1. Rail problem. A pair of rails run along the x -direction and are separated by a distance L. They are connected at some point by a stationary wire. To the right of the stationary wire a slide-wire completes the circuit. The slide-wire can move along the rails. A uniform magnetic field $\mathbf{B}=-B \hat{z}$ points into the page. The slide-wire has mass m, resistance R and initial position $x_{0}=0$.
(a) Find the force F on the rail when it is given a velocity $\mathbf{v}=v_{0} \hat{x}$.
(b) Solve for the motion of the wire as a function of time. What is the behavior of the velocity and position of the wire at large t ?
(c) The circuit in the wire dissipates power as $P=\epsilon I$. Where does this energy come from? Calculate the total energy dissipated (as $t \rightarrow \infty$). Does this agree with your theory of where the energy came from?
