STATISTICAL PHYSICS 215A
 Final Exam - Spring 2013 - SOLUTIONS

1 Solution to Question 1

(a) The specific heats in question are defined by

$$
\begin{equation*}
C_{M}=\left(\frac{\partial E}{\partial T}\right)_{M} \quad C_{H}=\left(\frac{\partial(E-M H)}{\partial T}\right)_{H} \tag{1.1}
\end{equation*}
$$

(b) In the canonical ensemble, the independent variables are (T, M), and we have $E(T, M)$. To compute C_{H}, we use independent variables T, H, so that M is a function of T, H which we denote $M(T, H)$. Thus, we have

$$
\begin{align*}
C_{H} & =\left.\frac{\partial(E-H M)}{\partial T}\right|_{H}=\left.\frac{\partial E}{\partial T}\right|_{H}-\left.H \frac{\partial M}{\partial T}\right|_{H} \\
\left.\frac{\partial E}{\partial T}\right|_{H} & =\left.\frac{\partial E(T, M(T, H))}{\partial T}\right|_{H}=\left.\frac{\partial E}{\partial T}\right|_{M}+\left.\left.\frac{\partial E}{\partial M}\right|_{T} \frac{\partial M}{\partial T}\right|_{H} \tag{1.2}
\end{align*}
$$

from which the expression of (a) follows immediately.
(c) Curie's law allows us to express H in terms of (T, M), and we have,

$$
\begin{equation*}
d E=T d S+\frac{M T}{n D} d M \tag{1.3}
\end{equation*}
$$

Since C_{M} is constant, and $\partial E / \partial M=0$ at constant T, we have $d E=C_{M} d T$. During adiabatic transformations, we have $d S=0$, so that we obtain the differential equation,

$$
\begin{equation*}
C_{M} d T=\frac{M T}{n D} d M \tag{1.4}
\end{equation*}
$$

Dividing both sides by T separates the variables, and allows us to integrate by quadrature,

$$
\begin{equation*}
T(M)=T(M=0) \exp \left\{\frac{M^{2}}{2 n D C_{M}}\right\} \tag{1.5}
\end{equation*}
$$

(d) The transformations $2 \rightarrow 3$ and $4 \rightarrow 1$ are adiabatic; using (1.5), we have,

$$
\begin{align*}
& M_{3}^{2}=M_{2}^{2}-2 n D C_{M} \ln \frac{T_{h}}{T_{\ell}} \\
& M_{4}^{2}=M_{1}^{2}-2 n D C_{M} \ln \frac{T_{h}}{T_{\ell}} \tag{1.6}
\end{align*}
$$

Note that the signs work out as $T_{h}>T_{\ell}$, while we have $M_{3}^{2}<M_{2}^{2}$ and $M_{4}^{2}<M_{1}^{2}$.
The heat liberated along an isothermal may be computed from the fact that for fixed T the internal energy E remains constant for this specific material in view of the assumption that $\partial E / \partial M=0$ at constant T,

$$
\begin{equation*}
0=\delta Q+H d M=\delta Q+\frac{M T}{n D} d M \tag{1.7}
\end{equation*}
$$

The heat liberated along the isothermal processes $1 \rightarrow 2$ and $3 \rightarrow 4$ is respectively given by,

$$
\begin{align*}
Q_{h} & =-\frac{T_{h}}{2 n D}\left(M_{1}^{2}-M_{2}^{2}\right) \\
Q_{\ell} & =-\frac{T_{\ell}}{2 n D}\left(M_{4}^{2}-M_{3}^{2}\right) \tag{1.8}
\end{align*}
$$

As internal energy is conserved along the isothermals, we have

$$
\begin{equation*}
W_{1 \rightarrow 2}=Q_{h} \quad W_{3 \rightarrow 4}=Q_{\ell} \tag{1.9}
\end{equation*}
$$

while along the adiabatics, the work equals the change in internal energy, and we have,

$$
\begin{equation*}
W_{2 \rightarrow 3}=-C_{M}\left(T_{h}-T_{\ell}\right) \quad W_{4 \rightarrow 1}=-C_{M}\left(T_{\ell}-T_{h}\right) \tag{1.10}
\end{equation*}
$$

