 k^{2} l^{2}+l^{4}}{k^{2} l^{2}}-\frac{4 k^{2} l^{2}}{4 k^{2} l^{2}}\right) \sin ^{2}(l a)\right]^{-1} \quad\left(\cos ^{2}(l a)=1-\sin ^{2}(l a)\right) \\
& =\left[1+\frac{1}{4}\left(\frac{k^{2}-l^{2}}{k l}\right)^{2} \sin ^{2}\left(l_{a}\right)\right]^{-1} \\
& =\left[1+\frac{1}{4}\left(\frac{V_{0}}{\left.\sqrt{E\left(E-V_{0}\right.}\right)}\right)^{2} \sin ^{2}\left(\frac{a}{\hbar} \sqrt{2 m\left(E-V_{0}\right)}\right)\right]^{-1} \\
& =\left[1+\frac{1}{4} \frac{V_{0}^{2}}{E\left(E-V_{0}\right)} \sin ^{2}\left(\frac{a}{\hbar} \sqrt{2 m\left(E-V_{0}\right)}\right)\right]^{-1}
\end{aligned}
$$

Resonance phenomena can occur if the energy is just right.
The Ramsaver - Townsend effect gives perfect transmission

$$
\text { so } T=1 \Leftrightarrow \frac{a}{\hbar} \sqrt{2 m\left(E-V_{0}\right)}=n \pi \Leftrightarrow 2 m\left(E-V_{0}\right)=\left(\frac{n \pi \hbar}{a}\right)^{2} \Leftrightarrow E=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}+V_{0}
$$

6. Statistical Mechanics and Thermodynamics (Spring 2006)

Consider a gas of relativistic, conserved bosons. The relation between energy and momentum is

$$
E=|\mathbf{p}| c
$$

(a) Derive the condition for Bose-Einstein condensation in three dimensions.
(b) Does Bose-Einstein condensation occur in two dimensions? Justify your answer.
(c) What is the highest dimension for which Bose-Einstein condensation does not occur?

The simplest definition of T_{e} is the minimum temperature for which all particles in the system are expected to be in excited states. Our strategy:

1. Find the density of states
2. Integrate occupancy times density of stakes to get the total number of particles in excited states N_{e} (since $\epsilon=0$ for ground state, they aren't counted in this integral because $\rho(0)=0$).
3. Maximize $N e$ by setting $\mu=0$ so the minimum temperature comes out.
4. Set $N_{e}=N$ and solve for $T=T_{c}$.
a. $\epsilon=P C=\hbar K_{c}=\left(\frac{\hbar \pi c}{L}\right) n \Rightarrow n=\left(\frac{L}{\hbar \pi c}\right) \epsilon \Rightarrow d_{n}=\left(\frac{c}{\hbar \pi c}\right) d \epsilon$

$$
\begin{aligned}
\rho(\epsilon) & =\frac{1}{8} 4 \pi n^{2} d n=\frac{\pi}{2}\left(\frac{L}{\hbar \pi c}\right)^{3} \epsilon^{2} d \epsilon=\frac{V}{2 \pi^{2}} \frac{\epsilon^{2}}{(\hbar c)^{3}} d \epsilon \\
N_{e} & =\int_{0}^{\infty} f(\epsilon) \rho(\epsilon) d \epsilon \\
& =\frac{V}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \int_{0}^{\infty} \frac{\epsilon^{2}}{e^{\beta(\epsilon-\mu)}-1} d \epsilon \\
& =\frac{v}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \int_{0}^{\infty} \frac{\epsilon 2}{e^{\beta(\epsilon-\mu)}} \frac{1}{1-e^{-\beta(\epsilon-\mu)}} d \epsilon
\end{aligned}
$$

$$
=\frac{v}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \int_{0}^{\infty} \frac{\epsilon^{2}}{e^{\beta(\epsilon-\mu)}} \sum_{l=0}^{\infty} e^{-B l(\epsilon-\mu)} d \epsilon \quad(m u s t \text { have } \epsilon>\mu \text { for } \bar{n}>0)
$$

$$
=\frac{r}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \int_{0}^{\infty} \epsilon^{2} \sum_{l=1}^{\infty} e^{-\beta l(\epsilon-\mu)} d \epsilon
$$

$$
=\frac{V}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \sum_{l=1}^{\infty}\left[e^{\beta l \mu^{l=1}} \int_{0}^{\infty} \epsilon^{2} e^{-\beta l \epsilon} d \epsilon\right]
$$

$$
=\frac{v}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \sum_{\ell=1}^{\infty}\left[e^{\beta l n}\left(\frac{1}{\beta \ell}\right)^{3} \int_{0}^{\infty} x^{2} e^{-x} d x\right]
$$

$$
=\frac{V}{2 \pi^{2}} \frac{1}{(\hbar c)^{3}} \frac{2!}{\beta^{2}} \sum_{l=1}^{\infty} \frac{e^{B l},}{l^{3}}
$$

$\xrightarrow{\mu \rightarrow 0} \frac{V}{\pi^{2}} \frac{1}{(\hbar c \beta)^{3}} \sum_{l=1}^{\infty} \frac{1}{l^{3}}$ and $\sum_{l=1}^{\infty} \frac{1}{l^{3}} \equiv S(3)$

$$
\begin{aligned}
N_{e}=N & \Rightarrow \frac{1}{\beta^{3}}=\frac{N}{V} \pi^{2} \frac{(\hbar c)^{3}}{\zeta(3)} \\
& \Rightarrow \frac{1}{\beta}=\hbar c\left(\pi^{2} \frac{N}{V} / \zeta(3)\right)^{1 / 3} \\
& \Rightarrow T_{c}=\frac{\hbar c}{K}\left(\pi^{2} \frac{N}{V} / \zeta(3)\right)^{1 / 3}
\end{aligned}
$$

b. In $2 D, \rho(\epsilon) d \epsilon=\frac{1}{4} 2 \pi n d n=\frac{\pi}{2}\left(\frac{L}{\hbar \pi}\right)^{2} \in d \epsilon$ gives $\zeta(2)$ with a similar procedure and $\zeta(z)$ converges so everything is fine and condensation does occur.
C. In ID, $\rho(\epsilon) d \epsilon=d n=\frac{L}{\hbar \pi c} d \epsilon$ gives $\zeta(1)$ with a similar procedure but $\zeta(1)$ diverges, so the resulting T_{c} is $T_{c}=0$, so BEC does not occur in ID, making I the highest dimension for which BEC does not occur.

7. Statistical Mechanics and Thermodynamics (Spring 2004)

A quantum state at energy E_{T} is embedded in a system with a degenerate Fermi gas as, for instance, occurs with an impurity state with energy E_{T} in a degenerate semiconductor with a sea of conducting electrons at chemical potential μ. You may assume that $E_{T}>\mu$. The impurity, which has a spin of $1 / 2$, can take an additional electron from the large bath of electrons (costs Coulomb energy U), to form a spin-singlet state. For a given temperature T and magnetic field B, calculate the ratio of the probability for the trap being empty to that for the trap being filled by an additional electron.

When the trap is empty it has energy associated with the spin of $\frac{5}{2}$ interacting with the magnetic field. when the trap is filled, the total spin is zero, so there is no interaction with the magnetic field, but it has energy $U=E_{T}-\mu . \quad \vec{M}=g \mu_{B} \vec{S}$ where $\hbar \vec{S}$ is the spin

$$
E_{B}=-\vec{\pi} \cdot \vec{B}=-\frac{1}{2} g \mu_{B} B
$$

Therefore $E_{\text {empty }}=-\frac{1}{2} g \mu_{B} B$ and $E_{\text {filled }}=U$.

$$
\begin{aligned}
& P_{\text {empty }}=\frac{e^{-\beta E_{\text {empty }}}}{e^{-\beta E_{\text {empty }}}+e^{-\beta E_{\text {fill at }}}} \quad P_{\text {filled }}=\frac{e^{-\beta E_{\text {filled }}}}{e^{-\beta E_{\text {empty }}}+e^{-\beta E_{\text {filled }}}} \\
& \begin{aligned}
\frac{P_{\text {empty }}}{P_{\text {filled }}} & =\frac{e^{-\beta E_{\text {empty }}}}{e^{-\beta E_{\text {filled }}}}=\frac{e^{\beta\left(\frac{1}{2} g \mu_{B} B\right)}}{e^{-\beta U}}=e^{\left(V+\frac{1}{2} g \mu_{B} B\right) / k T} \\
& =e^{\left(E_{T}-\mu+\frac{1}{2} g \mu_{B} B\right) / k T}
\end{aligned} .
\end{aligned}
$$

8. Electricity and Magnetism (Spring 2004)

A point charge q is located a distance d from the center of a conducting sphere of radius R. What must the total charge on the conducting sphere be for the force on the point charge to be zero?

First assume the sphere is grounded, Then we know by the method of images a charge $q^{\prime}=-q\left(\frac{R}{d}\right)$ flows onto the sphere and distributes itself so that the fieldoutside is like a point charge of charge q^{\prime} at $x^{\prime}=R\left(\frac{R}{d}\right)$.
Now remove the ground connection and add charge $q^{\prime \prime}$ to the sphere (which already has charge q^{\prime} on it). Since the surface is an equipotential, the new charge will distribute itself uniformly over the surface, which is equivalent to an image charge of charge $q^{\prime \prime}$ at $x^{\prime \prime}=0$.

The field at $x=d$ is zero when

$$
\begin{aligned}
& E(x=d)=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q^{\prime}}{\left(x^{\prime}-d\right)^{2}}+\frac{q^{\prime \prime}}{\left(x^{\prime \prime}-d\right)^{2}}\right)=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{-g R / d}{\left(\frac{R^{2}}{d}-d\right)^{2}}+\frac{q^{\prime \prime}}{d^{2}}\right)=0 \\
& \Leftrightarrow q^{\prime \prime}=\frac{g R d}{\left(\frac{R^{2}}{d}-d\right)^{2}}=\frac{q^{3} R}{\left(R^{2}-d^{2}\right)^{2}}
\end{aligned}
$$

The total charge on the sphere is then

$$
\begin{aligned}
Q & =q^{\prime}+q^{\prime \prime}=\frac{q d^{3} R}{\left(R^{2}-d^{2}\right)^{2}}-\frac{q R}{d}=\frac{q d^{4} R-q R\left(R^{2}-d^{2}\right)^{2}}{d\left(R^{2}-d^{2}\right)^{2}} \\
& =q R \frac{2 d^{2} R^{2}-R^{4}}{d\left(R^{2}-d^{2}\right)^{2}}
\end{aligned}
$$

9. Electricity and Magnetism (Spring 2004)

Consider the infinite two-dimensional conducting plane depicted in the figure. The right half is maintained at electrostatic potential V_{0} while the left half is maintained at potential $-V_{0}$. What is the potential above the plane?

See Jackson Section 2.11
We solve Laplace's equation in cylindrical coordinates

$$
\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

There is no z dependence by symmetry so we use separation of variables and seek solutions of the form $\Phi(r, \phi)=R(r) Q(\phi)$. (Or you could recall that the solution is $\Phi(r, \phi)=(A+B \ln (r))(C+D \phi)$ when r ranges from 0 to $\infty)$,

$$
\begin{aligned}
\nabla^{2} \Phi=0 & \Rightarrow \frac{Q}{r} \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)+\frac{R}{r^{2}} \frac{\partial^{2} Q}{\partial \phi^{2}}=0 \\
& \Rightarrow \frac{r}{R} \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)+\frac{1}{Q} \frac{\partial^{2} Q}{\partial \phi^{2}}=0 \\
& \Rightarrow \frac{r}{R} \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)=\lambda \text { and } \frac{1}{Q} \frac{\partial^{2} Q}{\partial \phi^{2}}=-\lambda
\end{aligned}
$$

by independence of variables

$$
\begin{aligned}
& \Rightarrow r \frac{\partial}{\partial r}\left(r \frac{\partial R}{\partial r}\right)=\lambda R \text { and } \frac{\partial^{2} Q}{\partial \Phi^{2}}=-\lambda Q \\
& \Rightarrow\left\{\begin{array}{l}
R(r)=A r^{\sqrt{\lambda}}+B r^{-\sqrt{\lambda}} \quad \text { and } Q(\phi)=\left(\sin (\sqrt{\lambda} \phi)+D^{\cos (\sqrt{\lambda} \phi)}(\lambda \neq 0)\right. \\
R(r)=A^{\prime}+B^{\prime} \ln (r) \quad \text { and } Q(\phi)=C^{\prime}+D^{\prime} \phi \quad(\lambda=0)
\end{array}\right.
\end{aligned}
$$

The conditions that $|\Phi(r=\infty)|<\infty$ and $|\Phi(r=0)|<\infty$ imply $A=B=B^{\prime}=0$, so the $\lambda \neq 0$ case is excluded.

$$
\begin{aligned}
& \Rightarrow \Phi(r, \phi)=C^{\prime}+D^{\prime} \phi \\
& \Phi(\phi=0)=V_{0} \Rightarrow C^{\prime}=V_{0} \text { and } \Phi(\phi=\pi)=-V_{0} \Rightarrow D^{\prime}=-\frac{2 V_{0}}{\pi}
\end{aligned}
$$

Therefore $\Phi(r, \phi)=V_{0}\left(1-\frac{2}{\pi} \phi\right)$
10. Electricity and Magnetism (Spring 2004)

Consider a cylindrical capacitor of length L with charge $+Q$ on the inner cylinder of radius a and $-Q$ on the outer cylindrical shell of radius b. The capacitor is filled with a lossless dielectric with dielectric constant equal to 1 . The capacitor is located in a region with a uniform magnetic field B, which points along the symmetry axis of the cylindrical capacitor. A flaw develops in the dielectric insulator, and a current flow develops between the two plates of the capacitor. Because of the magnetic field, this current flow results in a torque on the capacitor, which begins to rotate. After the capacitor is fully discharged (total charge on both plates is zero), what is the magnitude and direction of the angular velocity of the capacitor? The moment of inertia of the capacitor (about the axis of symmetry) is I, and you may ignore fringing fields in the calculation.

