1. Quantum Mechanics (Fall 2005)

Let H be the Hamiltonian for the hydrogen atom, including spin. AL = r X p and &s are the orbital and spin angular
momentum, respectively, and J = L + s. Conventionally, the states are labeled |n,l, j,m) and they are eigenstates

of H,L?, J?, and J,.
In parts (a) and (d) you may state the answer to lowest nonvanishing order — ignore spin-orbit and relativistic

effects.

(a) If the electron is in the state |n,l, j,m), what values will be measured for these four observables in terms of h,

¢, the fine-structure constant «, and the electron mass m?
(b) What are the restrictions on the possible values of n, I, j, and m?

(c) Let Jy = J, £iJ,. What are

(@) (3.1,8,5]+[3.1.3.—5) =7
(i) (31,2, 5] 7+[3,1,5,2) =7
(iii) (2,1,%,—3|L?[2,1,3,-4) =7
(iv) <3,2,§,W{J213, ,Q,f%>:?
(v) (3.1 22) ="

(d) What are

(i) (2, 17§7§’|pz|2,1,%,%>:?



2. Quantum Mechanics (Fall 2005)

Consider the one-dimensional harmonic oscillator. The Hamiltonian is

2 2,.2
P mw?z
Hy=—
" om T T2
(a) Define the operator
U= eipb/h

for some real number b. Here p is the momentum operator. What is the ground state wave function (up to the
normalization constant) for the Hamiltonian

H=UHU! ?

Note: If you know the answer, it is enough just to write it down. The derivation is allowed, but not required
for full credit.

(b) Suppose a term az? is added to the Hamiltonian Hy. Calculate the change in the energy of each level, through
second order in «. Please write your answer as a constant independent of the level number n, times a polynomial
or ratio of polynomials in n.



3. Quantum Mechanics (Fall 2005)

An electron in the n = 3, 1 = 0, m = 0 state of hydrogen decays by a sequence of electric dipole transitions to the
ground state.

(a) What decay routes are possible? Specify them by listing the sequence of states |nlm;) in each possible route.

(b) If you had a large number of atoms in this state |300), what fraction of them would decay via each route? Give
an explicit justification for your answer from the expression for the matrix element of the relevant operator.

Hint: You may want to use some of the following:

Yy = Y = % cosf YljEl = :F\/S% sin § e*%¢

1
VAar



4. Quantum Mechanics (Fall 2005)
The Hamiltonian for a system consisting of three distinguishable spin half particles is
HZA(Sl - So +52'53+53'Sl>

where s; is the spin of the i*" particle, and all the components of the spin of one particle commute with all the
components of the spins of the others. What are the eigenvalues of H, and what are the degeneracies of each energy
level?



5. Quantum Mechanics (Fall 2005)

In this problem, neglect spin and relativistic effects, and use the Born approximation.

(a)

()

Suppose an electron scatters off a spherically symmetric potential V(). Write down (or compute if you don’t
remember) the formula for the Born approximation to the scattering amplitude f(6,¢), in the form of a one-
dimensional radial integral:

f(0,¢) = [, (some function of r) x V(r)dr

Now suppose that the electron scatters elastically off a spherically symmetric charge distribution, with charge
density p(r) centered at the origin. (This is not a local potential, but the answer to part (a) may still be useful.)

Calculate, in the Born approximation (that is, to first order in the potential), the scattering amplitude (6, ¢)
and write it as

f(6,0) = fr(¢®)F(¢?)

where q is the momentum transferred between the incident and the scattered electron, and fr(g?) is the
Rutherford amplitude for scattering off a point charge:

Irlq?) = 2mZe

Here « is the fine-structure constant. The function F(¢?) is called the “form factor”. Write an explicit formula
for F(¢?) in terms of p(r).

Now specialize to an electron scattering elastically off a uniformly charged sphere, centered at the origin, with
radius R and total charge Ze. What is F(¢?) as a function of ¢ and R?