Elimination T_{h} / T_{ℓ} between the two equations in (1.6), we find $M_{1}^{2}-M_{2}^{2}=M_{4}^{2}-M_{3}^{2}$, so that we find $Q_{h} / Q_{\ell}=T_{h} / T_{\ell}$. The total work done by the system is given by conservation of total internal energy by $W=Q_{h}-Q_{\ell}$. By definition of η, we have,

$$
\begin{equation*}
\eta=\frac{W}{Q_{h}}=1-\frac{Q_{\ell}}{Q_{h}}=1-\frac{T_{\ell}}{T_{h}} \tag{1.11}
\end{equation*}
$$

Note that by the second law of thermodynamics, W, Q_{h}, and Q_{ℓ} are all positive.

2 Solution to Question 2

(a) The total number of micro-states $\Omega(E, L, N)$ is given by the multiple integral,

$$
\begin{equation*}
\Omega(E, L, N)=\frac{1}{N!} \prod_{i=1}^{N} \int \frac{d q_{i} d p_{i}}{2 \pi \hbar} \theta\left(E-c \sum_{i=1}^{N}\left|p_{i}\right|\right) \tag{2.1}
\end{equation*}
$$

where θ denotes the Heaviside step function. The factor of $1 / N!$ is included to account for the indistinguishability of the particles stated in the problem. The range of each integral in q_{i} is over the box of length L. By symmetry of the integrand under $p_{i} \rightarrow-p_{i}$, we restrict
the range of integration in p_{i} to $[0, \infty]$, and include a factor of 2 for each integration. Thus, we end up with the simplified formula,

$$
\begin{align*}
\Omega(E, L, N) & =\frac{1}{N!}\left(\frac{2 L}{2 \pi \hbar}\right)^{N} \mathcal{V}(N, E / c) \\
\mathcal{V}(N, \lambda) & =\prod_{i=1}^{N} \int_{0}^{\infty} d p_{i} \theta\left(\lambda-\sum_{i=1}^{N}\left|p_{i}\right|\right) \tag{2.2}
\end{align*}
$$

By scaling all p_{i}, we see that we have,

$$
\begin{equation*}
\mathcal{V}(N, \lambda)=\lambda^{N} \mathcal{V}(N, 1) \tag{2.3}
\end{equation*}
$$

On the other hand, the integral may be evaluated iteratively,

$$
\begin{align*}
\mathcal{V}(N, \lambda) & =\int_{0}^{\lambda} d p_{N} \mathcal{V}\left(N-1, \lambda-p_{N}\right) \\
& =\int_{0}^{\lambda} d p_{N}\left(\lambda-p_{N}\right)^{N-1} \mathcal{V}(N-1,1)=\frac{\lambda^{N}}{N} \mathcal{V}(N-1,1) \tag{2.4}
\end{align*}
$$

Putting all together, we have $\mathcal{V}(N, \lambda)=\lambda^{N} / N$! so that,

$$
\begin{equation*}
\Omega(E, L, N)=\frac{1}{(N!)^{2}}\left(\frac{L E}{\pi \hbar c}\right)^{N} \tag{2.5}
\end{equation*}
$$

It immediately follows that

$$
\begin{equation*}
\Omega^{\prime}(E, L, N, \Delta)=\frac{1}{(N!)^{2}}\left(\frac{L E}{\pi \hbar c}\right)^{N} \frac{N \Delta}{E} \tag{2.6}
\end{equation*}
$$

(b) The entropy is defined in terms of the number of micro-states at energy E, so it should be in terms of Ω^{\prime}. We shall adopt the following definition,

$$
\begin{equation*}
S(E, L, N)=k \ln \frac{\Omega^{\prime}(E, L, N, \Delta)}{\Delta}=k \ln \left(\frac{1}{(N!)^{2}}\left(\frac{L E}{\pi \hbar c}\right)^{N} \frac{N}{E}\right) \tag{2.7}
\end{equation*}
$$

In the thermodynamic limit, the contribution from the factor N / E cancels out, and we omit it outright. The remaining expression in the limit may be rearranged as follows,

$$
\begin{equation*}
\frac{S}{N}=k \ln \left(\frac{L E}{\pi \hbar c N^{2}}\right)+2 k \tag{2.8}
\end{equation*}
$$