Let $d I$ be the change in angular momentum due to the flow of an infinitesimal amount of charge $d q$. Then $\vec{L}=\int_{0}^{Q} d \vec{L}$.

$$
\begin{aligned}
d \vec{L} & =\int_{0}^{+} \vec{\tau} d t=\int_{a}^{b} \vec{\tau}(r) \frac{d t}{d r} d r=\int_{a}^{b} \vec{r} \times \vec{F}(\vec{r}) \frac{1}{v} d r \\
& =d q \int_{a}^{b} \vec{r} \times(\vec{v} \times \vec{B}) \frac{1}{v} d r=d q \int_{a}^{b} r B \hat{r} \times(\hat{r} \times \hat{z}) d r \\
& =-\frac{1}{2}\left(b^{2}-a^{2}\right) B d q \hat{z} \\
\vec{L} & =\int_{0}^{a} d \vec{L}=-\frac{1}{2}\left(b^{2}-a^{2}\right) B Q \hat{z} \\
\vec{L} & =I \vec{\omega} \Rightarrow \vec{\omega}=-\frac{1}{2} \frac{Q B}{I}\left(b^{2}-a^{2}\right) \hat{z}
\end{aligned}
$$

11. Electricity and Magnetism (Spring 2004)

Consider a plasma of free charges of mass m and charge e at constant density n. What is the index of refraction for electromagnetic waves of frequency ω which are incident upon this plasma?

$$
V=\frac{c}{n_{i}} \Rightarrow \frac{1}{\sqrt{\mu \epsilon}}=\frac{1}{n_{i} \sqrt{\mu_{0} \epsilon_{0}}} \Rightarrow n_{i}=\sqrt{\frac{\mu \epsilon}{\mu_{0} \epsilon_{0}}}
$$

Unless if a substance is ferromagnetic, its magnetic susceptibility μ will be approximately μ_{0}, so $n_{i} \cong \sqrt{\epsilon_{0}}$ Recall $\frac{\epsilon(\omega)}{\epsilon_{0}} \cong 1-\frac{\omega_{p}^{2}}{\omega^{2}}$ and $\omega_{p}^{2}=\frac{n e^{2}}{\epsilon_{0} m}$

$$
\text { So } n_{i}(\omega) \cong \sqrt{\frac{\epsilon(\omega)}{\epsilon_{0}} \cong \sqrt{1-\frac{\omega_{p}^{2}}{\omega^{2}}}=\sqrt{1-\frac{n e^{2}}{\epsilon_{0} m \omega}} \text {. }}
$$

13. Statistical Mechanics and Thermodynamics (Spring 2004)

A van der Waal gas has the following equation of state:

$$
P(T, V)=\frac{N k T}{(V-b N)}-a\left(\frac{N}{V}\right)^{2}
$$

This gas is held in a container of negligible mass which is isolated from its surroundings. The gas is initially confined to $1 / 3$ of the total volume of the container by a partition (a vacuum exists in the other $2 / 3$ of the volume). The gas is initially in thermal equilibrium with temperature T_{i}. A hole is then opened in the partition, allowing the gas to irreversibly expand to fill the entire volume (V). What is the new temperature of the gas after thermal equilibrium has been re-established? (Hint: Note that the specific heat at constant volume for a van der Waals gas is the same as that for an ideal gas.)

Before

After

See Reif Page 177. The concept here is that the gas will do work against its own van der Walls attraction forces when it expands, which lowers the temperature of the gas. Start with $C_{V}=\left(\frac{\partial Q}{d T}\right)_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}$ and $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial \rho}{\partial T}\right)_{V}$.
The first is only true for quasistatic situations and this expansion is not quasistatic, but we will use $d Q$ as the change in internal energy of the gas rather than heat exchanged with the environment, and the change in energy of the gas can be quasistatic. By the chain rule,

$$
\left.\begin{array}{rl}
d S & =\left(\frac{\partial S}{\partial T}\right)_{V} d T+\left(\frac{\partial S}{\partial V}\right)_{T} d V \\
& =\frac{C_{V}}{T} d T+\left(\frac{\partial P}{\partial T}\right)_{V} d V \\
\Rightarrow T d S & =C_{V} d T+T\left(\frac{\partial \rho}{\partial T}\right)_{V} d V \\
d E=T d S-p d V & \Rightarrow d E
\end{array}\right)=C_{V} d T+T\left(\frac{\partial P}{\partial)_{V}} d V-p d V\right)
$$

No work done on environment and no heat exchanged $\Rightarrow d E=0$ $\Rightarrow C_{V} d T=-a\left(\frac{N}{V}\right)^{2} d V$
Assume $C_{v}=\frac{3}{2} N K$ like ideal gas even though it isn't true, $\Rightarrow \triangle T=\int d T=-\frac{2}{3} \frac{a}{K} N \int_{V / 3}^{V} \frac{1}{V^{2}} d V=\frac{2}{3} \frac{a}{k} N\left(\frac{1}{V}-\frac{1}{V / 3}\right)=-\frac{4}{3} \frac{a}{K} \frac{N}{V}$ $\Rightarrow T_{f}=T_{i}-\frac{4}{3} \frac{a}{k} \frac{N}{V}$

QM S'O4 \#1

$$
\begin{aligned}
& s_{1}=3 / 2 ; s_{2}=1 / 2 ; \quad s=s_{1}+s_{2}=2 \quad(\text { max, total } s) \\
& s_{1}-s_{2}=1 \quad(\text { min. total } s) \\
& |2,2\rangle=|3 / 2,3 / 2\rangle|1 / 2,1 / 2\rangle \\
& \left.|2,1\rangle=\left.\frac{1}{\sqrt{4}}|3 / 2,3 / 2\rangle\right|^{1 / 2},-1 / 2\right\rangle+\sqrt{\frac{3}{4}}|3 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle \\
& \left.|2,0\rangle=\left.\frac{1}{\sqrt{2}}\right|^{3 / 2}, 1 / 2\right\rangle|1 / 2,-1 / 2\rangle+\frac{1}{\sqrt{2}}|3 / 2,-1 / 2\rangle|1 / 2,1 / 2\rangle \\
& \left.|2,-1\rangle=\sqrt{\frac{3}{4}}|3 / 2,-1 / 2\rangle|1 / 2|^{-1 / 2}\right\rangle+\frac{1}{\sqrt{4}}|3 / 2,-3 / 2\rangle|1 / 2,1 / 2\rangle \\
& |2,-2\rangle=|3 / 2 ; 3 / 2\rangle|1 / 2,-1 / 2\rangle \\
& |11,1\rangle=\sqrt{\frac{3}{4}}|3 / 2,3 / 2\rangle|1 / 2,-1 / 2\rangle-\frac{1}{\sqrt{4}}|3 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle \\
& |1,0\rangle=\frac{1}{\sqrt{2}}|3 / 2,1 / 2\rangle|1 / 2,-1 / 2\rangle-\frac{1}{\sqrt{2}}|3 / 2,-1 / 2\rangle|1 / 2,1 / 2\rangle \\
& |1,-1\rangle=\frac{1}{\sqrt{4}}|3 / 2,-1 / 2\rangle|1 / 2,-1 / 2\rangle-\sqrt{\frac{3}{4}}|3 / 2,-3 / 2\rangle|1 / 2,1 / 2\rangle
\end{aligned}
$$

Spring $2004 \#$:

$$
\begin{aligned}
& |s m\rangle \quad\left|s_{1} m_{1}\right\rangle\left|s_{2} m_{2}\right\rangle \quad s_{1}=1 / 2 \quad s_{2}=a / 2 \\
& 1227=13 / 23 / 2\rangle \mid 1 / 21 / 27 \\
& 1217=\frac{1}{\sqrt{4}}|3 / 2,3 / 2\rangle|1 / 2-1 / 2\rangle+\sqrt{3} / 4|3 / 21 / 2\rangle|1 / 21 / 2\rangle \\
& \left.|20\rangle=\frac{1}{\sqrt{2}}|3 / 21 / 2\rangle(1 / 2,-1 / 2\rangle+1 / \sqrt{2}|3 / 2-1 / 2\rangle 11 / 21 / 2\right\rangle \\
& |2-1\rangle=\sqrt{3} / 4 \quad|3 / 2,-1 / 2\rangle|1 / 2-1 / 2\rangle+\frac{1}{\sqrt{4}}|3 / 2-3 / 2>11 / 21 / 2\rangle \\
& |2-2\rangle=|3 / 2-3 / 2\rangle, 1 / 2-1 / 2\rangle \\
& \left.\left.11\left\rangle=\sqrt{\frac{3}{4}}\right| 3 / 23 / 2\right\rangle|1 / 2-1 / 2\rangle \quad \sqrt{1 / 4}|3 / 21 / 2>| 1 / 21 / 2\right\rangle \\
& \left.|10\rangle=\sqrt{\frac{1}{2}}|3 / 21 / 2>1 / 2-1 / 2\rangle-\sqrt{\frac{1}{2}}|3 / 2-1 / 2>| 1 / 21 / 2\right\rangle \\
& |1-1\rangle=\sqrt{\frac{1}{4}}|3 / 2-1 / 2\rangle|1 / 2-1 / 2\rangle-\sqrt{\frac{3}{4}}(3 / 2-3 / 2\rangle|1 / 21 / 2\rangle
\end{aligned}
$$

Spring 2004 \#1 ($p 1$ of 2)
The table below shook some Clebsch-Gordan coefficients. If two particles lave spin $1 / 2$ and $3 / 2$ respectively, write down all composite states $\left|S_{n}\right\rangle$ in terms of the uncoupled states usn Dirac notation,

The possible values of s is given by

$$
\begin{aligned}
& \left|s_{1}-s_{2}\right| \leq s \leq\left|s_{1}+s_{3}\right| \\
\Rightarrow & \left|\frac{1}{2}-\frac{3}{2}\right| \leq s \leq\left|\frac{1}{2}+\frac{3}{2}\right| \Rightarrow 1 \leq s \leq 2
\end{aligned}
$$

Thus, s can be either for 2 .
if you want to read a column on the table, it has the form

$$
|s m\rangle=\sum_{m_{1}+m_{2}=m} C_{m_{1} m_{2} m}^{s s_{2} s}\left|s_{1} m_{1}\right\rangle\left|s_{2} m_{2}\right\rangle
$$

where

$$
s_{1} \times s_{2}
$$

$$
m_{1} m_{2} \left\lvert\, \frac{m_{m}^{s}}{\left(C_{m, m_{m}}^{s_{m_{3} 3}}\right)^{2}}\right.
$$

So, for $S=2 \quad\left(S_{1}=3 / 2, S_{2}=1 / 2\right)$

$$
\begin{aligned}
& |22\rangle=|3 / 2,3 / 2\rangle|1 / 2,1 / 2\rangle \\
& |21\rangle=\frac{1}{\sqrt{4}}|3 / 2,3 / 2\rangle|1 / 2,-1 / 2\rangle+\sqrt{\frac{3}{4}}|3 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle \\
& |20\rangle=\frac{1}{\sqrt{2}}\left|3 / 2, \frac{1}{2}\right\rangle|1 / 2,-1 / 2\rangle+\frac{1}{\sqrt{2}}|3 / 2,-1 / 2\rangle|1 / 2,1 / 2\rangle \\
& |2,-1\rangle=\sqrt{\frac{3}{4}}|3 / 2,-1 / 2\rangle|1 / 2,-1 / 2\rangle+\frac{1}{\sqrt{4}}|3 / 2,-3 / 2\rangle|1 / 2,1 / 2\rangle \\
& |2,-2\rangle=|3 / 2,-3 / 2\rangle|1 / 2,-1 / 2\rangle
\end{aligned}
$$

Sping 2004 \#1 $(p 20 F 2)$
For $s=1$

$$
\begin{aligned}
& |11\rangle=\sqrt{\frac{3}{4}}|3 / 2,3 / 2\rangle\left|\frac{1}{2},-1 / 2\right\rangle-\frac{1}{\sqrt{4}}|3 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle \\
& |10\rangle=\frac{1}{\sqrt{2}}|3 / 2,1 / 2\rangle|1 / 2,-1 / 2\rangle-\frac{1}{\sqrt{2}}|3 / 2,-1 / 2\rangle\left|3 / 2, \frac{1}{2}\right\rangle \\
& |1,-1\rangle=\frac{1}{\sqrt{4}}|3 / 2,-1 / 2\rangle\left|\frac{1}{2},-1 / 2\right\rangle-\sqrt{\frac{3}{4}}|3 / 2,3 / 2\rangle|1 / 2,1 / 2\rangle
\end{aligned}
$$

$Q M$ SO $\# \# 2$

H-atom is in the ground state $(x=1, l=m=0)$ at $x<0$
A time deppendert E-field is applied:

$$
\vec{E}=\vec{E}_{0} e^{-\gamma t} \quad \gamma>0 ; \quad \vec{E}_{0}=E_{0} \hat{z}
$$