Hint: You might want the definite integral fOOO e~ M sin(gr)dr = ﬁ and the indefinite integrals
fxsinxdxzsin:cfxcosx and fmcosxdx:costrxsinx

Note: The scattering amplitude is defined so that its square is the differential cross section: |f |2 = g"
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6. Statistical Mechanics and Thermodynamics (Fall 2005)

“Cold” stars (that is, stars that have exhausted their nuclear fuel) are stabilized against gravitational collapse by
the degeneracy pressure of the electrons, or, at higher densities, neutrons. To model this effect, consider a spherical
star of mass M, mass density p, radius R, and volume V', consisting of neutrons of mass m,,.

(a)

Calculate the gravitational potential of the star, that is, the gravitational potential of a uniform massive sphere
of radius R.

Answer: (222G
_ @m)p 5
Va = T5 R

where G is Newton’s gravitational constant.

Obtain the corresponding gravitational pressure Pg.

View the neutrons as a cold, ideal neutron gas. Compute the energy and the degeneracy pressure of the fermion
gas at T' = 0 assuming

(i) the gas is nonrelativistic (p < m).
(ii) the gas is ultrarelativistic (p > m).

Is there an equilibrium radius for the star in

(i) the nonrelativistic case?

(i) the ultrarelativistic case?

If there is no equilibrium radius, what is the critical particle number N = N, above which gravitational collapse
is unavoidable?



7. Statistical Mechanics and Thermodynamics (Fall 2005)

In a temperature range near some absolute temperature T', the tension force F' of a stretched plastic rod is related
to its length L by the expression
F = aT?*(L — Lo)

where a and Ly are positive constants, Ly being the unstretched length of the rod. When L = Lg, the heat capacity
C'p, of the rod (measured at constant length) is given by the relation Cp, = bT, where b is a constant.

(a) Write down the fundamental thermodynamic relation for this system, expressing d.S in terms of dL and dE.
(b) The entropy S(T, L) of the rod is a function of T and L. Compute (%)T

(¢) Knowing S(To, Lo), find S(T, L) at any other temperature T and length L. (It is most convenient to calculate
first the change of entropy with temperature at the length Loy where the heat capacity is known.)

(d) If you start at T'=T; and L = L; and stretch the thermally insulated rod quasi-statically until it attains the
length Ly, what is the final temperature 77

(e) Calculate the heat capacity Cr(L,T) of the rod when its length is L instead of L.

(f) Calculate S(T, L) by writing S(T, L) — S(Ty, Lo) = [S(T, L) — S(To, L)] + [S(To, L) — S(To, Lo)] and using the
result of part (e) to compute the first term in square brackets. Show that the final answer agrees with the one
found in part (c).



8. Electricity and Magnetism (Fall 2005)

An anisotropic medium has a tensor conductivity given by

g 0 0
= 0 oL 0
0 0 O’H

where o and o are real and independent of frequency. The symbol L refers to the (%X,¥) direction and the symbol
|| to the z direction in a Cartesian coordinate system.

(a) Find the dispersion relation k = k(w) for an electromagnetic wave with O-mode (ordinary mode) polarization
with the k vector along X.

(b) Write an expression for the damping decrement k; = Im k& in the limit of high frequency.

(c¢) If the amplitude of the electric field is Ey at = 0, find the time-avaraged power per unit volume delivered to
this medium at the location > 0. (No need to write down kj explicitly.)



9. Electricity and Magnetism (Fall 2005)

Two small pieces of uncharged, continuous, polarizable matter (for example, glass) are placed in a region in which
there is an externally generated, uniform field Ey. The two small pieces of matter have volumes V; and V5 and
electrical susceptibilities 1 and Yy, respectively. If they are separated by a distance d, such that d® > V; and
d® > Vs, find the energy associated with the interaction between the two pieces (that is, the part of the energy that
depends on d.)