We have used Sterling's formula to obtain the last term. The entropy is properly extensive.
(c) Using the micro-canonical ensemble, we have from the definition of temperature,

$$
\begin{equation*}
\frac{1}{T}=\left.\frac{\partial S}{\partial E}\right|_{N, L}=\frac{k N}{E} \tag{2.9}
\end{equation*}
$$

The resulting relation $E=N k T$ violates the equipartition theorem by a factor of 2 . In the canonical ensemble, we calculate the partition function,

$$
\begin{equation*}
Z=\frac{1}{N!} \prod_{i=1}^{N}\left(\int \frac{d p_{i} d q_{i}}{2 \pi \hbar} e^{-\beta c\left|p_{i}\right|}\right)=\frac{1}{N!}\left(\frac{k T L}{\pi \hbar c}\right)^{N} \tag{2.10}
\end{equation*}
$$

The internal energy is deduced directly from

$$
\begin{equation*}
E=-\frac{\partial \ln Z}{\partial \beta}=N k T \tag{2.11}
\end{equation*}
$$

which agrees with the earlier calculation in the micro-canonical ensemble.
(d) Returning to the micro-canonical ensemble, the pressure is given by,

$$
\begin{equation*}
\frac{P}{T}=\left.\frac{\partial S}{\partial L}\right|_{E, N}=\frac{N k}{L} \tag{2.12}
\end{equation*}
$$

so that $P=N k T / L$, while we have,

$$
\begin{equation*}
C_{L}=\left.\frac{\partial E}{\partial T}\right|_{L, N}=k N \tag{2.13}
\end{equation*}
$$

3 Solution to Question 3

(a) In terms of the density of one-particle states $D(\varepsilon)$ and the Fermi occupation number f, the total number of particles N and the internal energy E are given by,

$$
\begin{align*}
& N=V \int_{0}^{\infty} d \varepsilon D(\varepsilon) f(\varepsilon) \\
& E=V \int_{0}^{\infty} d \varepsilon \varepsilon D(\varepsilon) f(\varepsilon) \tag{3.1}
\end{align*}
$$

We assume that $D(\varepsilon)=0$ for $\varepsilon<0$. Since the function $D(\varepsilon)$ does not involve temperature (but may involve V which is held constant in computing C_{V}), the specific heat is given by,

$$
\begin{equation*}
C_{V}=\frac{\partial E}{\partial T}=V \int_{0}^{\infty} d \varepsilon \varepsilon D(\varepsilon) \frac{\partial f(\varepsilon)}{\partial T} \tag{3.2}
\end{equation*}
$$

Note that since we are using the grand-canonical ensemble here, this specific heat corresponds to holding μ fixed (instead of in the canonical ensemble where we would hold N fixed instead). Working this out, and after some minor simplifications, we get,

$$
\begin{equation*}
C_{V}=\frac{V}{k T^{2}} \int_{0}^{\infty} d \varepsilon \frac{\varepsilon(\varepsilon-\mu) D(\varepsilon)}{\left(e^{\beta(\varepsilon-\mu) / 2}+e^{-\beta(\varepsilon-\mu) / 2}\right)^{2}} \tag{3.3}
\end{equation*}
$$

(b) Strong degeneracy corresponds to low temperatures. The denominator is then responsible for concentrating the support of the integral over ε near μ, so we may extend the integration region all the way to $-\infty$. Also, to leading order, we may evaluate $D(\varepsilon)$ at the central value μ. The parity of the remaining integral allows us to replace the factor ε in the numerator by $\varepsilon-\mu$, so that we end up with the following expression,

$$
\begin{equation*}
C_{V}=\frac{V D(\mu)}{k T^{2}} \int_{-\infty}^{\infty} d \varepsilon \frac{(\varepsilon-\mu)^{2}}{\left(e^{\beta(\varepsilon-\mu) / 2}+e^{-\beta(\varepsilon-\mu) / 2}\right)^{2}} \tag{3.4}
\end{equation*}
$$