What is the probability that for $t \rightarrow \infty$ the atom is in each of the four $n=d$ states?
start: $n=1, e=0=n \quad|1,0,0\rangle$
Finish $x=2 ; e=0 \quad(1,0,0\rangle ; e=1 \quad|2,1,1\rangle,|2,1,0\rangle,|2,1,-1\rangle$

$$
\begin{aligned}
& m=0 \quad m=1,0,-1 \\
& c_{1 \rightarrow 2}(x)=\frac{-i}{\pi} \int_{0}^{\infty}\left\langle H^{\prime}\right\rangle e^{i \omega_{0} t} d x ; \omega_{0}=\frac{E_{j}-E_{1} ;}{E_{1}}=\begin{aligned}
& =-13.6 e \mathrm{~V} \\
E_{3} & =\frac{-13.6 e v}{4}
\end{aligned} \\
& =-\frac{13.6 \mathrm{ev}}{\pi}\left(\frac{1}{4}-1\right)=\frac{13.6 \mathrm{ev}}{\pi} \cdot \frac{3}{4} \\
& \left\langle H^{\prime}\right\rangle=\langle 100| H^{\prime}|200\rangle ;\langle 100| H^{\prime}|211\rangle ;\langle 100| H^{\prime}|210\rangle ;\langle 100| H^{\prime}|21-1\rangle \\
& r \cos \theta \\
& -\langle 100| H^{\prime}|200\rangle=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty}\left(\frac{\partial e^{-r / a}}{\sqrt{4 \pi} a^{3 / 2}}\right) F_{0} z e^{-\partial t}\left(\frac{1}{\sqrt{2} a^{3 / 2} \sqrt{4 \pi}}\left(1-\frac{x}{\partial a}\right) e^{-r / a a}\right) r^{2} \sin \theta d \theta d \phi d r \\
& =\frac{2}{4 \pi \alpha^{3} \sqrt{2}} E_{0} e^{-\lambda t} \int_{0}^{2 \pi} d \phi \int_{a=\sin \theta}^{\pi} \cos \theta \sin \theta \alpha \theta \int_{0}^{\infty} r^{3}\left(1-\frac{r}{2 a}\right) e^{-\frac{3 r}{2 a}} d r=0 \\
& \begin{array}{c}
\alpha=\sin \theta \\
\alpha \alpha=\cos \theta d \theta
\end{array} \\
& \Rightarrow \int_{0}^{0} a d u=0
\end{aligned}
$$

so $\langle 100| H^{\prime}(200\rangle=0$

$$
\begin{aligned}
& \left.\cdot\langle 100| H^{\prime}|\alpha| \theta\right\rangle=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} \frac{\partial e^{-r / 4}}{a^{3 / 2} \sqrt{4 \pi}}\left(E_{0} r \cos \theta e^{-\gamma x}\right)\left(\frac{1}{\frac{\gamma \sqrt{6}}{a}} \frac{r}{a a^{3 / 2}} e^{-r / \operatorname{san}} \sqrt{\frac{3}{4 \pi}} \cos \theta\right) r^{\prime} \alpha r \sin \theta \alpha \theta d \phi \\
& =\frac{F_{0} e^{-j x} \frac{1}{4 \pi a^{3}} \frac{1}{\sqrt{2}} \frac{1}{a} \int_{0}^{2 \pi} \alpha \phi}{\int_{0}^{\pi}} \underbrace{\cos ^{2} \theta}_{a=\cos \theta} \sin \theta \alpha \theta \underbrace{\infty}_{0} \int_{0}^{\infty} r^{-x} e^{-\frac{3 x}{2 a}} d r=\frac{E_{0} e^{-\gamma t}}{4 \pi a^{4}} \frac{1}{\sqrt{2}} \cdot \lambda \hbar \cdot \frac{\alpha}{3} \cdot\left(\frac{2 a}{3}\right)^{5} \cdot 4! \\
& \begin{aligned}
& u=\cos \theta \\
& \alpha k=-\sin \theta \alpha \theta \\
&-1
\end{aligned} \quad \int_{0}^{\infty} x^{n} e^{-x / a^{\prime}} d x=a^{n+1} x!\quad x=y ; a^{\prime}=\frac{2 a}{3} \\
& -\int_{1}^{-1} u^{2} d u=\int_{-1}^{1} a^{3} d u=\left.\frac{1}{3} a^{3}\right|_{-1} ^{1}=\frac{1}{3}(1-1)=\frac{1}{3}
\end{aligned}
$$

So $\langle 100| H^{\prime}|+10\rangle=\frac{E_{0} e^{-\lambda t}}{3 \sqrt{2} a^{4}}\left(\frac{2 a}{3}\right)^{5} 4!=\frac{E_{0} e^{-\lambda x} a}{a \sqrt{2}} 8\left(\frac{2}{3}\right)^{5}$

$$
\begin{aligned}
&<100 \mid H^{\prime}(\alpha|1\rangle=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} \frac{\alpha e^{-2 / 4}}{a^{3 / 2} \sqrt{4 \pi}}\left(E_{0} r \cos \theta e^{-\lambda t}\right)\left(\frac{1}{\partial \sqrt{6}} \frac{2}{\alpha a^{3 / 2}} e^{-r / 2 \alpha} \cdot-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi}\right) r^{2} d r \sin \theta d \theta d \phi \\
&= \frac{-E_{0} e^{-\alpha t}}{a^{4} 4 \pi} \frac{1}{\sqrt{4}} \int_{0}^{\alpha \pi} e^{i \phi} \alpha \phi \\
& \int_{0}^{\pi} \cos \theta \sin ^{2} \theta d \theta \int_{0}^{\infty} r^{4} e^{-\frac{3 r}{2 \alpha}} \alpha r=0 \\
& \frac{1}{e^{\prime}} e^{i \phi} \int_{0}^{2 \pi}=\frac{1}{i}[1-1]=0
\end{aligned}
$$

So $\left\langle 100 / H^{\prime} \mid \lambda \|\right\rangle=0$ and similarly for $\left\langle 100 / H^{\prime}\right| \lambda|-1\rangle$.

So $\quad c_{t \rightarrow 2}(x)=\frac{-i}{t} \int_{0}^{\infty} \frac{8 E_{0} e^{-\gamma t} a}{\sqrt{2}}\left(\frac{2}{3}\right)^{5} e^{i \omega_{0} t} d t^{t}=\frac{-i E_{0} a 8}{\hbar \sqrt{2}}\left(\frac{\partial}{3}\right)^{5} \int_{0}^{\infty} e^{-\left(\gamma-i \phi_{0}\right) x} d x$

$$
\left.\frac{1}{\left(\gamma-i \omega_{b}\right)} e^{-\left(\gamma-i \omega_{0}\right) x}\right|_{0} ^{\infty}=\frac{t 1}{\left(\delta-i \omega_{0}\right)}
$$

$$
c_{1 \rightarrow 2}(x)=\frac{e^{i} E_{0} a 8}{t \sqrt{2}}\left(\frac{2}{3}\right)^{5} \frac{1}{\left(r-i v_{0}\right)}
$$

So .. the probability is : $\left.\mid C_{1 \rightarrow 2}(t)\right)^{2}=\frac{E_{0}^{2} a^{2}}{2 t^{2}}\left(\frac{2}{3}\right)^{10} \frac{\delta^{2}}{\left(r-i u_{0}\right)^{2}}=\frac{E_{0}^{2} a^{2}}{2 t^{2}}\left(\frac{2}{3}\right)^{10} \frac{\partial^{2}}{\partial+\omega_{0}}{ }^{2}$

$$
\begin{gathered}
\uparrow \\
\frac{8}{\gamma^{2}+\omega_{0}^{2}}
\end{gathered}
$$

Spring $2004 \#$

$$
\begin{aligned}
& H^{\prime}=e E_{0} 2 e^{-\gamma t} \quad \text { (reference problem 9.1 } \\
& \text { avers } \\
& |\psi(t)\rangle=c(t) e^{-i E_{n} t}\left|\psi_{n}\right\rangle \\
& \langle n \operatorname{lm} / \psi(t)\rangle=C_{n e m}(t) e^{-i E_{n} t}
\end{aligned}
$$

abers $\quad 9.3$
$\langle 200121100\rangle$ goes to zero from parity conservation $\langle 2 . \pm||z| 100\rangle$ gigo away dove to z being the $0^{\text {th }}$ component of a rank one spherical tensor.
$\langle 2101 z \| 00\rangle$ in y excited state

$$
\begin{aligned}
& \int_{0}^{t} e^{i E_{21} t^{\prime}} e^{-\gamma t} \partial t^{\prime}=\frac{1}{i E_{21}-\gamma}\left(e^{i E_{21} t-\gamma t}-1\right) \\
& E_{21}=E_{2}-E_{1} \\
& E_{21}=\frac{3 \alpha^{2} m}{8} \quad\langle 2101 z 1100\rangle=\frac{\sqrt{2^{d 5} a^{2}}}{3^{10}} \\
& \left|c_{210}(t)\right|^{2}=e^{2} E_{0}^{2}\left(\frac{2^{15} a^{2}}{3^{10}}\right) \frac{1}{E_{21}^{2}+\gamma^{2}}\left(1+e^{-2 \gamma t}-2 e^{-\gamma t} \cos \left(E_{2}+\right)\right) \\
& \underset{+\rightarrow \infty}{\left|c_{210}\right|^{2}}=e^{2} E_{0}^{2}\left(\frac{2^{1 s} a^{2}}{3^{10}}\right) \frac{1}{E_{21}^{2}+j^{2}}
\end{aligned}
$$

Spring 2004 \# $2(p$ Oof 2$)$
A hydrogen atom is in the grourdstate $(n=1, l=m=0)$ for $t<0$. Suppose the atom is placed between the plates of a capacitor, and a weak, spatially uniform but time-deprdent decaying field k applied at $t=0$. The field (for $t>0$) is

$$
\vec{E}=\vec{E}_{0} e^{\gamma t}
$$

For some $\gamma>0$. Take E_{0} along the z-axis, what is the probab:ity (to firstarderin E_{0}) that the atom will be mech of the for $n=2$ states as $t \rightarrow \infty$? Neglect spin.
this is a time depudut pertwbation problem. (see also Fall $2003 \geqslant 5$ and spring 2003 \#1)
the transition probability for $t \rightarrow \infty$ is gives by zettili eq 10.11

$$
\left.P_{f_{i}}(t)=\left|\int_{0}^{\infty}\left\langle\psi_{f}\right| V^{\prime}\left(t^{\prime}\right)\right| \psi_{i}\right\rangle\left. e^{-i \omega_{f_{i}} t^{\prime}} d t^{\prime}\right|^{2}
$$

where

$$
V^{\prime}\left(x^{\prime}\right)=e E_{0} e^{-\gamma t} z^{-5} \text { time depudent stark effect }
$$

and

$$
\omega F_{i}=E_{f} \cdot \hat{E}_{i}=-\left.\frac{\alpha^{2} m}{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)\right|_{\substack{n_{F}=2 \\ n_{i}=1}} \frac{3 \alpha^{2} m}{8}
$$

For

$$
\left.\left\langle\psi_{p}\right| v^{\prime}\left(t^{\prime}\right)\left|\psi_{i}\right\rangle=e E_{0} e^{-\gamma t}\left\langle 2 Q^{\prime} m^{\prime}\right| z| \rangle 00\right\rangle
$$

we know the following selection rules since z is odd and a frost rank tensor. for the matrix element to be non zoo, we need $|\Delta l|=\mid$ and $|\Delta m|=0$ Thus, $e^{\prime}=1$ and $m^{\prime}=0$. The other elements vanish.

From Fall 2003 *5, we know that

$$
\langle 2 w| z|1 \infty\rangle=\frac{a 2^{8}}{\sqrt{2} 3^{5}}
$$

Spring $2004 \# 2 \quad(p 20 f 2)$
So,

$$
\begin{aligned}
P(t) & =\frac{e^{2} E_{0}^{2} a^{2} 2^{15}}{3^{10}}\left|\int_{0}^{\infty} e^{-\left(i \omega_{21}+\gamma\right) t^{\prime}} d t^{\prime}\right|^{2} \\
& \Rightarrow \quad P(t)=\frac{e^{2} a^{2} E_{0}^{2} 2^{15}}{3^{10}\left(\omega_{21}^{2}+\gamma^{2}\right)} \quad, \omega_{21}=\frac{3 \alpha^{2} m}{8}
\end{aligned}
$$

$Q M \quad \operatorname{So4} \# 3$

$$
\psi(x)=N e^{-k x^{2} / 2} ; k>0
$$

a) $N=$?

$$
\begin{aligned}
& 1=\int_{-\infty}^{\infty} N e^{-k x^{2} / 2} N e^{-k x^{2} / 2} d x=N^{2} \int_{-\infty}^{\infty} e^{-k x^{2}} d x=N^{2} \sqrt{\frac{\pi}{k}} \\
& \\
& \therefore \quad \int_{0}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} \\
& \Rightarrow N=\left(\frac{k}{\pi}\right)^{1 / 4}
\end{aligned}
$$

b)

$$
\begin{aligned}
\left\langle x^{2}\right\rangle=N^{2} \int_{-\infty}^{\infty} x^{2} e^{-k x^{2}} d x & =\frac{N^{2} \sqrt{\pi}}{2 k^{3 / 2}}=\frac{k^{1 / 2}}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2 k^{3 / 2}}=\frac{k^{-1}}{2}=\frac{1}{2 k} \\
2 \int_{0}^{\infty} x^{m} e^{-a x^{2}} d x & =\frac{\Gamma[(x+1) / 2]}{a^{(x+1) / 2}} ; m=2 ; a=k \\
& =\frac{\sqrt{\pi}}{2 k^{3 / 2}}
\end{aligned}
$$

$$
\left\langle x^{2}\right\rangle=\frac{1}{2 k}
$$

c) $\langle p \mid \psi\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-x^{i p x}} \psi(x) d x=\frac{N}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-\frac{\operatorname{cip} x}{\hbar}} e^{-k x^{2} / 2} d x$

$$
=\frac{N}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-\left(\frac{k x^{2}+i x}{2} x\right)} d x
$$

