1. Previous Midterm (by Prof. Simon). The circuit below has an AC voltage source, where $V=V_{0} \cos (\omega t)$.

(a) What is the circuit's total impedance, magnitude and phase angle? [8 points]
(b) Give an expression for the current $I(t)$ in the circuit. [8]
(c) What is the average power deliverd by the voltage source? [4]
(d) If there is a resonant frequency, what is it? [7]
2. Previous Midterm (by Prof. Simon). An electric field in air E_{p}, polarized at 45 degrees in the $\mathrm{x}-\mathrm{y}$ plane and moving in the -z direction can be written as

$$
\begin{equation*}
\vec{E}(z, t)=(\hat{x}+\hat{y}) E_{0} \cos (k z+\omega t) \tag{1}
\end{equation*}
$$

Here, $E_{0}=E_{p} \cos \left(\frac{\pi}{4}\right)=E_{p} \sin \left(\frac{\pi}{4}\right)$. The linearly polarized light is incident on a birefringent crystal, which has has two different indexes of refraction, n_{x} for the electric field aligned with the x -axis and n_{y} for the electric field along the y -axis. (a) Find the crystal thickness z which will cause a $2 \pi / 4$ (or quarter wave) phase difference for the two polarizations of light with a free space wavelength of λ_{0}. [10]

(b) Assume the crystal thickness is a quarter wave plate for a free-space λ_{0}, shifting the x - and y-components by 90 degrees. Write an expression for the electric field after the light exits the crystal. Assume that $n_{x}>n_{y}$ in the crystal. [10]
(c) A $40 \mu m$ layer of cellophane tape acts as a half wave plate (π phase difference) for red light passing through it. Show graphically by vector addition that the initial 45 degree linear polarization of the entering wave is rotated by 90 degrees by a half wave plate. [6]

