1. Quantum Mechanics (Spring 2007)

Consider a hydrogen atom in a weak uniform magnetic field B = Bé,.

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but
neglecting spin-orbit interactions.

(b) Show that the vector potential of the applied magnetic field in the Coulomb gauge, V- A = 0, can be taken to
be A = g(—y,x,O).

(¢) Now expand the Hamiltonian of part a) to first order in A (B), i.e., neglect terms quadratic in A. Also make
the (unphysical’) assumption that the electron spin can be neglected. Show that then H = Hy + wrlz with
wr, = eB/(2mec) and with Hy the Hamiltonian of this system without magnetic field.

(d) Find the eigenfunctions and eigenvalues of H of part ¢) and discuss the resulting splitting of the degenerate
hydrogen energy levels of Hy. Make the same simplifying assumptions as in part ¢). Also neglect relativistic
effects.

LA charged but spinless hypothetical particle, the charged Higgs bosons H¥, is suggested by Supersymmetry. Finding one in a
hydrogen-like bound state with the proton would, of course, be a sensation.



2. Quantum Mechanics (Spring 2007)
A particle moves in a three-dimensional potential
V(r) = —Vhad(r — a)

Vo and a are positive numbers. Is there always an [ = 0 bound state? Is there ever an [ = 0 bound state? If your
answers are no and yes, respectively (that is, there is an { = 0 bound state for some, but not all, values of Vj and a),
what is the condition on V; and a for the bound state to exist?



3. Quantum Mechanics (Spring 2007)

Let H be the Hamiltonian for the hydrogen atom, including spin. AL = r X p and &s are the orbital and spin angular
momentum, respectively, and J = L +s. Conventionally, the states are labelled |n, 1,7, mj> and they are eigenstates

of H,L?, J?, and J,.
In parts (a) and (d) you may ignore spin-orbit and relativistic effects.
(a) If the electron is in the state |n,l, 7, mj>, what values will be measured for these four observables in terms of
h, ¢, the fine-structure constant «, and the electron mass m?

(b) What are the restrictions on the possible values of n, I, j, and m;?

(c) Let Jy = J, £ iJ,. What are

(i) <7 7272|']+’37 727 %>:?

(i) (3.1,3.3 1,3,5)="

(iii) (2,1,4,—3|L? 2,1,;, =7

(iv) (3,2,2,-1|3%3,2,3,-3) ="

(v) (3:1,3,3]:[3,1,5,5) =7
(d) What are

() (21,3 3p=[2.1,5,5) =7

(i) (10,5, 5|pps|1,0,5,5) =7



4. Quantum Mechanics (Spring 2007)

When 7+ mesons are scattered off a proton target, it is observed that the cross section becomes very large when the
7T kinetic energy is near Fg = (150 MeV). At that energy it is also observed that the differential cross section, as a
function of the scattering angle 6, is proportional to cos? 6.

Near E = Ej the total cross section has the resonance form

C
(E — Eo)?+12/4

Utot(E) =

In terms of Ey, I', and the mass m, of the 7T, what is the largest possible value of the constant c?

Note: In this problem ignore spin and relativistic effects, and assume the target proton is infinitely heavy.



5. Quantum Mechanics (Spring 2007)

Consider a particle of mass m in a one-dimensional potential of the form V(x) = b|z|, where b is a constant with
b > 0. Apply the variational method using the trial wavefunction

2

(a) Calculate (1|¢)) and (¢|H|v) for the trial wavefunction.
(b) Find the extrema of the function

Bl - )

(¥[)
(¢) Calculate the ground state energy Ej using the variational method.

(d) Write down a trial wavefunction which would be appropriate to calculate the energy of the first excited state.
Give an argument for your choice.