Let $y=\sqrt{a} x+\frac{b}{2 \sqrt{a}} \Rightarrow y^{2}=a x^{2}+b x+\frac{b^{2}}{4 a} ; \quad \alpha_{z}=\sqrt{a} d x$ $d x=\frac{d y}{\sqrt{a}}$
$a=\frac{k}{2} ; b=\frac{e^{\prime}}{\hbar}$. This is completing the square

$$
\begin{aligned}
\langle p \mid \psi\rangle & =\frac{N}{\sqrt{2 \pi \hbar}} \frac{e^{b^{2} / 4 a}}{\sqrt{a}} \int_{-\infty}^{\infty} e^{-z^{2}} d z=\frac{N}{\sqrt{2 \pi a \pi}} \sqrt{\pi} e^{b / 4 a} \\
& =\frac{(k / \pi)^{1 / 4}}{\sqrt{2 a \hbar}} e^{b^{2} / 4 a} ; \quad a=\frac{k}{2} ; b=\frac{j^{\prime} / p}{\pi}
\end{aligned}
$$

so $\frac{b^{2}}{4 a}=\frac{\left(e^{\prime} p / \pi\right)^{2}}{2 \frac{4 K}{2}}=\frac{-\frac{p^{2}}{2 \hbar^{2} K}}{}$ and $\frac{(K / \pi)^{1 / 4}}{\sqrt{\pi^{1 / 2}}}=\frac{1}{\sqrt{\pi}(\pi K)^{1 / 4}}$

$$
\therefore \quad\langle\boldsymbol{p} \mid \psi\rangle=\frac{e^{-\frac{p^{2}}{\hbar^{2} K}}}{\sqrt{\hbar}(\pi K)^{1 / 4}}
$$

d)

$$
\begin{aligned}
\left\langle p^{2}\right\rangle= & \frac{1}{\hbar \sqrt{\pi k}}
\end{aligned} \int_{-\infty}^{\infty} p^{2} e^{-p^{2} / \hbar^{2} k} d \boldsymbol{p}=\frac{1}{\pi \sqrt{k k}} \frac{\sqrt{\pi}\left(\hbar^{2} k\right)^{3 / 2}}{2}=\frac{\hbar^{2} k}{2}
$$

e) $H \psi=E \psi$ need to assume this:

$$
\begin{aligned}
& p=-i \hbar \frac{\alpha}{\alpha x} \Rightarrow p^{2}=-\hbar^{2} \frac{\alpha^{2}}{\alpha x^{2}} \\
& \frac{p^{2}}{2 m} \psi+v(x) \psi=E \psi \quad \Rightarrow \quad \frac{-\hbar^{2}}{2 m} \frac{\alpha^{2}}{\alpha x^{2}} \psi+v(x) \psi=E \psi \\
& \frac{d^{2}}{d x^{2}} \psi=\frac{\alpha}{d x} \frac{d}{d x} \psi=\frac{\alpha}{d x}\left(\frac{d}{d x} N e^{-k x / 2}\right)=N \frac{d}{d x}\left(-k x e^{-k x^{2} / 2}\right)=-k N\left(-k x^{2} e^{-k x d / 2}+e^{-k x^{2} / 2}\right) \\
& =-k\left(-k x^{2}+1\right) v e^{-k x^{2} / 2}=-k\left(-k x^{2}+1\right) \psi \\
& \Rightarrow \frac{-\hbar^{2}}{2 m}\left[-K\left(-K x^{2}+1\right)\right] K+v(x) \nVdash=E \nVdash \Rightarrow-\frac{\hbar^{2} K^{2} x^{2}}{2 m}+\frac{\hbar^{2} K}{2 m}+v(x) \neq E
\end{aligned}
$$

so $\quad V(x)-\frac{\hbar^{2} k^{2} x^{2}}{2 m}=E-\frac{\hbar^{2}}{2 m} k \quad$ for all $x=\square$
or $\quad V(x)-\frac{t^{2} K^{2}}{\lambda m} x^{2}=\begin{gathered}\text { cons } \\ \operatorname{sen}^{\lambda} m\end{gathered} \quad \Rightarrow \quad V(x)=\frac{t^{2} K^{2}}{\lambda m} x^{2}+$ cost.

Crpringozoout $\neq 3$.

$$
\because 2 \Psi_{(x)}=N e^{-k x)_{2}^{2}} \quad k>0
$$

a) find N

$$
1=N^{2} \int_{-\infty}^{\infty} e^{-k x^{2}} d x=N^{2} \sqrt{\pi / k} \quad N^{2}=\sqrt{k} / \pi \quad N=(k / \pi)^{1 / 4}
$$

b)

$$
\begin{aligned}
\left.\langle\psi d| x^{2}|\psi\rangle\right\rangle & =N^{2} \int_{-0}^{\infty} e^{-k x^{2}} x^{2} \partial x=-N^{2} \int_{-0}^{9} \frac{\partial}{\partial k} e^{-k x^{2}} d x \\
=-N^{2} \frac{\partial}{\partial k} \sqrt{\pi / k} & =-N^{2} \sqrt{\pi} \cdot(-1 / 2)(k)^{-3 / 2} \\
& =\frac{N^{2} \sqrt{n}}{2(k)^{3 / 2}}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \langle p \mid \psi\rangle=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \psi(x) e^{-i p x} d x=\frac{N^{2}}{\sqrt{2 \pi}} \int e^{-\frac{k x^{2}}{2}-i p x} e^{\infty} d x \\
& =\frac{N}{\sqrt{2 \pi}} \int_{e^{-\frac{k x^{2}}{2}-i p x} \partial x=\frac{e^{-p^{2} / 4 k}}{\sqrt{k}}-\sqrt{\pi^{2}}}^{d} \frac{N}{\sqrt{2 \pi} \pi}=\frac{N^{-p^{2} / 2 k}}{\sqrt{k}} \\
& \int_{-\infty}^{\infty} e^{-\left(a t^{2}+b t+c\right)} \partial t=\sqrt{\pi / a} e^{\left(\frac{b^{2}-4 a c}{4 a}\right) \quad a=\frac{k}{2} \quad b=i p}
\end{aligned}
$$

d)

$$
\begin{aligned}
\langle\psi| p^{2}|\psi\rangle=\frac{N^{2}}{\partial k} \int_{-\infty}^{\infty} e^{-p^{2} / k} p^{2} d p & =\frac{N^{2}}{k} \frac{\sqrt{\pi}}{2(\alpha)^{3 / 2}}=\frac{N^{2}}{k} \frac{\sqrt{\pi}}{2}\langle k\}^{3 / 2} \\
& =\frac{N^{2} \sqrt{\pi}}{\frac{1}{k}=\alpha}(k)^{3 / 2}
\end{aligned}
$$

e) $H=\frac{p^{2}}{2 m}+V(x)$
" $\psi(x)$ thas ${ }^{2} x^{x} x^{2}$ of ψ_{0} of harmonic ossilator.

$$
\begin{aligned}
& \Rightarrow m w=k \quad w^{2}=\frac{k^{2}}{m^{2}} \quad w=\frac{k}{m} \\
& V(x)=\frac{1}{2} k w x^{2}=\frac{1}{2} \frac{k^{2} x^{2}}{m}=\frac{k^{2}}{2 m} x^{2}
\end{aligned}
$$

Spring 2004 \# 3 (plof2)
The normalized wave function of a one-dimensionl particle is

$$
\psi(x)=N e^{-k x^{2} / 2}
$$

for some $k>0$, NBs real and positive.
(a) what is N ?
use normalization condition to find N.

$$
1=N\left(\int_{-\infty}^{\alpha} e^{-k x^{2}} d x=|N|^{2} \sqrt{\frac{\pi}{k}} \Rightarrow N=\left(\frac{k}{\pi}\right)^{1 / 4}\right.
$$

(b) What is expectation valuecof x^{2} ?

$$
\left\langle x^{2}\right\rangle=|N|^{2} \int_{-\infty}^{\infty} x^{2} e^{-k x^{2}} d x=|N|^{2} \frac{\sqrt{\pi}}{2 k^{3 / 2}}=\sqrt{\frac{k}{\pi}} \frac{\sqrt{\pi}}{2 k^{3 / 2}}=\frac{1}{2 k}
$$

(C) What is the momentum space wave function $\langle p \mid \psi\rangle$?
(See cAbers eq 2.192) ($k=1$)

$$
\begin{aligned}
\langle\rho \mid \psi\rangle & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i p x} \psi(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i p x} N e^{-k x^{2} / 2} d x \\
& =\frac{N}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\left(\frac{k}{2} x^{2}+i p x\right)} d x
\end{aligned}
$$

note: $\int_{-\infty}^{\infty} e^{-\left(a t^{2}-b t+c\right)} d t=\sqrt{\frac{\pi}{a}} \exp \left(\frac{t^{2}-4 a c}{4 a}\right)$
So,

$$
\begin{array}{r}
\langle p \mid \psi\rangle=\frac{N}{\sqrt{2 \pi}} \sqrt{\frac{2 \pi}{k}} e^{-p^{2} / 2 k}=\left(\frac{k}{\pi}\right)^{1 / 4} \frac{1}{k^{1 / 2}} e^{-p^{2} / 2 k} \\
\therefore\langle p \mid \psi\rangle=\frac{1}{(\pi k)^{1 / 4}} e^{-p^{2} / 2 k}
\end{array}
$$

Spring 2004 \# 3 (p 2 of 2)
(d) What is the expectation value of p^{2} ? - I asumme they mem in x-space

$$
\begin{aligned}
\left\langle p^{2}\right\rangle & =-|N|^{2} \int_{-\infty}^{\infty} e^{-k x^{2} / 2} \frac{\partial^{2}}{\partial x^{2}} e^{-k x / 2} d x=-|N|^{2} \int_{-\infty}^{\infty} e^{-k x^{2} / 2} \frac{d}{d x}(-k x) e^{-k x^{2} / 2} d x \\
& =|N|^{2} k \int_{-\infty}^{\infty} e^{-k x^{2} / 2}\left(e^{-k x^{2} / 2}-k x^{2} e^{-k x^{2} / 2}\right) d x \\
& =|N|^{2} k \int_{-\infty}^{\infty} e^{-k x^{2}}\left(1-k x^{2}\right) d x=|N|^{2} k\left[\sqrt{\frac{\pi}{k}}-k \frac{\sqrt{\pi}}{2 k^{3 / 2}}\right] \\
& =|N|^{2} k\left(\frac{1}{2} \sqrt{\frac{\pi}{k}}\right)=\frac{1}{2} \sqrt{\frac{k}{\pi}} k \sqrt{\frac{\pi}{k}}=\frac{k}{2} \\
& \therefore\left\langle p^{2}\right\rangle=\frac{k}{2}
\end{aligned}
$$

(e) The hamiltonian is

$$
H=\frac{p^{2}}{2 m}+V(x)
$$

What is the potential $V(x)$?
the wave function given is the ground state ware function for a harmonic oscillator with $K \rightarrow \mathrm{mw}$ in this case. So,

$$
V(x)=\frac{1}{2} k x^{2}=\frac{m w}{2} x^{2}
$$

Spring 200% \#4

$$
\begin{aligned}
& \text { - } \left.\quad V_{e}\right\rangle=\cos \theta\left|v_{1}\right\rangle+\sin \theta\left|v_{2}\right\rangle \quad \hbar=1 \\
& \left|V_{\mu}\right\rangle=-\sin \varphi\left|V_{1}\right\rangle+\cos \theta\left|V_{2}\right\rangle \\
& H\left|v_{1}\right\rangle=\sqrt{p^{2} c^{2}+m_{1}^{2} c^{4}}\left|v_{1}\right\rangle \\
& \left.H\left|V_{2}\right\rangle=\sqrt{p^{2} c^{2}+m_{2}^{2} c^{4} \mid} V_{2}\right\rangle \\
& |+(0)\rangle=\left|V_{m}\right\rangle \\
& |\psi(t)\rangle=-e^{-i \sqrt{p^{2} c^{2}+m_{1}^{2} c^{4}}}+\sin \theta\left|V_{1}\right\rangle+e^{-i \sqrt{p^{2} c^{2}+m_{2} c^{2} c^{4}}}+\cos \theta\left(v_{2}\right\rangle \text {. }
\end{aligned}
$$

in limit where $c t=L$

$$
\begin{aligned}
\left\langle v_{e} \mid \psi(t)\right\rangle & =-\sin \theta \cos \theta e^{-i \sqrt{p^{2} c^{2}+m_{1}^{2} c^{\psi}}+}+\sin \theta \cos \theta e^{-i \sqrt{p^{2} c^{2}+m_{2}^{2} c u}+} \\
& =\sin \theta \cos \theta\left(-e^{-i L \sqrt{p^{2}+m_{1}^{2} c^{2}}}+e^{-i\left(\sqrt{p^{2}+m_{2}^{2} c^{2}}\right.}\right)
\end{aligned}
$$

But $\quad i l \sqrt{r^{2}+m^{2} c^{2}}=i L p \sqrt{1+\frac{m^{2} c}{p^{2}}} \approx 1+\frac{m^{2} c^{2}}{2 p^{2}}$

$$
=\sin \cos \theta\left(e ^ { - i L p } \left(-e^{-\dot{\beta} L \frac{m_{1}^{2} c^{2}}{2 p^{2}}}+e^{\left.\left.-i L p \frac{m_{2}^{2} c^{2}}{2 p^{2}}\right)\right)}\right.\right.
$$

$$
\begin{aligned}
& p(i t-L)=\left.k v_{e}|\psi(t)\rangle\right|^{2}=\sin ^{2} \cos ^{2} \theta\left(-e^{i L \frac{p m_{1}^{2} c^{2}}{2 p^{2}}}+e^{i L \frac{p m_{2}^{2} c^{2}}{2 p^{2}}}\right)\left(-e^{-i L \frac{p}{2} m_{1}^{2} c^{2}} 2 p^{2}+e^{\left.-i \frac{L p m_{2} z^{2}}{2 p^{2}}\right)}\right. \\
& \left.-i \frac{i p c^{2}\left(m_{2}^{2}-m_{1}^{2}\right)}{2 p^{2}}-e^{-i l p c^{2}\left(m_{1}^{2}-m_{2}^{2}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta m^{2}=m_{1}^{2}-m_{2} 2 \\
& \begin{array}{l}
=\sin ^{2} \varphi \cos ^{2} \theta\left(2-2 \cos \left(\frac{L c^{2} \Delta m^{2}}{2 p}\right)\right] \\
=\frac{\sin ^{2}(2 \theta)}{4} \varphi \sin \left(\frac{\left.L c^{2} \Delta m^{2}\right)}{4 \theta}\right)
\end{array} \\
& =\frac{\sin ^{2}(2 \theta)}{4}+\sin \left(\frac{c^{2} \Delta m^{2}}{4 p}\right) \\
& \text { w }
\end{aligned}
$$

$$
P(t)=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{L c^{2} \Delta m^{2}}{4 r}\right)
$$

Spring $2004 \# 4(p l o f 3)$
$(\rightarrow$ see also Fall $2001 \# 3$ and Fall $1999 \# 10)$
4. Quantum Mechanics

The electron neutrino $\left|\nu_{k}\right\rangle$ and the muon neutrino $\left|\nu_{\mu}\right\rangle$ are the possible neutrino states produced and detected in experiments, but they are not neoessarily eigenstates of the Hamiltonian. Rather, if the state is known to have momentum p, it is some linear combination of the energy cigenstates $\left|\nu_{1}\right\rangle$ and $\left|\mu_{2}\right\rangle$ of the form

$$
\begin{aligned}
& \left|\nu_{c}\right\rangle=\cos \theta\left|\nu_{1}\right\rangle+\sin \theta\left|\nu_{\nu}\right\rangle \\
& \left|\nu_{\beta}\right\rangle=-\sin \theta\left|\nu_{1}\right\rangle+\cos \theta\left|\mu_{\mu}\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
& H\left|\nu_{1}\right\rangle=\sqrt{p^{2} c^{2}+m_{1}^{2} c^{c}}\left|v_{1}\right\rangle \\
& H\left|\nu_{2}\right\rangle=\sqrt{p^{2} c^{2}+m_{2}^{2} c^{c}}\left|\nu_{2}\right\rangle
\end{aligned}
$$

for two possibly different masses m_{1} and m_{2}, and some "mixing angle" θ. If it is known that a neutrino was definitely a ν_{β} when it was produced, what i the probability of detecting a ν_{e} after it has traveled a distance L? Assume that $m_{1} c \ll p$ and $m_{2} c \ll p$, so that the neutrinos are moving at almost (or even exactly) the speed of light, (80 you can ignore corrections of the order $1-v / c$ compared to terms of order 1) and state your result to first order in the difference $\Delta m^{2}=m_{1}^{2}-m_{2}^{2}$.