10. FElectricity and Magnetism (Fall 2005)

A pulsar emits bursts of radio waves, which are observed from Earth at two different frequencies, say wy and ws. An
astronomer notes that the arrival time of the bursts is delayed at the lower frequency: the pulse at w; arrives after
the pulse at ws. The delay, 7, is due to dispersion in the interstellar medium. Assuming this medium consists of
ionized hydrogen, estimate the distance s of the pulsar from the earth, as follows:

(a) Show that the electron plasma frequency for the dilute plasma — consisting of (heavy) ions and free electrons

—is 12
<47TN€2 )
wp =
Me

in e.s.u. Here N is the number of electrons per unit volume.

(b) Show that the index of refraction of the plasma is

Hint: Write the equation of motion for a free electron in an oscillating (e~*?) electric field and find the plasma’s
polarizability x. Then e = 1 + 47y.

(¢) From the relation above find the group velocity of the light, and use this result to find the distance to the
pulsar. (You may assume the frequencies are large compared to wy,.)



11. FElectricity and Magnetism (Fall 2005)

A thin copper circular ring (conductivity o, mass density p,,) is suspended so it can rotate freely about one diameter.
There is a uniform magnetic field B perpendicular to the axis of rotation. The initial rotation frequency is wy.
Calculate the time it takes for the frequency to decrease to 1/e of its original value, assuming the energy all goes
into Joule heating. (Assume the requested time 7 is large compared to the rotation period.)



12. Flectricity and Magnetism (Fall 2005)

An infinitely long cylinder of radius a exhibits a permanent magnetization with its magnetization vector given by

M(r) =ar’z r<a

M(r)=0 r>a

where « is a constant, r is the (cylindrical) radial coordinate and Z is a unit vector along the axis of the cylinder.

(a)

Find the magnetic vector field B for r < a and for r» > a.
Hint: In cylindrical coordinates

OF, OF,
(VxF)g = Gr = 57

j{A-dl

along a circular path of radius b > a, encircling (in the ¢A> direction) and concentric with the magnetized
cylinder. A is the magnetic vector potential.

Determine the value of

Find the force per unit volume experienced by the material at a location r < a.

What will happen to the cylinder if « is suddenly increased to a very large value?



13. Statistical Mechanics and Thermodynamics (Fall 2005)

The hydrogen molecule comes in two forms, in which the spin degrees of freedom of the two protons are in a spin
triplet state (the “ortho” case) or in a spin singlet state (the “para” case) respectively. The rotational energies of a

hydrogen molecule are given by
h2
E(L)=—=L(L+1
(L) = g L(L+1)
with I the moment of inertia and L the orbital angular momentum quantum number.
(a) In the ortho case, only odd L values are allowed and in the para case only even values. Why?

(b) Assuming that Boltzmann statistics are valid, find an expression for the specific heat of an ideal gas of hydrogen
molecules for both the low temperature and the high temperature limits.

(¢) Suppose protons were bosons instead of fermions. What would the low-temperature specific heat be then?



14. Statistical Mechanics and Thermodynamics (Fall 2005)

Consider a classical system of N nonrelativistic charged particles in the presence of a constant external magnetic
field B = Vx A at temperature 7.

(a) Write down the partition function for the system.

(b) Compute the induced magnetization of the system along the direction of B. From this you can answer the
question whether paramagnetism occurs in classical physics.



1. Quantum Mechanics (Fall 2005)

Let H be the Hamiltonian for the hydrogen atom, including spin. AL = r x p and /s are the orbital and
spin angular momentum, respectively, and J = L +s. Conventionally, the states are labeled |n, [, j,m) and

they are eigenstates of H, L2, J2, and J,. ‘
In parts (a) and (d) you may state the answer to lowest nonvanishing order — ignore spin-orbit and

relativistic effects.