6. Statistical Mechanics and Thermodynamics (Spring 2007)

Consider N noninteracting distinguishable particles of mass m in a three-dimensional harmonic oscillator with Hamil-
tonian

H— ZN: pi’ + Mrz
~2m 2
The particles are in contact with a heat bath of temperature T" and are in thermal equilibrium.
(a) Calculate the partition function Z(T, N) of the system.
(b) Calculate the internal energy F(T, N) of the system.
(c¢) Calculate the heat capacity ¢(T, N) of the system.
)

(d) Simplify the expression for the heat capacity for low and high temperature (with respect to hw/kg).



7. Statistical Mechanics and Thermodynamics (Spring 2007)
(a) For the entropy S(7T,V) and the energy E(T,V) derive from the first law of thermodynamics the following

relation:
OEN _ (9 _
ov ). “\ar), 7

(b) The equation of state of a thermodynamic system is given by
p=oaeT)

where « is a constant and

e(T)=E(T,V)/V
Calculate the temperature dependence of the internal energy E(T, V).
(c) Calculate the entropy S(T, V) for a system with the equation of state given above.

(d) Calculate the Helmholtz free energy F' and Gibbs free energy G for the case of a photon gas (o = 1/3).



8. Statistical Mechanics and Thermodynamics (Spring 2007)
Consider a large number of photons, in thermal equilibrium at temperature 7', inside a volume V. The photons are

in vacuum and can have two possible directions of polarization.

(a) Let u(w,T)dw be the mean energy per unit volume of photons in the frequency range between w and w + dw.
Find u(w,T).
(b) What is the temperature dependence of the total energy density ug?

Note: The constants of proportionality will involve a definite integral which you need not solve explicitly — find
temperature dependence only.



9. Statistical Mechanics and Thermodynamics (Spring 2007)

DNA is a double-stranded molecule which at sufficiently high temperature melts into two single strands. Consider
the following simplified model of this process:

You have two half-ladders (see the figure below); each half-ladder represents one DNA strand. In the double-
stranded molecule, each rung (“base”) on one strand is bound to the opposite rung on the other strand by an energy
en, (“base pairing”). For each base, there is 1 bound state and exp(Sy/k) states with the bond broken (i.e., Sy is the
entropy gained because of one broken bond). Each base can also flip out of the plane of the page (“unstacking”),
but there is an energy cost eg for that and also an entropy gain o (i.e., there is 1 state with the base “stacked” and
exp(o/k) states with the base “unstacked”).

To summarize:
— unpairing carries an energy cost ¢, and an entropy gain s per base or a total change in free energy of €, — T's

— unstacking carries an energy cost €5 and an entropy gain ¢ per base or a total change in free energy of ¢, — T'o

For a molecule with N base pairs:
(a) What is the partition function if “unstacking” is neglected?

(b) For the partition function in part a), what is the average number of unpaired bases at temperature T in terms
of the appropriate partial derivatives?

(c) What is the partition function if “unstacking” can occur? and what is the new expression for the average
number of unpaired bases? You may leave your result in terms of the appropriate derivatives of the partition
function.

Make the assumptions that:

(1) unpairing can proceed only serially from one end of the molecule (like a zipper; neglect states which are partially
unzipped from both ends)

(2) a base can be unstacked only if it is unpaired.

unpaired
bases

BNV4

paired
bases



10. FElectricity and Magnetism (Spring 2007)

Consider the following scattering problem. A particle of charge ¢ and mass m is constrained to move along the z-axis
and is bounded by a harmonic potential centered at the origin, 1 = (0,0,0) with a natrual frequency wg. A plane
e.m. wave propagating along z: E = Ey expli(kz — wt)]; k = 27\ is incident on this system. The incident wave is
linearly polarized along z.

(a) Calculate the scattering cross-section do/d) in the spherical coordinate angle 6 with respect to the z-axis.
Note that this is not the scattering angle.

(b) Now add a second, identical charge, constrained in a similar fashion to move along the z-direction and harmon-
ically bound with a natural frequency wq centered at xzo = (0,A/2,0). Calculate the scattering cross-section
do/dQ due to both charges.