This is a simplified version of an actand neutrino oscillation experiment Hike the auper-Kasuiokande detector experiment a few rears ago. In reality there is a third neutrino $\nu_{r_{\gamma}}$).
let $\hbar=1$.
we ane give that the state at $t=0$ is

$$
|\psi(t=0)\rangle=\left|\nu_{\mu}\right\rangle=-\sin \theta\left|\nu_{1}\right\rangle+\cos \theta\left|\nu_{2}\right\rangle
$$

applying the tine evolution operator yields

$$
\begin{aligned}
& |\psi(t)\rangle=e^{-i H t}|\Psi(t=0)\rangle \quad \Delta \text { the e energies are given m the } \\
& \text { problem } \\
& \Rightarrow|\psi(t)\rangle=-e^{-i E_{1} t} \sin \theta\left|\nu_{1}\right\rangle+e^{-i E_{2} t} \cos \theta\left|V_{2}\right\rangle \\
& \text { where } E_{1}=\sqrt{p^{2} c^{2}+m_{1}^{2} c^{4}}=\sqrt{p^{2}+m_{1}^{2}} \quad 5^{\text {natural units }} \\
& E_{2}=\sqrt{p^{2}+m_{2}^{2}}
\end{aligned}
$$

Spring 2004 \#4 (p 20f3)
the probability of detecting a v_{e} at a later time t is given by the magnitude square of the projection of $\left|V_{e}\right\rangle$ onto $|\psi(t)\rangle A-1 i l a$ so

$$
\begin{gathered}
P(t)=\left|\left\langle\nu_{e} \mid \psi(t)\right\rangle\right|^{2} \\
\Rightarrow P(t)=\left|\left(\cos \theta\left\langle\nu_{1}\right|+\sin \theta\left\langle\nu_{2}\right|\right)\left(-e^{-i E_{1} t} \sin \theta\left|\nu_{1}\right\rangle+e^{-i E_{2} t} \cos \theta\left|\nu_{2}\right\rangle\right)\right|^{2}
\end{gathered}
$$

since $\left\langle\nu_{i} \mid \nu_{j}\right\rangle=\delta_{i j}$, we have

$$
\begin{aligned}
P(t) & =\left|-e^{-i t_{1} t} \cos \theta \sin \theta+e^{-i E_{2} t} \sin \theta \cos \theta\right|^{2} \\
& =\left|\cos \theta \sin \theta\left(e^{-i E_{2} t}-e^{-i E_{1} t}\right)\right|^{2}
\end{aligned}
$$

note: $\cos \theta \sin \theta=\frac{1}{2} \sin 2 \theta$
and

$$
\begin{aligned}
& \left|e^{-i E_{2} t}-e^{-i I_{1} t}\right|^{2}=\left(e^{-i E_{2} t}-e^{-i E_{1} t}\right)\left(e^{i E_{2} t}-e^{+i E_{1} t}\right) \\
& =1-e^{-i\left(E_{2}-E_{1}\right) t}-e^{+i\left(E_{2}-E_{1}\right) t}+1 \\
& =2-2 \cos \left[\left(E_{2}-E_{1}\right) t\right]
\end{aligned}
$$

So,

$$
P(t)=\frac{1}{4} \sin ^{2}(2 \theta)\left[2-2 \cos \left[\left(E_{2}-E_{1}\right) t\right]\right]=\frac{\sin ^{2}(2 \theta)}{2}\left(1-\cos \left[\left(E_{2}-E_{1}\right) t\right]\right)
$$

where

$$
E_{2}-E_{1}=\sqrt{p^{2}+m_{2}^{2}}-\sqrt{p^{2}+m_{1}^{2}}=p\left[\sqrt{1+\left(\frac{m_{2}}{p}\right)^{2}}-\sqrt{1+\left(\frac{m_{1}}{p}\right)^{2}}\right]
$$

Now, we we told that $m_{1} \ll p$ and $m_{2} \ll p$. So, using binomial expansion, we have

$$
E_{2}-E_{1} \simeq p\left[1+\frac{1}{2}\left(\frac{m_{2}}{p}\right)^{2}-1-\frac{1}{2}\left(\frac{m_{1}}{p}\right)^{2}\right]
$$

Spring $2004 \# 4$ (p 3 of 3)

$$
\Rightarrow E_{2}-E_{1} \simeq \frac{1}{2 p}\left(m_{2}^{2}-m_{1}^{2}\right)
$$

Substituting this result into au r expression for $P(t)$ yields

$$
P(t)=\frac{\sin ^{2}(2 \theta)}{2}\left[1-\cos \left[\frac{t}{2 p}\left(m_{2}^{2}-m_{1}^{2}\right)\right]\right]
$$

the time it takes to trave some distance L is given by

$$
t=\frac{L}{c}=L \text { (in natural mints) }
$$

so,

$$
P(L)=\frac{\sin ^{2}(2 \theta)}{2}\left[1-\cos \left[\frac{L}{2 p}\left(m_{2}^{2}-m_{1}^{2}\right)\right]\right]
$$

note $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta \Rightarrow 2 \sin ^{2}(\theta)=1-\cos (2 \theta)$

Thus

$$
P(L)=\sin ^{2}(2 \theta) \sin ^{2}\left[\frac{L}{4 p}\left(m_{2}^{2}-m_{1}^{2}\right)\right]
$$

\rightarrow this is the probability that a neutrino starting off as a muon neutrino will charge flavors to an election neutrino after a distance L is traveled...

QMSS'O4\#5
E

$$
T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E+V_{0}\right)} \sin ^{2}\left(\frac{\mu}{\hbar} \sqrt{2 m\left(E+V_{0}\right)}\right)
$$

resonance is when $T=1$ which happens when

$$
\begin{aligned}
& \frac{a}{\pi} \sqrt{2 m\left(E+V_{0}\right)}=n \pi \text { or } 2 m\left(E+V_{0}\right)=\frac{x^{2} \pi^{2} \hbar^{2}}{a^{2}} \\
& E+V_{0}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
\end{aligned}
$$

Or the derivation:

$$
\text { (I) } \begin{aligned}
& V(x)=0 \Rightarrow \quad-\frac{\hbar^{2}}{2 m} \frac{\alpha^{2}}{d x^{2}} \psi=E \psi \\
& \frac{\alpha^{2}}{d x^{2}} \psi=-\frac{2 m E}{\hbar^{2}} \psi \quad k_{1} \equiv \frac{\sqrt{2 m E}}{\hbar} \\
&=-k_{1}^{2} \psi \\
& \Rightarrow \psi(x)=A e^{i k_{1} x}+B e^{-i k_{1} x} \quad \text { for } x<0
\end{aligned}
$$

by a similar argument for region III we excl $m p$ with

$$
\psi(x)=F e^{i k_{1} x}+G e^{-i k_{1} x} \quad x>a
$$

For region II $v(x)=-v_{0}$

$$
\begin{aligned}
& \frac{-\hbar^{2}}{\partial m} \frac{d^{2}}{d x^{2}} \psi-v_{0} \psi=E \psi \Rightarrow \frac{d^{2}}{d x^{2}} \psi=\frac{-\lambda m\left(E+V_{0}\right)}{t^{2}} \psi ; k_{2} \equiv \frac{\sqrt{2 x\left(E+v_{0}\right)}}{t} \\
& \frac{d^{2}}{d x^{2}} \psi=-k_{2}^{2} \psi \Rightarrow \quad \psi(x)=C e^{-k_{2} x}+D e^{-i k_{d} a} \text { for } \theta<x<a
\end{aligned}
$$

$$
\begin{aligned}
& \text { In sum mar } \gamma e^{i k, x}+B e^{-i k_{1} x} \\
& A e^{i}+ \\
& \psi(x)=\begin{array}{ll}
C e^{i k} x+D e^{-i k_{3} x} & 0<x<a \\
F e^{i k_{1} x}+G e^{-i k_{1} x} & x>a
\end{array}
\end{aligned}
$$

Now we need to match up the wavefunctions on the boutckany conditions:

$$
\begin{array}{lc}
x=0 & A+B=C+D \\
\left.\frac{d}{d x}\right|_{x=0} \quad k_{1} A-k_{1}^{\prime} k_{1} B=+k_{2} C-k k_{2} D
\end{array}
$$

$(\alpha) / k_{1} \quad A-B=\frac{k_{j}}{k_{1}}(c-D)$
(1) $+\left(a^{\prime}\right)$

$$
\begin{aligned}
& \alpha A=\left(1+\frac{k_{2}}{k_{1}}\right) C+\left(1-\frac{k_{2}}{k_{1}}\right) D \ldots \\
& A=\frac{1}{2}\left\{\left(1+\frac{k_{2}}{k_{1}}\right) C+\left(1-\frac{k_{2}}{k_{1}}\right) D\right\}
\end{aligned}
$$

(1) $-\left(a^{\prime}\right)$

$$
\begin{aligned}
2 B & =\left(1-\frac{k_{2}}{k_{1}}\right) C+\left(1+\frac{k_{2}}{k_{1}}\right) D \\
B & =\frac{1}{2}\left\{\left(1-\frac{k_{2}}{k_{1}}\right) C+\left(1+\frac{k_{2}}{k_{1}}\right) D\right\}
\end{aligned}
$$

QM S'OU\#5

So we have

$$
\binom{A}{B}=\frac{1}{2}\left(\begin{array}{cc}
\left(1+\frac{k_{2}}{k_{1}}\right) & \left(1-\frac{k_{2}}{k_{1}}\right) \\
\left(1-\frac{k_{2}}{k_{1}}\right) & \left(1+\frac{k_{2}}{k_{1}}\right)
\end{array}\right)\binom{C}{D}
$$

Now for the other boundary:
$x=a$

$$
\begin{equation*}
C e^{i k_{2} a}+D e^{-i k_{2} a}=F e^{i k_{1} a}+G e^{-i k_{1} a} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left.\frac{d}{d x}\right|_{x=a} \quad x_{j} k_{2} C e^{i k_{2} a}-i k_{3} D e^{-i k_{d} a}=+i k_{1} F e^{i k_{1} a}-i^{i}, G e^{-i k_{1} a} \tag{4}
\end{equation*}
$$

(4) $/ k_{2} \quad C e^{i k_{2} a}-D e^{-i k_{2} a}=\frac{k_{1}}{k_{2}}\left(F e^{i k_{1} a}-G e^{-i k_{1} a}\right)$ (4)
$(3)+(4) \quad 2\left(e^{i k_{2} a}=\left(1+\frac{k_{1}}{k_{2}}\right) F e^{i k_{1} a}+\left(1-\frac{k_{1}}{k_{d}}\right) G_{1} e^{-i k_{1} a}\right.$

$$
C=\frac{1}{2}\left\{\left(1+\frac{k_{1}}{k_{2}}\right) F e^{i\left(k_{1}-k_{2}\right) u}+\left(1-\frac{k_{1}}{k_{2}}\right) G e^{i\left(k_{1}+k_{2}\right) k_{2}}\right\}
$$

(3)- (4) $\quad 2 \Delta e^{-i k_{2} a}=\left(1-\frac{k_{1}}{k_{2}}\right) F c^{i k_{1} a}+\left(1+\frac{k_{1}}{k_{2}}\right) G e^{-i k_{1} a}$

$$
D=\frac{1}{2}\left\{\left(1-\frac{k_{1}}{k_{2}}\right) F e^{i\left(k_{1}+k_{j}\right) a}+\left(1+\frac{k_{1}}{k_{d}}\right) G e^{i\left(k_{2}-k_{1}\right) a}\right\}
$$

So

$$
\binom{C}{D}=\frac{1}{2}\left(\begin{array}{cc}
\left(1+\frac{k_{1}}{k_{2}}\right) e^{i\left(k_{1}-k_{2}\right) a} & \left(1-\frac{k_{1}}{k_{2}}\right) e^{i\left(k_{1}+k_{2}\right) a} \\
\left(1-\frac{k_{1}}{k_{2}}\right) e^{i\left(k_{1}+k_{2}\right) a} & \left(1+\frac{k_{1}}{k_{2}}\right) e^{i\left(k_{2}-k_{1}\right) a}
\end{array}\right)\binom{F}{G}
$$