Changing variables from ε to x with $\varepsilon=\mu+2 k T x$ gives,

$$
\begin{equation*}
C_{V}=8 k^{2} T V D(\mu) \int_{-\infty}^{\infty} d x \frac{x^{2}}{\left(e^{x}+e^{-x}\right)^{2}} \tag{3.5}
\end{equation*}
$$

Using the value of the integral stated in the problem, and the fact that for small temperatures we have $\mu=\mu_{0}+\mathcal{O}\left(T^{2}\right)$, with μ_{0} defined by,

$$
\begin{equation*}
N=V \int_{0}^{\mu_{0}} d \varepsilon D(\varepsilon) \tag{3.6}
\end{equation*}
$$

we approximate this result by setting $D(\mu)=D\left(\mu_{0}\right)$, so that the final result is given by,

$$
\begin{equation*}
C_{V}=\frac{1}{3} \pi^{2} k^{2} V D\left(\mu_{0}\right) T \tag{3.7}
\end{equation*}
$$

Observe from equation (3.6) that holding μ fixed is equivalent to holding N fixed in the approximation of $T=0$; thus C_{V} computed at fixed μ as was done here in the grandcanonical ensemble coincides with C_{V} computed at fixed N.
(c) Weak degeneracy corresponds to high temperature T, in which case the FD occupation number becomes the Boltzmann number, and we have,

$$
\begin{equation*}
C_{V}=\frac{V}{k T^{2}} \int_{0}^{\infty} d \varepsilon \varepsilon(\varepsilon-\mu) D(\varepsilon) e^{-\beta(\varepsilon-\mu)} \tag{3.8}
\end{equation*}
$$

with μ obtained from,

$$
\begin{equation*}
N=V \int_{0}^{\infty} d \varepsilon D(\varepsilon) e^{-\beta(\varepsilon-\mu)} \tag{3.9}
\end{equation*}
$$

In both the formulas for C_{V} and N, the fugacity $e^{\beta \mu}$ factors out from under the integrations, and we may eliminate it entirely, to obtain the formula,

$$
\begin{equation*}
C_{V}=\frac{N}{k T^{2}} \frac{\int_{0}^{\infty} d \varepsilon \varepsilon(\varepsilon-\mu) D(\varepsilon) e^{-\beta \varepsilon}}{\int_{0}^{\infty} d \varepsilon D(\varepsilon) e^{-\beta \varepsilon}} \tag{3.10}
\end{equation*}
$$

Note that, as earlier, this is still the specific heat at constant μ, not constant N.
(d) The density of states for a non-relativistic free particle is given by

$$
\begin{equation*}
\left.g \int \frac{d^{3} p d^{3} q}{(2 \pi \hbar)^{3}} f(\varepsilon)=p^{2} / 2 m\right)=\frac{2 \pi g V(2 m)^{3 / 2}}{(2 \pi \hbar)^{3}} \int_{0}^{\infty} d \varepsilon \sqrt{\varepsilon} f(\varepsilon) \tag{3.11}
\end{equation*}
$$

where $g=2$ for the electron. Thus, we conclude that

$$
\begin{equation*}
D(\varepsilon)=\frac{2 \pi g V(2 m)^{3 / 2}}{(2 \pi \hbar)^{3}} \sqrt{\varepsilon} \tag{3.12}
\end{equation*}
$$

For low T, formula (3.6) gives μ_{0} as a function of the number density,

$$
\begin{equation*}
\frac{N}{V}=\frac{4 \pi g}{3}\left(\frac{2 m \mu_{0}}{(2 \pi \hbar)^{2}}\right)^{3 / 2} \tag{3.13}
\end{equation*}
$$

so that the specific heat takes the form,

$$
\begin{equation*}
\frac{C_{V}}{N k}=\frac{m k T}{4 \hbar^{2}}\left(\frac{4 \pi g V}{3 N}\right)^{2 / 3} \tag{3.14}
\end{equation*}
$$