(a) If the electron is in the state |n,l, j,m), what values will be measured for these four observables in
terms of ki, ¢, the fine-structure constant e, and the electron mass m?

(b) What are the restrictions on the possible values of n, [, j, and m?

(c) Let Jy = J, +1iJ,. What are
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2. Quantum Mechanics (Fall 2005)

Consider the one-dimensional harmonic oscillator. The Hamiltonian is
p?  mw?z?

Hy=+—

0= om T T3

(a) Define the operator
U = ei?b/"
for some real number b. Here p is the momentum operator. What is the ground state wave function

(up to the normalization constant) for the Hamiltonian
H=UHU" ?

Note: If you know the answer, it is enough just to write it down. The derivation is allowed, but

not required for full credit.
(b) Suppose a term az® is added to the Hamiltonian Ho. Calculate the change in the energy of each

level, through second order in a. Please write your answer as a constant independent of the level

number 7, times a polynomial or ratio of polynomials in 7.
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4. Quantum Mechanics (Fall 2005)
The Hamiltonian for a system consisting of three distinguishable spin half particles is

H = A(s; -s2+89-53 +83-571)

where s; is the spin of the i *® particle, and all the components of the spin of one particle commute with all
the components of the spins of the others. What are the eigenvalues of H, and what are the degeneracies

of each energy level?
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9. Electricity and Magnetism (Fall 2005)

Two small pieces of uncharged, continuous, polarizable matter (for example, glass) are placed in-a region
in which there is an externally generated, uniform field Ep. The two small pieces of matter have volumes
V; and Vz and electrical susceptibilities x1 and X2, respectively. If they are separated by a distance d, such
that d® > V; and d3 > Vb, find the energy associated with the interaction between the two pieces (that

is, the part of the energy that depends on d.)
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Hector
Sticky Note
It was not specified that these were spheres, so I guess this is ok. This is in the limit that the susceptibility approaches zero, however. 

If they were spheres, refer to page 158 of Jackson.

Hector
Sticky Note
This is p dot E. Find a quick way to derive E from a dipole.


10. Electricity and Magnetism (Fall 2005)

A pulsar emits bursts of radio waves, which are observed from Earth at two different frequencies, say w;
and we. An astronomer notes that the arrival time of the bursts is delayed at the lower frequency: the
pulse at w; arrives after the pulse at wp. The delay, 7, is due to dispersion in the interstellar medium.
Assuming this medium consists of ionized hydrogen, estimate the distance s of the pulsar from the earth,
as follows:

(a) Show that the electron plasma frequency for the dilute plasma — consisting of (heavy) ions and free
electrons — is
o\ 172
47 Ne
Wy =
Me

in e.s.u. Here N is the number of electrons per unit volume.

(b) Show that the index of refraction of the plasma is

Hint: Write the equation of motion for a free electron in an oscillating (e~**) electric field
and find the plasma’s polarizability x. Then € = 1+ 47x.

(¢) From the relation above find the group velocity of the light, and use this result to find the distance
to the pulsar. (You may assume the frequencies are large compared to wp.)
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10, Eie_,r_cﬁr!ct{-y andl Maﬁmﬁ'sm (Fall 2005)
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0. Electricity and Magnetsm (Fall 2008)
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11. Electricity and Magnetism (Fall 2005)

A thin copper circular ring (conductivity o, mass density pn,) is suspended so it can rotate freely about one
diameter. There is a uniform magnetic field B perpendicular to the axis of rotation. The initial rotation
frequency is wg. Calculate the time it takes for the frequency to decrease to 1/e of its original value,
assuming the energy all goes into Joule heating. (Assume the requested time 7 is large compared to the

rotation period.) | ?
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14. Statistical Mechanics and Thermodynamics (Fall 2004)

Consider black body radiation at temperature T. What is the average energy per photon in units of k77
You may find the following formulae useful:
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Consider black body radiation at temperature T. What is the average energy per photon in units of k77
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