Combining the two matrices in order to get A, B in terms of. F, G :

$$
\binom{A}{B}=\frac{1}{2}\left(\begin{array}{cc}
\left(1+\frac{k_{2}}{k_{1}}\right) & \left(1-\frac{k_{2}}{k_{1}}\right) \\
\left(1-\frac{k_{2}}{k_{1}}\right) & \left(1+\frac{k_{2}}{k_{1}}\right)
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
\left(1+\frac{k_{1}}{k_{2}}\right) e^{i\left(k_{1}-k_{2}\right) a} & \left(1-\frac{k_{1}}{k_{2}}\right) e^{-i\left(k_{1}+k_{2}\right) a_{1}} \\
\left(1-\frac{k_{1}}{k_{2}}\right) e^{i\left(k_{1}+k_{2}\right) a} & \left(1+\frac{k_{1}}{k_{j}}\right) e^{i\left(k_{2}-k_{2}\right) k_{1}}
\end{array}\right)\binom{F}{G}
$$

Now what we care for is the transmission coefficient which is :

$$
T=\frac{|F|^{2}}{|A|^{2}} \quad \text { or } \quad T^{-1}=\frac{|A|^{2}}{|F|^{2}}
$$

now the latter is more useful as the above matrix has A in terms of F. So we reed to maltiph the first row by the first column to get what we wont:

$$
\begin{aligned}
& A=\frac{1}{4}\left[\left(1+\frac{k_{2}}{k_{1}}\right)\left(1+\frac{k_{1}}{k_{d}}\right) e^{-\left(k_{1}-k_{2}\right) k_{1}}+\left(1+\frac{k_{d}}{k_{1}}\right)\left(1-\frac{k_{1}}{k_{d}}\right) e^{-i\left(k_{1}+k_{2}\right) a}\right] F \\
& =\frac{e^{i k_{1}}}{4}\left[\left(1+\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{1}}+1\right) e^{-i k_{2} a}+\left(1-\frac{k_{1}}{k_{2}}-\frac{k_{2}}{k_{1}}+1\right) e^{i k_{2} a}\right] F \\
& =\frac{e^{i k}}{4}[\underbrace{-i e^{-i k_{2} a}}+\left(\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{1}}\right) e^{-i k_{2} a}+2 e^{i k_{2} a}-\left(\frac{k_{1}}{k_{2}}+\frac{k_{1}}{k_{1}}\right) e^{i k_{2} a}] F \\
& \begin{aligned}
=\frac{e^{i k_{1}}}{4}\left[4 \cos \left(k_{2} a\right)\right. & =\left(\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{1}}\right)[\underbrace{\left.e^{i k_{2} a}-e^{-i t_{2} a}\right] F}_{2 i \sin \left(k_{2} a\right)}=1
\end{aligned}
\end{aligned}
$$

$$
\left.+\left(\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{1}}\right)^{2} 4 \sin ^{2}\left(k_{2} a\right)\right]|f|^{2}
$$

QM S'04\#5

So

$$
\begin{aligned}
& |A|^{2}=\frac{1}{16}\left[16 \cos ^{2}\left(k_{j} a\right)+\frac{4\left(k_{1}^{2}+k_{j}\right)^{2}}{k_{i}^{2} k_{j}^{2}} \sin ^{2}\left(k_{,} a\right)\right]|F|^{2} \\
& =\left[\cos ^{2}\left(k_{\alpha} a\right)+\frac{\left(k_{1}^{2}+k_{2}\right)^{2}}{4 k_{1}^{2} k_{j}^{2}} \sin ^{2}\left(k_{j} a\right)\right]|F|^{2} \\
& =\frac{\left.4 k_{1}^{2} k_{2}^{2} \cos ^{2}\left(k_{2} a\right)+\left(k_{1}^{2}+k_{2}^{2}\right)^{2} \sin ^{2}\left(k_{2} a\right)\right]}{4 k_{1}^{2} k_{2}^{2}}|F|^{2} \\
& =\frac{\left[4 k_{1}^{2} k_{2}^{2}-4 k_{1}^{2} k_{2}^{2} \sin ^{2}\left(k_{d} a\right)+k_{1}^{4} \sin ^{2}\left(k_{j} a\right)+k_{2}{ }^{4} \operatorname{six}^{2}\left(k_{j} a\right)+2 k_{1}^{2} k_{2}^{2} \sin ^{2}\left(k_{2} a\right)\right] 1 \sigma^{2}}{4 k_{1}{ }^{2} k_{d}{ }^{2}} \\
& \left.=\left[1+\frac{\left(k_{1}^{4}+k_{j}^{4}-2 k_{1}^{2} k_{j}^{2}\right) \sin ^{2}\left(k_{\partial} \alpha\right)}{4 k_{1}^{2} k_{j}^{2}}\right] \right\rvert\, F^{2} \\
& =\left[1+\frac{\left(k_{1}^{2}-k_{j}^{2}\right)^{2}}{4 k_{1}^{2} k_{j}^{2}} \sin ^{2}\left(k_{j} a\right)\right]|F|^{2}
\end{aligned}
$$

So $\quad t^{-1}=\frac{|A|^{2}}{|F|^{2}}=1+\frac{\left(k_{1}^{2}-k_{j}^{2}\right)^{2}}{4 k_{1}^{2} k_{2}^{2}} \sin ^{2}\left(k_{d} a\right)$
now $\quad k_{1}=\frac{\sqrt{1+E}}{\hbar} ; k_{d}=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar}$
so $\frac{\left(k_{1}^{2}-k_{2}\right)^{2}}{4 k_{1}^{2} k_{2}^{2}}=\frac{\left(\frac{2 E-2-E \cdot m V_{0}}{k^{2}}\right)^{2}}{4\left(\frac{4 m^{2} E\left(E-V_{0}\right)}{\hbar^{4}}\right)}=\frac{4\left(4 m^{2} v_{0}^{2}\right.}{4\left(E\left(E-v_{0}\right)\right)}=\frac{v_{0}^{2}}{4 E\left(E-V_{0}\right)}$

$$
\sin ^{2}\left(k_{2} a\right)=\sin ^{2}\left(\frac{a}{k} \sqrt{2 m\left(E-V_{0}\right)}\right)
$$

hence

$$
T^{-1}=1+\frac{V_{0}^{2}}{4 E\left(E-V_{0}\right)} \sin ^{2}\left(\frac{a}{\hbar} \sqrt{\left(\operatorname{sm}\left(E-V_{0}\right)\right.}\right)
$$

and for $T=1 \quad \sin ^{2}(\cdots)=0$ or $\frac{a}{\hbar} \sqrt{2 n\left(E-V_{0}\right)}=n \pi$

$$
\Rightarrow \quad E+v_{0}=\frac{m^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
$$

Spring 2004 件 5 (p 1 of 2)
Calculate the transmission coefficient for a particle of energy $E>0$ scattering off the ID potential well

$$
V(x)= \begin{cases}v_{0} & 0<x<a \\ 0 & \text { elsewhere }\end{cases}
$$

where $v_{0}<0$. Are there resonance phenomena?

Solutinnsare shown on the figure above. whee

$$
\begin{aligned}
& K_{<}^{2}=K_{\rangle}^{2}=2 m E \\
& K^{2}=2 m\left(E+\left|v_{0}\right|\right)
\end{aligned}
$$

Boundary conditions $\left(\psi(x)\right.$ and $\frac{d \psi}{d x}$ are cantiruass at $x=0$ and $\left.x=a\right)$ yields
of $x=0$:

$$
A+B=C+D \text { and } K_{<}(A-B)=K(C-D)
$$

Solving this system of equations for E yields (see zettili; p 214-215)

$$
E=4 k<k A e^{-i k_{<} a}\left[4 k_{<} k \cos (k a)-2 i\left(k_{<}{ }^{2}+k^{2}\right) \sin (k a)\right]^{-}
$$

sing the transmission efficient is define as

$$
T=\frac{k_{\angle}|E|^{2}}{k_{<}|A|^{2}}=\left[1+\frac{1}{4}\left(\frac{k_{<}^{2}-k^{2}}{k_{<} k}\right)^{2} \sin ^{2}\left(k_{a}\right)\right]^{-1}
$$

Now let's substitute in for K_{C} and K.

Spring 2004 \#5 (ph $0 f-2$)

$$
\begin{aligned}
T & =\left[1+\frac{1}{4}\left(\frac{2 m E-2 m E-2 m\left|V_{0}\right|}{\sqrt{2 m E\left(2 m E+2 m\left|V_{0}\right|\right)}}\right)^{2} \sin ^{2}\left[\sqrt{2 m\left(E+\left|V_{0}\right|\right)} a\right]\right]^{-1} \\
& =\left[1+\frac{1}{4}\left(\frac{4 m^{2} V_{0}^{2}}{2 m E\left(2 m E+2 n V_{d}\right)}\right) \sin ^{2}\left[\sqrt{2 m\left(E+\left|V_{0}\right|\right) a^{2}}\right]\right]^{-1} \\
\therefore T & =\left[1+\frac{\left|V_{0}\right| \sin ^{2}\left[\sqrt{2 m\left(E+\left|V_{0}\right|\right) a^{2}}\right]}{4 E\left[1+\left(\frac{E}{\left|V_{0}\right|}\right)\right]}\right]
\end{aligned}
$$

resonance phenomuion occur when the maxima of the transmission coefficient coincides with the energy eigusulues. This does not occur classically... it results from a constructive interference between the incident and reflected waves. This phenomenon is observed expevimentoky when low -energy ($E \sim 0,1 e V$) electrons scatter off noble atoms (RamsaurTowrsud effect and neutrons off nuclei.

So,
when $T=1$, we have resonance. This occurs when $\sin ^{2}[]=0$ Thus, when

$$
a \sqrt{2 m\left(E+N_{0}\right)}=n \pi \quad, n=0,1,2,3, \ldots
$$

Selected Answers
Spring 2004
6) (a) $\frac{v}{N} \frac{4 \pi}{h^{3}} \int_{0}^{\infty} \frac{p^{2} d p}{e^{\beta p c-1}}$
(b) $\frac{A}{N} \frac{2 \pi}{h^{2}} \int_{0}^{\infty} \frac{p d}{e^{\beta p}-1}$
i) $\frac{L}{N} \frac{2}{h} \int_{0}^{\infty} \frac{i_{0}}{e^{\beta^{j} f^{c}-1}-1}$

Stat. Mech. S'O4 \#6; Stol\# 13

For relativistic bosons

$$
E=|\vec{p}| c
$$

a) First we need the density of states $D(E)$ for $3-D$.

$$
\frac{L}{\partial / 2}=x \Rightarrow \frac{\partial L}{x}=Z ; \quad p=\frac{h}{2}=\frac{h}{2 L} x
$$

$$
\begin{aligned}
& E=c|\vec{p}|=c\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)^{1 / d}=\frac{h c}{2 c}\left(x_{x}^{2}+x_{y}^{2}+x_{z}^{2}\right)^{1 / d} \\
& =\frac{d c}{\partial l} \cdot x \Rightarrow x=\frac{\partial l}{x c} E \Rightarrow d x=\frac{\partial l}{x c} d E \\
& \begin{array}{r}
\frac{(\lambda s+1)}{8} \int_{0}^{\infty} 4 \pi \lambda^{2} d x=\frac{(\alpha s+1)}{8} \int 4 \pi\left(\frac{\alpha L}{n c}\right)^{3} E^{2} d E=\int_{0}^{\infty} \frac{(\alpha s+1) 4 \pi r^{2}}{(h c)^{3}} E^{2} d E \\
\\
D(E)=\frac{(\lambda s+1) 4 \pi v}{(h c)^{3}} E^{\alpha}
\end{array}
\end{aligned}
$$

The condition for $B E C$ is defer mined by the boson temperature T_{B}, which can be derived followingly:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1}{e^{E / k T}-1} D(E) d E=N \text { for } T=T_{B} \\
& \Rightarrow \frac{(\alpha s+1) 4 \pi v}{(h c)^{3}} \int_{0}^{\infty} \frac{E^{2}}{e^{E / k T}-1} d E=\frac{(\lambda s+1) 4 \pi v(k T)^{3}}{(h c)^{3}} \int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x \\
& x=E / k T \Rightarrow E=k T x \Rightarrow d E=k T \alpha x \quad=2.404
\end{aligned}
$$

hence

$$
\begin{aligned}
& \frac{(2 s+1) 4 \pi V}{(h c)^{3}}\left(k T_{B}\right)^{3} 2 \cdot 404=N \\
& \Rightarrow\left(K T_{B}\right)^{3}=\frac{N}{V} \frac{(h c)^{3}}{(2 s+1) 4 \pi \cdot 2.404} \\
& \Rightarrow T_{B}=\left(\frac{N}{k^{3} v} \frac{(h c)^{3}}{(2 s+1) 4 \pi \cdot 2.404}\right)^{43}
\end{aligned}
$$

b) yes it does occur - just derive D(E) for $2-D$ case and repeat above steps:

$$
\begin{aligned}
& E=\frac{h c}{d c}\left(x_{x}^{2}+x_{b}^{2}\right)=\frac{h c}{d c} x \Rightarrow x=\frac{d L}{h c} E \Rightarrow d x=\frac{\partial c}{h c} \alpha E \\
& \begin{array}{r}
\frac{(\lambda s+1)}{4} \int_{0}^{\infty} 2 \pi x d x=\frac{(2 s+1)}{4} \int_{0}^{\infty} 2 \pi\left(\frac{\lambda L}{h c}\right) E d E=\int_{0}^{\infty} \underbrace{(h c)^{2}}_{D(L s)=\frac{(2 s+1) 2 \pi A^{2}}{\left(h c L^{2}\right.}} E E E
\end{array} \\
& \int_{0}^{\infty} \frac{(2 s+1) 2 \pi A}{(h c)^{2}} \frac{E}{e^{E / k I_{1}}} d E=\frac{(d s+1) d \pi A}{(h c)^{2}}(k T)^{2} \int_{0}^{\infty} \frac{x}{e^{x}-1} d x=N \\
& x \equiv E / k T \Rightarrow E=k T_{x} \Rightarrow d E=k T d_{x} \\
& \frac{\pi^{2}}{6}
\end{aligned}
$$

so

$$
\left(k T_{B}\right)^{2}=\frac{N}{A} \frac{3(2 s+1)}{\pi^{3}(h c)^{-2}} \Rightarrow T_{B}=\left(\frac{N}{k^{2} A} \frac{3(d s+1)}{\pi^{3}(h c)^{2}}\right)^{1 / 2}
$$