For high T, the specific heat at constant μ is given by

$$
\begin{align*}
\frac{C_{V}}{N k} & =\beta^{2} \frac{\int_{0}^{\infty} d \varepsilon \varepsilon^{3 / 2}(\varepsilon-\mu) e^{-\beta \varepsilon}}{\int_{0}^{\infty} d \varepsilon \varepsilon^{1 / 2} e^{-\beta \varepsilon}} \\
& =\frac{\int_{0}^{\infty} d x x^{3 / 2}(x-\beta \mu) e^{-x}}{\int_{0}^{\infty} d x x^{1 / 2} e^{-x}} \\
& =\frac{\Gamma(7 / 2)}{\Gamma(3 / 2)}-\frac{\Gamma(5 / 2)}{\Gamma(3 / 2)} \beta \mu=\frac{15}{4}-\frac{3}{2} \beta \mu \tag{3.15}
\end{align*}
$$

At high T the last term may be neglected. We do not find the standard $3 / 2$ because this is not the specific heat at constant N. To obtain the latter in the large T limit, one should first eliminate μ in favor of N, so that one first obtains,

$$
\begin{equation*}
\frac{E}{N}=\frac{\int_{0}^{\infty} d \varepsilon \varepsilon D(\varepsilon) e^{-\beta \varepsilon}}{\int_{0}^{\infty} d \varepsilon D(\varepsilon) e^{-\beta \varepsilon}}=\frac{3}{2} k T \tag{3.16}
\end{equation*}
$$

The standard result $C_{V}=3 N k / 2$ then follows.

$4 \quad$ Solution to Question 4

(a) The Hamiltonian for this system depends on the height ℓ of the matter in the cylinder of total height L, with $0<\ell<L$, and is given by,

$$
\begin{equation*}
H=\frac{\mathbf{p}^{2}}{2 m}+m g \ell \tag{4.1}
\end{equation*}
$$

The corresponding number density is given by,

$$
\begin{equation*}
N-N_{0}=\frac{V}{L} \int_{0}^{L} d \ell \int \frac{d^{3} p}{(2 \pi \hbar)^{3}} \frac{1}{e^{\beta\left(\mathbf{p}^{2} / 2 m+m g \ell-\mu\right)}-1} \tag{4.2}
\end{equation*}
$$

Th expression may be recast in terms of the function $g_{3 / 2}$. Setting $\ell=L y$, we obtain,

$$
\begin{equation*}
N-N_{0}=\frac{V}{\lambda^{3}} \int_{0}^{1} d y g_{3 / 2}\left(z e^{-\beta m g L y}\right) \tag{4.3}
\end{equation*}
$$

Criticality in the absence of gravity is at temperature T_{c}^{0}, with corresponding value λ_{0}, and is determined by setting $z=1$, so that we have,

$$
\begin{equation*}
N=\frac{V}{\lambda_{0}^{3}} g_{3 / 2}(1)=\frac{V}{\lambda_{0}^{3}} \zeta(3 / 2) \tag{4.4}
\end{equation*}
$$

Criticality in the presence of gravity at temperature T_{c} with corresponding value λ is determined by setting $z=1$, so that we have the relation,

$$
\begin{equation*}
N=\frac{V}{\lambda^{3}} \int_{0}^{1} d y g_{3 / 2}\left(e^{-\beta m g L y}\right) \tag{4.5}
\end{equation*}
$$

Since we have $m g L \ll k T_{c}$, we may uniformly expand the integrand as follows,

$$
\begin{equation*}
g_{3 / 2}\left(e^{-\beta m g L y}\right)=\zeta(3 / 2)-2 \sqrt{\pi}(\beta m g L y)^{\frac{1}{2}}+\mathcal{O}(\beta m g L) \tag{4.6}
\end{equation*}
$$

Combining equations (4.4) with (4.5) in the above approximation, we find,

$$
\begin{equation*}
\frac{1}{\lambda_{0}^{3}}=\frac{1}{\lambda^{3}} \int_{0}^{1} d y\left(1-\frac{2 \sqrt{\pi}}{\zeta(3 / 2)}(\beta m g L y)^{\frac{1}{2}}+\mathcal{O}(\beta m g L y)\right) \tag{4.7}
\end{equation*}
$$

Within the approximation of small gravitational effects, we have,

$$
\begin{equation*}
T_{c}=T_{c}^{0}\left(1+\frac{8 \sqrt{\pi}}{9 \zeta(3 / 2)}\left(\frac{m g L}{k T_{c}^{0}}\right)^{\frac{1}{2}}+\mathcal{O}(g)\right) \tag{4.8}
\end{equation*}
$$