For this problem you might find the following formulas for the dipole fields useful where p is the amplitude of the
electric dipole:
ikr

B = k2% (ixp)e




11. FElectricity and Magnetism (Spring 2007)

Consider a long electron beam with a flat top radial profile with a radius ro (density is constant in r for r < a), a
length L > a, and a velocity vy,

(a)
(b)

(d)

What is the total force on an electron at the edge of the beam (r = r¢)?

Suppose this beam enters a plasma with a density ng (an initially neutral collection of electrons and ions).
Assume that the density of the beam is much larger than that of the plasma such that all of the plasma
electrons are pushed outward. They will form a sheath that is distributed symmetrically in the azimuthal
direction around the ions that have not moved. Assume that v, is very close to the speed of light so that -,
is very large and the force you calculated in part a) can be assumed to be zero. Show that for very large 7,
each beam electron will approximately oscillate in the 2 and y directions with a frequency wy,/(27y1,)'/2, where
wp = 4me’ng/m is the plasma frequency.

The electrons will then radiate. What is the power radiated by a single electron that starts at the edge of the
beam? Estimate the length of plasma it would take for the beam to radiate away its energy in terms of the
plasma density, its initial radius, and the beam energy, i.e., 7. (Recall that the relativistic Larmor formula is

P=2255[32 (8 xB)2.)

Estimate the length of plasma it would take for the beam to radiate away its energy.



12. FElectricity and Magnetism (Spring 2007)

Consider a plane electromagnetic wave with a frequency, wg, propagating in vacuum in the z direction with its electric
field polarized in the X direction.

(a)

(b)

Write down the form for the electric field, magnetic field, vector potential, and scalar potential for this wave
(should be easy).

Suppose the wave is a pulse with a well-defined beginning and end, that is, the vector potential has an “envelope”
that is a function of z — ¢t (and the other fields have an appropriate form). Does such a wave also satisfy
Maxwell’s equations?

Consider an electron starting at rest that sits in the path of the electromagnetic wave. What are the equations
of motion and the conservation of energy equation? (Write out the equations for dP/d¢ and dv/d¢.)

Use the equations from part c¢) to show that the canonical momentum in the % direction and v — 5 = are
constants of the motion.

Hint: For the second constant use a linear combination of the dy/d¢ and d P, /dt equations.
If the electron starts at rest, then what is maximum kinetic energy as it oscillates in the wave?

What is its kinetic energy after the wave completely passes by it?



13. FElectricity and Magnetism (Spring 2007)

Consider a long cylider of radius 7y that is sliced in half along z. Let one half be maintained at a potential ¢y and
the other half at —¢q.

(a) What is Poisson’s equation in cylindrical coordinates?
(b) What is the potential for r < r¢?

(¢c) What is the potential for r > ry?



14. Flectricity and Magnetism (Spring 2007)

A wire consists of a long straight conductor of circular cross section with radius a and has a current I. Free electron
charge carriers roam the otherwise rigid lattice of ions the wire is made out of. Assume Ohmic conduction so that
the current density J is a constant inside the conductor, and assume that the free charge carriers are electrons with
drift velocity vq. The conductor is at rest in the S frame.

(a) Find the magnetic field inside the wire as a function of radius r. Find the force on the conduction electrons
due to this magnetic field. Will the conduction electrons move in straight lines under the influence of this force
alone? If not, what happens?

(b) In a steady state, is there an electric field perpendicular to the axis of the wire? If so, find its magnitude and
direction and the charge density implied by that field.

(¢) Consider the same problem as viewed from a frame S’ moving to the right with velocity v = vq. Will there be
a magnetic force on the conduction electrons? Find the perpendicular electric field and charge density in the
wire in this frame.

(d) Let pg be the volume charge density in the rest frame of the charges and p = pg f(v) the charge density when
viewed from the frame moving with velocity v. Find f(v) from the requirement that a) and b) be consistent.
Is charge conserved when changing the reference frame? Give your reasoning.