Stay. Mech. S'O4\#\#
c) $B E C$ does not occur in iD case.

$$
\begin{gathered}
E=c|\vec{p}|=\frac{h c}{\lambda L} n \Rightarrow x=\frac{\partial L}{h c} E \Rightarrow d x=\frac{\partial L}{h c} d E \\
\frac{(\alpha s+1)}{2} \int_{0}^{\infty} d x=\int_{0}^{\infty} \frac{(\alpha s+1)}{x} \frac{\lambda L}{h c} \\
D(E)=\frac{(\lambda s+1) L}{h c}
\end{gathered}
$$

$$
\int_{0}^{\infty} \frac{(\lambda s+1) L}{n c} \frac{d E}{e^{-E / k I}}=\frac{(d s+1) L}{n c} k T \int_{0}^{\infty} \frac{d x}{e^{x}-1}=\text { undefined. }
$$

$x \equiv E / k T \Rightarrow d E=k T d x$. undefined

Spring $2004 \neq 6$ (p^{\prime} of 3)
Consider a gas of relativistic, conserved bosons. The relation between energy and momentum is

$$
E=|\stackrel{\rightharpoonup}{p}| c
$$

(a) Derive the condition for Bose - Einstem condensation in three dimensions,
(See Spring $2001 \neq 13$ and Erik's wondurfat exploatton of genres I BEC problems for massive/masslers bosons in d-dimensions)

Since the energy is given by $E=|\vec{p}| c$, we assume that we are talking about massless particles. Let's further assume that they are spin 0 . so, the de geuroy is one.
The procedure is to find the transition temperature at which a BEC forms. We con get an expression for the transition temperature from the expression for the total number of bosons.

$$
\begin{equation*}
N=\int_{0}^{\infty} \bar{n}(\epsilon) d N \quad, \quad d N=\underbrace{D(\epsilon) d \epsilon} \tag{1}
\end{equation*}
$$

purity of states
The convention used to find the density of states is to take a very large cube ($F 3-D$) each of side L and farce the wave functions representing the bosons to vanish at the walls. This leads to the condition for the quantized wave vector to be

$$
k_{i}=\frac{n_{i} \pi}{L} \quad, i=x, y, z
$$

So, in 3D with $E=|\vec{p}| c$, we have

$$
\epsilon=|\vec{p}| c=\hbar|\vec{k}| c=\frac{\hbar c \pi}{L} n_{i}
$$

) Solving for n_{i} yields

$$
n_{i}=\frac{\epsilon L}{\hbar c \pi}
$$

Spring 2004+4 (p 2 of 3)
Then the density of states (in n space) is given by (in 3-D)

$$
D(\epsilon)=\frac{d N}{d \epsilon}=\frac{d N}{d n} \frac{d n}{d \epsilon}=4 \pi n^{2} \frac{d n}{d \epsilon}
$$

So,

$$
D(\epsilon)=4 \pi\left(\frac{\epsilon L}{\hbar c \pi}\right)^{2} \frac{L}{\hbar c \pi}=4 \pi\left(\frac{L}{\hbar c \pi}\right)^{3} \epsilon^{2}
$$

Let $\hbar=c=1 \quad \Rightarrow D(\epsilon)=\frac{4 L^{3}}{\pi^{2}} \epsilon^{2}$

Substituting this result into eq (1) for the total N yields

$$
N_{3 D}=\frac{4 L^{3}}{8 \pi^{2}} \int_{0}^{\infty} \frac{t^{2}}{e^{\beta(\epsilon-\mu)}-1} d t
$$

where we used $\bar{n}(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}-1}$ for bosons and a factor of " $\frac{1}{\delta}$ " because we only care about the positive value of the sphere in "n-space" which is 1_{s} of the total sphere. So, we have

$$
N_{3 D}=\frac{L^{3}}{2 \pi^{2}} \int_{0}^{\infty} \frac{e^{2}}{e^{\beta(f+1)}-1} d t=\frac{V}{\pi^{2} \beta^{3}} \sum_{l=1}^{\infty} \frac{e^{\beta l \mu}}{l^{3}}
$$

Now, N is at a maximum when $\mu=0$. The maximum is when condensation occurs, So, $\mu \rightarrow 0$

$$
\Rightarrow N_{3 D}=\frac{V}{\pi^{2} \beta^{3}} \zeta(3) \approx \frac{V}{\pi^{2} \beta^{3}} 1.1202
$$

gama
function

Spring 2004 \#6 (p3of 3)
solving for the tempertwe, T_{C}, required for a BEC to form, we get

$$
T_{c} \approx \frac{1}{K}\left[\frac{\pi^{2} N_{3 D}}{V(1,1202)}\right]^{1 / 3}
$$

(b) Does Bose-Einstein condensation occur in tw-dimersions? justify your answer, for massless particles, a BEC does occur in 2D. For massive particles, it does not, since we one dealing with massless particles, the answer is yes.
in 2D, the density of states is

$$
D(\epsilon)=2 \pi n \frac{d n}{d \epsilon}=2 \pi\left(\frac{L}{c \hbar \pi}\right)^{2} \epsilon
$$

So, the total number of particles is
$2+c=(=\hbar) \quad N_{2 D}=\frac{2 \pi}{4}\left(\frac{L}{\pi}\right)^{2} \int_{0}^{\infty} \frac{\epsilon}{e^{\beta(E-\mu)}-1} d t=\frac{A^{\ell}}{2 \pi \beta^{2}} \sum_{l=1}^{\infty} \frac{e^{\beta l \mu}}{l^{2}}$
this factor canes
in fir the same reason when $\mu \rightarrow 0$
the $1 / 8$ dist $i n$ the
spore 3-D part. Now the pas. values of n ore $\frac{1}{4}$ of the
area of a circle
So,

$$
T_{c}=\frac{1}{K}\left(\frac{12 N_{2 D}}{A \pi}\right)^{1 / 2}
$$

(c) What is the highest dimension for which Bose-Einstem condensation does not occur?
for massive protids, $2-D$
for massless particles, $1-D$

EM S'O4 \# 8

Ster 1 is to deter mine s d^{\prime} :
At. IE I $V=0$ for grounded conductor:
I. $\alpha-R \quad A-d^{\prime} \quad I \Rightarrow \quad \frac{\partial}{\alpha-A}+\frac{y^{\prime}}{R-\alpha^{\prime}}=0$

II $d+R \quad R+d^{\prime}$

$$
\begin{equation*}
\text { II } \Rightarrow \quad \frac{a}{\alpha+A_{1}}+\frac{g^{\prime}}{R+a^{\prime}}=0 \tag{1}
\end{equation*}
$$

(1) $\quad \frac{g}{d-R}=\frac{-g^{\prime}}{R-d^{\prime}} \Rightarrow g=-g^{\prime} \frac{(d-R)}{A-d^{\prime}}$
plug into (d):

$$
\begin{aligned}
\frac{-\partial \alpha(\alpha-A)}{\left(A-\alpha^{\prime}\right)(\alpha+A)}=\frac{-\lambda \alpha^{\prime}}{R+\alpha^{\prime}} \Rightarrow & (\alpha-R)\left(A+\alpha^{\prime}\right)=\left(A-\alpha^{\prime}\right)(\alpha+R) \\
& \alpha A+d \alpha^{\prime}-R^{2}-R d^{\prime}=\alpha A+R^{2}-\alpha \alpha^{\prime}-X A \\
& \Rightarrow \not \alpha^{\prime} A \alpha^{\prime}=\not A^{2} \Rightarrow \Rightarrow \alpha^{\prime}=\frac{A^{2}}{\alpha}
\end{aligned}
$$

plug this back into (1)

$$
\begin{aligned}
& z^{\prime}=\frac{-q(B-\alpha)}{(\alpha-A)}=\frac{-q\left(A-\frac{A^{2}}{\alpha}\right)}{(\alpha-R)} \times \frac{\alpha}{\alpha}=-8 \frac{\left(R \alpha-R^{2}\right)}{\alpha(\alpha-A)}=\frac{-\alpha A}{\alpha} \frac{(\alpha-A)}{(d-A)} \\
& z^{\prime}=-\frac{R}{\alpha}
\end{aligned}
$$

Now for the force between $\%$ ' 8 '

$$
F=\frac{1}{4 \pi \epsilon_{0}} \frac{g g^{\prime}}{\left(\alpha-\alpha^{\prime}\right)^{2}}=\frac{-g^{2}}{4 \pi \epsilon_{0}} \frac{R}{\alpha\left(\alpha-\frac{R^{2}}{\alpha}\right)^{2}} \frac{-\gamma^{2}}{4 \pi \epsilon_{0}} \frac{R \alpha}{\left(\alpha^{2}-R^{2}\right)^{2}}
$$

Now we place a charge $Q-g^{\prime}$ on the conductor (after removing the ground). Then the force on ti will be the old force plus the new force due to the charger sphere:

$$
\begin{aligned}
F=F_{0 i \alpha}+F_{\text {new }} & =\frac{-\alpha^{2} R \alpha}{4 \pi \epsilon_{0}\left(\alpha^{2} R^{2}\right)^{2}}+\frac{8}{4 \pi \epsilon_{0}} \frac{\left(Q-Q^{2}\right)}{\alpha^{2}} \\
& =\frac{-A \alpha}{4 \pi t_{0}\left(\alpha^{2} R^{2}\right)^{2}}+\frac{\left(Q+\frac{Q}{\alpha}\right)}{4 \pi \epsilon_{0}} \frac{\alpha^{2}}{\alpha^{2}}
\end{aligned}
$$

Now we want the force on $+q$ to be 0 :

$$
\begin{aligned}
& \frac{\square A d}{4 \pi t_{0}\left(d^{2}-R^{2}\right)^{2}}=\frac{\alpha}{4 \pi \alpha} \frac{\left(Q+\frac{a R}{\alpha \alpha}\right)}{\alpha^{2}} \Rightarrow \frac{Q A d}{\left(\alpha^{2}-A^{2}\right)^{2}}=\frac{Q}{\alpha^{2}}+\frac{8 A}{\alpha^{3}} \\
& \Rightarrow \quad Q=\alpha^{2}\left[\frac{g A \alpha}{\left(\alpha^{2}-A^{2}\right)^{2}}-\frac{8 A}{\alpha^{3}}\right]=k^{2}\left[\frac{g R d^{4}-g A\left(d^{2} A^{2}\right)^{2}}{\alpha^{3}\left(\alpha^{2}-R^{2}\right)^{2}}\right] \\
& =\frac{8 A \alpha^{4}-8 A\left(\alpha^{4}-2 \alpha^{2} A^{2}+R^{4}\right)}{\alpha\left(\alpha^{2} R^{2}\right)^{2}}=\frac{A \alpha^{4}-8 \alpha^{4}+2 \alpha^{2} R^{3}-8 A^{5}}{\alpha\left(\alpha^{2}-A^{2}\right)^{2}} \\
& Q=q\left[\frac{\partial a^{2} R^{3}-R^{5}}{d\left(\alpha^{2}-A^{2}\right)^{2}}\right]
\end{aligned}
$$

Spring $2004 \# .8$

what charge must sphere have for fore e on point charge to be zero

This is the same as if you
had a charge $\left(Q-Q^{\text {so }}\right)^{\text {so that total enclosed charge is } Q}$ the charge is uniformly spread.

$$
\begin{aligned}
& F=\frac{q q^{\prime}}{(d-b)^{2}}+\frac{q\left(Q-q^{\prime}\right)}{d^{2}}=\frac{-q^{2}}{\left(d-\frac{R^{2}}{\partial}\right)^{2}}+\frac{q\left(Q+\frac{R q}{d}\right)}{d^{2}} \\
&=-\frac{q^{2} R \partial}{\left(d^{2}-R^{2}\right)^{2}}+\frac{q}{d^{2}}\left(Q+\frac{R q}{\partial}\right)=0 \\
& \frac{q Q}{d^{2}}=\frac{q^{2} R \partial}{\left(d^{2}-R^{2}\right)^{2}}-\frac{q^{2} R}{d^{3}} \\
& Q=\frac{q R d^{3}}{\left(d^{2}-R^{2}\right)^{2}}-\frac{q R}{d}=\frac{q R d^{4}-q R\left(\partial^{2}-R^{2}\right)^{2}}{d\left(d^{2}-R^{2}\right)^{2}} \\
& Q=\frac{q R^{3}\left(2 d^{2}-R^{2}\right)}{\partial\left(\partial^{2}-R^{2}\right)}
\end{aligned}
$$

Spring 2004\#8 (plof2)
A point charge q is located a distance d from the center of a caducting spue of radius R. What must the total charge an the conducting sphere be for the force on the point charge to be zero?

we know that with conducting image charge problems with spheres that the location, a, of the image charge and charge, q^{\prime}, is

$$
a=\frac{R^{2}}{d} \quad \text { and } \quad q^{\prime}=-q \frac{R}{d}
$$

\rightarrow thess apples when the sphere is grandad to have $V=0$ an surface of sphere.
Now the force cares pending to the spue if granded is (see Fall 2002 \#10 (c)

$$
F=\frac{q q^{\prime}}{|d-a|^{2}}=\frac{-q^{2}(R / d)}{\left(d-\frac{R^{2}}{d}\right)^{2}}=\frac{-q^{2} R d}{\left(d^{2}-\left.R^{2}\right|^{2}\right.}
$$

Now, if sphere is not grounded. There is some charge on the surface, $Q-q^{\prime}$. (see Griffith' problem 3.8 for a similar problem). So, wow the total charge on the surface of the sphere is $\left(Q-q^{\prime}\right)+q^{\prime}=Q$. Then the force an the cherie q is

$$
F=\frac{-q^{2} R d}{\left|d^{2}-R^{2}\right|^{2}}+\frac{q\left(Q-q^{\prime}\right)}{d^{2}}, q^{\prime}=-q \frac{R}{d}
$$

setting this force equal to zero and soling for Q yields

$$
\frac{q^{2} R d}{\left|d^{2}-R^{2}\right|^{2}}=\frac{q Q}{d^{2}}+\frac{q^{2} R}{d^{3}}
$$