(b) In the condensed phase, we set $z=1$, so that the internal energy is given by,

$$
\begin{equation*}
\frac{E}{V}=\frac{3 k T}{2 \lambda^{3}} \int_{0}^{1} d y g_{5 / 2}\left(e^{-\beta m g L y}\right) \tag{4.9}
\end{equation*}
$$

From the asymptotics of $g_{3 / 2}$, we deduce the asymptotics of $g_{5 / 2}$, and we find,

$$
\begin{equation*}
g_{5 / 2}\left(e^{-\alpha}\right)=\zeta(5 / 2)-\zeta(3 / 2) \alpha+\frac{4}{3} \sqrt{\pi} \alpha^{3 / 2}+\mathcal{O}\left(\alpha^{2}\right) \tag{4.10}
\end{equation*}
$$

From this expansion, it is clear that the next order correction arising from the integral is suppressed by a factor of $m g L / k T_{c}$, so this is subleading compared to the square root behavior. As a result, we find,

$$
\begin{equation*}
\frac{E}{V}=\frac{3 k T}{2 \lambda^{3}} \zeta(5 / 2) \tag{4.11}
\end{equation*}
$$

so that the specific heat is given by,

$$
\begin{equation*}
\frac{C_{V}}{N k}=\frac{15}{4} \frac{\zeta(5 / 2)}{\zeta(3 / 2)} \frac{\lambda_{0}^{3}}{\lambda^{3}} \tag{4.12}
\end{equation*}
$$

where λ corresponds to T_{c}, while λ_{0} corresponds to T_{c}^{0}.
In the gas phase, we have instead,

$$
\begin{equation*}
\frac{E}{V}=\frac{3 k T}{2 \lambda^{3}} \int_{0}^{1} d y g_{5 / 2}\left(z e^{-\beta m g L y}\right) \tag{4.13}
\end{equation*}
$$

Since $g_{5 / 2}(z)$ has a regular expansion near $z=1$ to leading non-trivial order, the exponential correction in the argument may be neglected, as it is of higher order. Thus we are left with,

$$
\begin{equation*}
\frac{E}{V}=\frac{3 k T}{2 \lambda^{3}} g_{5 / 2}(z) \tag{4.14}
\end{equation*}
$$

The specific heat is obtained by differentiating with respect to T, including the dependence on z,

$$
\begin{equation*}
\frac{C_{V}}{N k}=\frac{15}{4} \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)} \frac{\lambda_{0}^{3}}{\lambda^{3}}+\left.\frac{3}{2} \frac{\lambda_{0}^{3}}{\lambda^{3}} \frac{\partial \ln z}{\partial \ln T}\right|_{N, V} \tag{4.15}
\end{equation*}
$$

The remaining derivative is obtained from differentiating the relation

$$
\begin{equation*}
\frac{N}{V} \lambda^{3}=\int_{0}^{1} d y g_{3 / 2}\left(z e^{-\beta m g L y}\right) \tag{4.16}
\end{equation*}
$$

with respect to T, while keeping N and V fixed. Setting $z=1$ to match with the condensed phase, and again neglecting higher orders in $m g L / k T_{c}$, we find the discontinuity to be given by,

$$
\begin{equation*}
\frac{\Delta C_{V}}{N k}=-\frac{9}{4} \frac{\zeta(3 / 2)}{\int_{0}^{1} d y g_{1 / 2}\left(e^{-\beta m g L y}\right)} \tag{4.17}
\end{equation*}
$$

Using the expansion of $g_{1 / 2}$ near 1 , derived from that of $g_{3 / 2}$, we find,

$$
\begin{equation*}
g_{1 / 2}\left(e^{-\alpha}\right)=\sqrt{\frac{\pi}{\alpha}}+\mathcal{O}(1) \tag{4.18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{\Delta C_{V}}{N k}=-\frac{9 \zeta(3 / 2)}{8 \sqrt{\pi}}\left(\frac{m g L}{k T_{c}^{0}}\right)^{\frac{1}{2}} \tag{4.19}
\end{equation*}
$$