3. Quantum Mechanics (Spring 2007)

Lel A be the Hamiltonian for the hydrogen atom, including spin. AL = r x p and fis are the orbital and spin angular
momentum, respectively, and J = L +s. Conventionally, the states are labelled |n,{, j, mj> and they are eigenstates
of H, L2 J?, and J,.

In parts (a) and (d) you may ignore spin-orbit and relativistic effects.

(a) If the electron is in the state |n,l, 7, m;), what values will be measured for these four observables in terms of
A, ¢, the fine-structure constant «, and the electron mass m?

(b) What are the restrictions on the possible values of n, I, 7, and m;?

(¢} Lel Jy = Jg £4Jy. What are

O ELIALBLE =7 T T  am=2 £ = @
(i) (31,3, 317:03,1,3,4) =7 a2y = s zg = A3
(i) (21,5, -3[L22.1,3,-3)=7 ¢r_, +7? L(1el) = 2
i 1132|139 3 _1 =2 - 2(3+1) = 15/4
(iv) (3,2,%,-13%)3,2.3,-1Y=? T T, z
W) (3 L3.5008.1.5.2) =7 Ja 2T, sm=1+#0 = g
(d) What are
(i) (21,3.3[p:|2.1.5.3) =7 Pe” TS am=1+0 =@
(i) (1, 0,%”1;3@!1 0,3, 1y =7
& .. >2 = -
ﬂ) H: ‘zfx2mc2 hE L - ﬂ(ﬁ-ﬂ) T: d(dﬂ) :)—E: m}

V) neZ2°=042,3,...5  lefoi,z.., n-1} P
defla-sl, leslol, o, gas-t, dest omy €8fy=ithe, o1, 4

¢) Wigner - Eckart selection rutes: () f, ] Tilo,4,m)
L(nleyy Am =4
and ,a&[ < k = ZGL

D it gy e 3508y T i) (2ot piep) - 495
¢ d ¢l ° ST de 0
e T
T: [P;)P{}:O %Tg t(sz ¢' ZJ :i

<Pii’;> i ?(‘fﬁ O(EJ' = 3 2m T2 S;Jj = = %@<E> 5.‘3' by vipial Hheorem

Ao B oy Tede ¥ e o BLE B
—+3a(mchla-ldh:| 3o(hacg,&



6. Statistical Mechanics and Thermodynamics (Spring 2007)

Consider N noninteracting distinguishable particles of mass m in a three-dimensional harmonic oscillator with Hamil-

tonian
H= Z 2m

The particles are in contact with a heat bath of temperature 1" and are in thermal equilibrium.
(a) Caleulate the partition function Z(T, N) of the system.
(b) Calculate the internal energy E(T', N) of the system.
(¢) Calculate the heat capacity ¢(T, N) of the system.

(d) Simplify the expression for the heat capacity for low and high temperature (with respect to fw/kg).
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6. Statistical Meckanics and TkexmoJ}fnamch (Sfrfnj 2007)
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6. Statistical Mechanics and Thermodynamics (Spring 2007)
Consider N noninteracting distinguishable particles of mass m in a three-dimensional harmonic oscillator with Hamil-

tonian W e
H = ; -2—;; + Trg2
The particles are in contact with a heat bath of temperature 7' and are in thermal equilibrium.

(a) Calculate the partition function Z(T, N) of the system.

(b) Calculate the internal energy E(T, N) of the system.

(c) Calculate the heat capacity (T, N) of the system.

(d) Simplify the expression for the heat capacity for low and high temperature (with respect to hw/kg).
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6. Stutistical Meckanics and Wmoa[yhama'c:
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8. Statistical Mechanics and Thermodynamics (Spring 2007)
Consider a large number of photons, in thermal equilibrium at temperature T, inside a volume V. The photons are
in vacuum and can have two possible directions of polarization.
(a) Let u(w,T) dw be the mean energy per unit volume of photons in the frequency range between w and w + dw.
Find w(w,T).
(b) What is the temperature dependence of the total energy density wug?

Note: The constants of proportionality will involve a definite integral which you need not solve explicitly — find
temperature dependence only.
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