Spring 2004 \# 8 (p $20 F Z$)

$$
\begin{aligned}
\Rightarrow Q & =\frac{d^{2}}{q}\left[\frac{q^{2} R d}{\left|d^{2}-R^{2}\right|^{2}}-\frac{q^{2} R}{d^{3}}\right] \\
& =q\left[\frac{R d^{3} \cdot d^{3}}{d^{3}\left|d^{2}-R^{2}\right|^{2}}-\frac{d^{2} R\left(d^{2}-R^{2}\right)^{2}}{d^{3}\left|d^{2}-R^{2}\right|^{2}}\right] \\
& =q R\left[\frac{d^{6}-d^{4}-R^{4} d^{2}+2 d^{4} R^{2}}{d^{3}\left|d^{2}-R^{2}\right|^{2}}\right]
\end{aligned}
$$

Thus, the charge must be

$$
Q=q R\left[\frac{2 d^{2} R^{2}-R^{4}}{d\left(d^{2}-R^{2}\right)^{2}}\right]
$$

EM S'O4\#9; S'O3\# \#

Find the potential above the plane:
insinite planes

$$
-v_{0}
$$

$$
v_{0}
$$

This is just a wedge potential problem with the opening angle being $\theta_{0}=\pi$:

The general solution according to C. Wong is:

$$
V(\theta)=A+B \theta ; A=V_{1} ; B=\frac{V_{j}-V_{1}}{\theta_{0}}
$$

So we have $V_{1}=V_{0} ; V_{0}=-V_{0}$ end $\theta_{0}=\pi$

$$
v(\theta)=v_{0}+\frac{\left(-v_{0}-v_{c}\right)}{\pi} \theta=v_{0}\left(1-\frac{2 \theta}{\pi}\right)
$$

spring 2004 \#9 (p 1 of 1)
Consider the infinite two-dimensional conducting plane depicted in the frgum. The right half is maintained at electrostatic potential v_{0} while the left half is maintained at potential - V_{0}. What is the potential above the plane?

(see Fall 2003 \# 10 , Spring 2003 \#9, Spring $2005 \# 8$)
Since $\phi 3$ restricted (does not range to 2π), the geneal solution to the potential is given by

$$
\Phi(r, \phi)=\left(a_{0}+b_{0} \ln r\right)\left(c_{0}+d_{0} \phi\right)
$$

Now, apply the boundary conditions

$$
\text { - } \Phi(r, \phi=0)=V_{0}=\left(a_{0}+b_{0} \ln r\right) c_{0}
$$

since $V_{0} \neq V_{0}(r), b_{0}=0$
Thus,

$$
v_{0}=a_{0} c_{0}
$$

- $E(r, \phi=\pi)=-V_{0}=a_{0} c_{0}+a_{0} d_{0} \pi=V_{0}+a_{0} d u \pi$

$$
\Rightarrow \quad a_{0} d_{0}=\frac{-2 v_{0}}{\pi}
$$

Thus, the potential is

$$
\Phi(r, \phi)=V_{0}-\frac{2 V_{0}}{\pi} \phi=V_{0}\left(1-\frac{2}{\pi} \phi\right)
$$

so $\vec{E}=\frac{+Q}{2 \pi L \epsilon_{0} \nu} \hat{z}$
hence $\quad \vec{s}=\frac{i}{\mu_{0} \epsilon_{0}} \frac{Q B_{0}}{\alpha \pi L r}(-\hat{\phi})$
So $\vec{l}_{e m}=-\frac{Q B_{0}}{2 \pi L} \hat{z}^{\text {A.H.A }} \quad\left(\frac{1}{r}\right.$ vanished because $\vec{r}=\gamma \hat{r}$
To get the total angular momentum:

$$
\begin{aligned}
& L=\int_{0}^{L} \int_{0}^{2 \pi} \int_{a}^{b} l_{e m} r \alpha r \alpha \phi \alpha z=-\frac{\left.Q B_{0}[L][2 \pi] \frac{1}{2} r^{2}\right|_{a} ^{b}}{} \\
&=-Q B_{0} \frac{\left(b^{2}-a^{2}\right)}{2}
\end{aligned}
$$

now for a rigid rotator:

$$
L=\frac{I \omega}{\left.\uparrow_{\text {moment of inertia }} \rightarrow \vec{\omega}=\frac{L}{I}=\frac{-Q B_{0}\left(b^{2}-a^{2}\right)}{\alpha I} \hat{z}\right]}
$$

EM. SOU \# 11

The index of refraction is given by:

$$
x=\sqrt{\frac{\mu}{\mu_{0}} \frac{\epsilon}{\epsilon_{0}}}
$$

but $\mu x_{0} \mu_{0}$, so $x=\sqrt{\epsilon_{2}}$

Now for a plasm ma:

$$
\epsilon_{r}=\frac{\epsilon(\omega)}{\epsilon_{0}}=1-\frac{\omega_{p}^{2}}{\omega^{2}} ; \quad \omega_{p}^{2}=\frac{\tilde{\nu z}^{n} e^{2}}{\epsilon_{0} m}
$$

So

$$
n(\omega)=\sqrt{1-\frac{\omega_{p}^{2}}{\omega^{2}}}=\sqrt{1-\frac{n e^{2}}{\epsilon_{0} n \omega^{2}}}
$$

Spring $2004^{\circ} \# 11$
plasma Frequency

$$
\begin{aligned}
\varepsilon_{r} & =\frac{\varepsilon(\omega)}{\varepsilon_{0}}=1-\frac{\omega_{p}^{2}}{\omega^{2}} \quad \omega_{p}= \\
n & =\sqrt{\frac{\varepsilon}{\varepsilon_{0}} \frac{\mu}{\mu_{0}}} \quad \mu=\mu_{0} \\
& \Rightarrow n=\sqrt{\frac{\varepsilon}{\varepsilon_{0}}}=\sqrt{1-\frac{n e^{2}}{\varepsilon_{0} m_{e} \omega^{2}}}
\end{aligned}
$$

Spring 2004 \#11 (plo $)$
Consider a plasuna of free charges of mass m and charge e at constant density) n. What is the index of refraction for electro magnetic waves of frequency w which are incident upon this plasma? (see spring 2003 (10)
the index of refraction of a plasma is given by

$$
\begin{equation*}
n=\sqrt{1+x_{e}} \tag{1}
\end{equation*}
$$

where X_{e} can be found from the induced polarization. where

$$
P=\chi_{e} E=n p
$$

where p is

$$
\begin{equation*}
P=e x \tag{3}
\end{equation*}
$$

So, what is $x ? x$ con be found from the equation of motion, That is, we have

$$
\begin{gather*}
m \ddot{x}=e E_{0} e^{-i \omega t}=e E \tag{4}\\
\Rightarrow x=x_{0} e^{-i \omega t} \quad \Rightarrow \ddot{x}=-\omega^{2} x
\end{gather*}
$$

So, substituting this result back mite eq (4) yields

$$
m \omega^{2} x=-e E \quad \Rightarrow \quad x=\frac{-c E}{m \omega^{2}}
$$

substacting this result into eq 3, then p into eq (2) yields

$$
P=\chi_{e} E=-\frac{n e^{2} E}{m w^{2}}
$$

thus,

$$
x_{e}=\frac{-n e^{2}}{m w^{2}}=-\frac{w_{p}^{2}}{w^{2}} \text {, where } \omega_{p}^{2}=\frac{n e^{2}}{m}
$$

Finally

$$
n=\sqrt{1-\frac{\omega_{p}^{2}}{\omega^{2}}}
$$

Stat. Mech. S'O4 \#13

Unlike the ideal gus case where E is only a function of T (i.e. $E=\frac{3}{2} r k T$), for a van der walls gas E is also a function of V.
(Reit p:173)

$$
\alpha E=C_{r} \alpha T+\left[T\left(\frac{\partial P}{\partial T}\right)_{V}-P\right] d V
$$

mow $\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{N k}{(V-b N)}$
then

$$
T\left(\frac{\partial P}{\partial T}\right)_{V}-P=\frac{N k T}{(v-b v)}-\frac{N k T}{(V-b V)}+a\left(\frac{N}{V}\right)^{2}=a\left(\frac{N}{V}\right)^{2}
$$

hence

$$
E(T, V)=\int C_{r} d T+a v^{2} \int \frac{d V}{V^{2}}
$$

we are told $C_{V}=\frac{3}{2} W k$ (as for an ideal gas)
hence

$$
E(T, V)=\frac{3}{2} N k \Delta T+a N^{2} \int \frac{\alpha V}{V^{2}}
$$

As this is a free adiabatic expansion
adiabatic free expansion

$$
\begin{gathered}
\Delta E=0 \quad(\text { as } Q=0 \text { and } p d V=0) \\
O=\frac{3}{2} \nless k-T_{i} \\
O T-\left.a N^{*} \frac{1}{V}\right|_{\frac{V}{3}} ^{V}
\end{gathered}
$$

$$
\frac{3}{2} k \Delta T=a N^{x}\left(\frac{1}{v}-\frac{1}{V / 3}\right)=a N^{x}\left(\frac{1}{v}-\frac{3}{v}\right)=-\frac{2 a v}{v}
$$

nence

$$
O T=-\frac{4 N_{a}}{3 k v} \Rightarrow T_{F}=T_{i}-\frac{4}{3} \frac{N}{K} \frac{a}{V}
$$

Spring 2004. 13

$$
P(T, v)=\frac{N K T}{\left(v^{\prime}-b N\right.}-a\left(\frac{N}{V}\right)^{2}
$$

$$
\begin{gathered}
\frac{V}{v} \\
C_{v}=3 / 2 N K \text { since } \\
\text { the same as } \\
\text { an ideal gas. }
\end{gathered}
$$

$$
\partial E=T \partial S-p D V=\partial(T S)-S d T-p d V
$$

${ }^{n}$ work do by syitem

$$
\begin{aligned}
\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{N k}{(v-b N)} \quad\left(\frac{\partial E}{\partial V)_{T}}\right. & =\Gamma\left(\frac{\partial p}{\partial T}\right)_{V}-p \\
& =\frac{T N K}{(v-b r j}-p=a\left(\frac{N}{V}\right)^{2}
\end{aligned}
$$

$C_{V}(T) \rightarrow$ since it is the same as an ideal gas

$$
\partial E=C_{V} \partial T+a\left(\frac{N}{V}\right)^{2} \partial V \quad e_{q} \text { 5. 8.10 Ref }
$$

Since

$$
\begin{array}{ll}
\Delta S=\left(\frac{\partial S}{\partial T}\right)_{U T}+\left(\frac{\partial S}{\partial v}\right)_{T} \partial V & \left(\frac{\partial S}{\partial T}\right)_{V}=\frac{1}{T} C_{V} \\
d S=\frac{C_{U}}{T} d T+\left(\frac{\partial d}{\partial T}\right)_{V} d v & \left(\frac{\partial J}{\partial v}\right)_{T}=\left(\frac{\partial P}{\partial T} \downarrow\right.
\end{array}
$$

plug into
side note

$$
\partial E=T \partial S-p d
$$

$$
\begin{aligned}
E(T, v)= & \int_{T_{0}}^{T} C_{v}\left(T^{\prime}\right) d T^{\prime}-a\left(\frac{N^{2}}{v}\right)+\text { constant } \\
& =C_{v} T-\frac{a N^{2}}{V}+\text { constant }
\end{aligned}
$$

In a free expansion $\Rightarrow \Delta Q=0$

$$
\begin{aligned}
& \triangle W=\sigma \\
& \Delta E=O
\end{aligned}
$$

$$
\begin{aligned}
& E\left(T_{2}, V_{2}\right)=E\left(T_{1}, V_{1}\right) \\
& \int_{T_{\partial}}^{T_{2}} C_{v}\left(T^{\prime}\right) d T^{\prime}-\frac{a N^{2}}{V_{2}}=\int_{T_{0}}^{T_{1}} C_{v}\left(T^{\prime}\right) d T^{\prime}-\frac{a N^{2}}{V_{1}} \\
\Rightarrow & \int_{T_{d}}^{T_{2}} C_{v}\left(T^{\prime}\right) \partial T^{\prime}-\int_{T_{0}}^{T_{1}} C_{v}\left(T^{\prime}\right) d T^{\prime}=a\left(\frac{N^{2}}{V_{2}}-\frac{N^{2}}{V_{1}}\right)
\end{aligned}
$$

$$
\int_{T_{1}}^{T_{2}} C_{v}\left(T^{\prime}\right) \partial T^{\prime}=a N^{2}\left(\frac{1}{v_{2}}-\frac{1}{V_{1}}\right)
$$

Van der wall "Gas'< T_{2} has a constant conspenticc heat cit fired volume

$$
\begin{aligned}
\Rightarrow C_{v}\left(T_{2}-T_{1}\right) & =G N^{2}\left(\frac{1}{v_{2}}-\frac{1}{v_{1}}\right) \\
T_{2}-T_{1} & =-\frac{a N^{2}}{C_{v}}\left(\frac{1}{v_{1}}-\frac{1}{v_{2}}\right) \quad c_{v}=3 N K \\
T_{2} & =T_{1}-\frac{2 a N^{2}}{3 N K}\left(\frac{1}{v_{1}}-\frac{1}{v_{2}}\right)
\end{aligned}
$$

$$
\left.T_{\epsilon}=T_{1}-\frac{2 a N}{3 k}\left(\frac{1}{v_{1}}-\frac{1}{V_{2}}\right)\right)
$$

when $u=0$ we. get the free expansion of an ideal

$$
\begin{array}{ll}
=T_{i}-\frac{2 a N}{3 K}\left(\frac{3}{V}-\frac{1}{V}\right) & \text { gas. } \\
T_{t}=T_{i}-\frac{1 u N}{3 K V} & v_{1}=1 / 3 V \\
v_{2}=V
\end{array}
$$

